2017北京中考数学一模圆专题
- 格式:docx
- 大小:125.82 KB
- 文档页数:4
2017年北京中考数学一模28题“几何综合题”西城28.在△ABC 中,AB =BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形; ②求证:()BF BC BD +=21; (2)点E 在AB 边上,连接CE . 若()BF BC BD +=21,在图2.中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路图1 图2朝阳28.在△ABC 中,∠ACB =90°,AC <BC ,点D 在AC 的延长线上,点E 在BC 边上,且BE =AD , (1) 如图1,连接AE ,DE ,当∠AEB =110°时,求∠DAE 的度数;(2) 在图2中,点D 是AC 延长线上的一个动点,点E 在BC 边上(不与点C 重合),且BE =AD ,连接AE ,DE ,将线段AE 绕点E 顺时针旋转90°得到线段EF ,连接BF ,DE . ①依题意补全图形; ②求证:BF =DE .FEBDAC D A CB图1图2东城28. 在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________;(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;……请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)图1 图2 图3ABDC图1图2房山28. 在△ABC 中,AB=BC ,∠B=90°,点D 为直线BC 上一个动点(不与B 、C 重合),连结AD ,将线段AD 绕点D 按顺时针方向旋转90°,使点A 旋转到点E ,连结EC . (1)如果点D 在线段BC 上运动,如图1: ①依题意补全图1; ②求证:∠BAD=∠EDC③通过观察、实验,小明得出结论:在点D运动的过程中,总有∠DCE=135°.小明与同学讨论后,形成了证明这个结论的几种想法:想法一:在AB 上取一点F ,使得BF=BD ,要证∠DCE =135°,只需证△ADF ≌△DEC . 想法二:以点D 为圆心,DC 为半径画弧交AC 于点F. 要证∠DCE=135°,只需证△AFD ≌△ECD .想法三:过点E 作BC 所在直线的垂线段EF ,要证∠DCE=135°,只需证EF=CF . ……请你参考上面的想法,证明∠DCE=135°.(2)如果点D 在线段CB 的延长线上运动,利用图2画图分析,∠DCE 的度数还是确定的值吗?如果是,直接写出∠DCE 的度数;如果不是,说明你的理由.顺义28.在正方形ABCD 和正方形DEFG 中,顶点B 、D 、F 在同一直线上,H 是BF 的中点.(1)如图1,若AB =1,DG =2,求BH 的长; (2)如图2,连接AH ,GH .图2图1BB小宇观察图2,提出猜想:AH =GH ,AH ⊥GH .小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH 交EF 于点M ,连接AG ,GM ,要证明结论成立只需证△GAM 是等腰直角三角形; 想法2:连接AC ,GE 分别交BF 于点M ,N ,要证明结论成立只需证△AMH ≌△HNG . ……请你参考上面的想法,帮助小宇证明AH =GH ,AH ⊥GH .(一种方法即可)平谷28.在△ABC中,AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,射线DE 绕点D顺时针旋转120°,与直线AC交于点F.(1)依题意将图1补全;(2)小华通过观察、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF;想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互补,可得∠AED 与∠AFD互补,由等角对等边,可证DE=DF;想法3:由等腰三角形三线合一,可得AD是∠BAC的角平分线,由角平分线定理,构造点D到AB,AC 的高,利用全等三角形,可证DE=DF…….请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可);(3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.图1 备用图门头沟28. 已知△ABC ,AB AC =, BAC α∠=,在BA 的延长线上任取一点D ,过点D 作BC 的平行线交CA 的延长线于点E .(1)当60BAC ∠=︒时,如图28-1,依题意补全图形,直接写出EC ,BC ,ED 的数量关系; (2)当90BAC ∠=︒时,如图28-2,判断EC ,BC ,ED 之间的数量关系,并加以证明; (3)当BAC α∠=时(0180α︒︒<<),请写出EC ,BC ,ED 之间的数量关系并写出解题思路.海淀28.在ABCD 中,点B 关于AD 的对称点为B ',连接AB ',CB ',CB '交AD 于F 点.(1)如图1,90ABC ∠=︒,求证:F 为CB '的中点;(2)小宇通过观察、实验、提出猜想:如图2,在点B 绕点A 旋转的过程中,点F 始终为CB '的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过点B '作B G '∥CD 交AD 于G 点,只需证三角形全等;想法2:连接BB '交AD 于H 点,只需证H 为BB '的中点; 想法3:连接BB ',BF ,只需证90B BC '∠=︒. ……请你参考上面的想法,证明F 为CB '的中点.(一种方法即可) (3)如图3,当135ABC ∠=︒时,AB ',CD 的延长线相交于点E ,求CE AF的值.图1图2图3B 28-1 B 28-2丰台28.在边长为5的正方形ABCD 中,点E ,F 分别是BC ,DC 边上的两个动点(不与 点B ,C ,D 重合),且AE ⊥EF .(1)如图1,当BE = 2时,求FC 的长;(2)延长EF 交正方形ABCD 外角平分线CP 于点P .①依题意将图2补全;②小京通过观察、实验提出猜想:在点E 运动的过程中,始终有AE =PE .小京把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的三种想法:想法1:在AB 上截取AG =EC ,连接EG ,要证AE =PE ,需证△AGE ≌△ECP . 想法2:作点A 关于BC 的对称点H ,连接BH ,CH ,EH .要证AE =PE , 需证△EHP 为等腰三角形.想法3:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM , 要证AE =PE ,需证四边形MCPE 为平行四边形. 请你参考上面的想法,帮助小京证明AE =PE .(一种方法即可)FABCDEF ABCDE图1 图2石景山28.在正方形ABCD 中,点E 是对角线AC 上的动点(与点A ,C 不重合),连接BE . (1)将射线BE 绕点B 顺时针旋转45°,交直线AC 于点F .①依题意补全图1;②小研通过观察、实验,发现线段AE ,FC ,EF 存在以下数量关系: AE 与FC 的平方和等于EF 的平方.小研把这个猜想与同学们进行交流,通 过讨论,形成证明该猜想的几种想法:想法1: 将线段BF 绕点B 逆时针旋转90°,得到线段BM , 要证AE , FC , EF 的关系,只需证AE ,AM ,EM 的关系.想法2:将ABE △沿BE 翻折,得到NBE △,要证AE ,FC ,EF 的关系,只需证EN ,FN ,EF 的关系.……请你参考上面的想法,用等式表示线段AE ,FC ,EF 的数量关系并证明; (一种方法即可)(2)如图2,若将直线..BE 绕点B 顺时针旋转135°,交直线..AC 于点F .小研完成作 图后,发现直线AC 上存在三条线段(不添加辅助线)满足:其中两条线段的平 方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.CCB CB 通州28.在等边三角形ABC 中,E 为直线AB 上一点,连接EC .ED 与直线BC 交于点D ,ED =EC . (1)如图1,AB =1,点E 是AB 的中点,求BD 的长;(2)点E 是AB 边上任意一点(不与AB 边的中点和端点重合),依题意,将图2补全,判断AE 与BD 间的数量关系并证明;(3)点E 不在线段AB 上,请在图3中画出符合条件的一个图形.图1 图2 图3怀柔28.(1)如图1,在△ACB 和△ADB 中,∠C=∠D =90°,过A ,B ,C 三点可以作一个圆,此时AB 为圆的直径,AB 的中点O 为圆心.因为∠D =90°,利用圆的定义可知点D 也在此圆上,若连接DC ,当∠CAB=31°时,利用圆的知识可知∠CDB= 度.(2)如图2,在△ACB 中,∠ACB=90°,AC=BC=3,CE ⊥AB 于E ,点F 是CE 中点,连接AF 并延长交BC于点D.CG ⊥AD 于点G ,连接EG. ①求证:BD=2DC;②借助(1)中求角的方法,写出求EG 长的思路.(可以不写出计算的结果)图2 G FE DC B A 图1OB A西城28.证明:在△ABC 中,AB =BC ,BD ⊥AC 于点D . ∴∠ABD =∠CBD ,AD =BD .(1) ①∵∠ABC =90°, ∴∠ACB =45°. ∵CE 平分∠ACB ∴∠ECB =∠ACE =22.5°.∴∠BEF =∠CFD =∠BFE =67.5°. ∴BE =BF .∴△BEF 是等腰三角形. ······························································· 2分②延长AB 至M ,使得BM =AB ,连接CM. ∴BD ∥CM ,BD =21CM ∴∠BCM =∠DBC =∠ABD =∠BMC =45°, ∠BFE =∠MCE . ∴BC =BM.由①可得,∠BEF =∠BFE ,BE =BF .∴∠BFE =∠MCE =∠BEF . ∴EM =MC ∴()BF BC BD +=21 ···········································分(2)∠ACE =41∠ABCa.与(1)②同理可证BD ∥PC ,BD =21PC ,BP =BC ; b.由()12BD BC BE =+可知△PEC 和△BEF 分别是等腰三角形; c.由∠BEF +∠BFE +∠EBF =180°,∠FCD +∠DFC =90°,可知∠ACE =41∠ABC············································································································ 7分东城28.解:,60. ..AD DE ADE ADE ABC EAB DAC AB AC AE AD EAB DAC CD BE =∠=︒∴∴∠=∠==∴∴=,△为等边三角形.△为等边三角形,,,△≌△EE(1)30°; …………1分 (2)思路1:如图,连接AE .…………5分思路2:过点D 作DF ∥AB ,交AC 于F .…………5分思路3:延长CB 至G ,使BG =CD.…………5分(3)k (BE +BD )=AC . …………7分=60.,=60..===60,.,..ABC AC BC BAC DF AB DFC CDF AF BD ADE ACB ABC DAF EDB AD DE ADF DEB DF BE CD ∴=∠︒∴∠︒∴∴=∠∠∠︒∴∠=∠=∴∴==△为等边三角形,,∥△为等边三角形.又△≌△=60.,.===60,.,.,==60..ABC AC BC BAC CD BG DG AC ADE ACB ABC DAF EDB AD DE ADC DEG CD EG BG C G BGE BE BG CD ∴=∠︒=∴=∠∠∠︒∴∠=∠=∴∴==∠∠︒∴∴==△为等边三角形,,又△≌△△为等边三角形.EABDC朝阳28.(1)解:∵ÐAEB =110°,ÐACB =90°,∴ÐDAE =20°.(2)①补全图形,如图所示.②证明:由题意可知∠AEF =90°,EF =AE .∵∠ACB =90°,∴∠AEC +∠BEF =∠AEC +∠DAE =90°. ∴∠BEF =∠DAE . ∵BE =AD , ∴△EBF ≌△ADE .∴DE =BF .房山28.(1)补全图形 ------1分 (2)证明:∵∠B =90º∴∠BAD+∠BDA =90º∵∠ADE =90º,点D 在线段BC 上 ∴∠BAD+∠EDC =90º∴∠BAD=∠EDC ------2分 证法1:在AB 上取点F ,使得BF=BD ,连结DF ------3分 ∵BF =BD ,∠B =90º ∴∠BFD =45º∴∠AFD =135º∵BA=BC∴AF=CD ------4分 在△ADF 和△DEC 中⎪⎩⎪⎨⎧=∠=∠=DE AD CDE BAD CDAF ∴△ADF ≌△DEC ------5分 ∴∠DCE =∠AFD =135º ------6分证法2:以D 为圆心,DC 为半径作弧交AC 于点F ,连结DF ------3分 ∴DC=DF ∠DFC =∠DCF ∵AB=BC ∠B =90º∴∠ACB =45º ∠DFC =45º∴∠FDC =90º ∠AFD =135º ∵∠ADE =∠FDC =90º∴∠ADF =∠EDC ------4分 又∵AD =DE DF =DC∴△ADF ≌△CDE ------5分 ∴∠AFD =∠DCE =135º ------6分EFA B D C证法3:过点E 作EF ⊥BC 交BC 延长线于点F ------3分 ∴∠EFD =90º∵∠B =90º, ∴∠EFD =∠B∵∠BAD =∠CDE ,AD=DE∴△ABD ≌△DEF ------4分 ∴AB=DF BD=EF∵AB=BC∴BC=DF ,BC -DC =DF -DC 即BD =CF ------5分 ∴EF =CF ∵∠EFC =90º∴∠ECF =45º,∠DCE =135º ------6分 (2)∠DCE =45º ------7分顺义28.(1)解:∵ 正方形中ABCD 和正方形DEFG ,∴ △ABD ,△GDF 为等腰直角三角形.∵ AB =1,DG =2,∴ 由勾股定理求得BD=2,DF=22.…………………………… 2分 ∵ B 、D 、F 共线, ∴ BF =23. ∵ H 是BF 的中点, ∴ BH =21BF =223. …………………………………………………… 3分 5(2)证法一:延长AH 交EF 于点M ,连接AG ,GM ,∵正方形中ABCD 和正方形DEFG 且B 、D 、F 共线,∴AB ∥EF .∴∠ABH=∠MFH .又∵BH=FH ,∠AHB =∠MHF ,∴△ABH ≌△MFH .…………… 4分 ∴AH=MH ,AB=MF . ∵AB=AD , ∴AD=MF .∵DG=FG ,∠ADG=∠MFG =90°, ∴△ADG ≌△MFG .…………… 5分 ∴∠AGD=∠MGF ,AG=MG . 又∵∠DGM +∠MGF=90°, ∴∠AGD +∠DGM=90°.∴△AGM 为等腰直角三角形.…………………………………… 6分 ∵AH=MH ,∴AH =GH ,AH ⊥GH .…………………………………………… 7分证法二:连接AC ,GE 分别交BF 于点M ,N ,∵正方形中ABCD 和正方形DEFG 且B 、D 、F 共线,∴AC ⊥BF ,GE ⊥BF ,DM =21BD ,DN=21DF . ∴∠AMD =∠GNH =90°,MN =21BF .………………………… 4分∵H 是BF 的中点, ∴BH =21BF . ∴BH=MN .∴BH -MH=MN -MH . ∴BM=HN .∵AM=BM=DM , ∴AM=HN=DM .∴MD+DH=NH+DH . ∴MH=DN . ∵DN = GN , ∴MH = GN .∴△AMH ≌△HNG . ……………………………………………… 5分 ∴AH=GH ,∠AHM=∠HGN . …………………………………… 6分 ∵∠HGN +∠GHN=90°, ∴∠AHM +∠GHN=90°. ∴∠AHG=90°.∴AH ⊥GH . ………………………………………………………… 7分平谷28.解:(1)如图1, (1)(2)想法1证明:如图2,过D 作DG ∥AB ,交AC 于G , (2)图2 GF DCABE 图3P F DCAB E图4N M F DCABE 图1F DCABE∵点D是BC边的中点,∴DG=12 AB.∴△CDG是等边三角形.∴∠EDB+∠EDG=120°.∵∠FDG+∠EDG=120°,∴∠EDB =∠FDG. (3)∵BD=DG,∠B=∠FGD=60°,∴△BDE≌△GDF. (4)∴DE=DF. (5)想法2证明:如图3,连接AD,∵点D是BC边的中点,∴AD是△ABC的对称轴.作点E关于线段AD的对称点P,点P在边AC上, (2)∴△ADE≌△ADP.∴DE=DP,∠AED=∠APD.∵∠BAC+∠EDF=180°,∴∠AED+∠AFD=180°.∵∠APD+∠DPF=180°,∴∠AFD=∠DPF. (3)∴DP=DF. (4)∴DE=DF. (5)想法3证明:如图4,连接AD,过D作DM⊥AB于M,DN⊥AB于N, (2)∵点D是BC边的中点,∴AD平分∠BAC.∵DM⊥AB于M,DN⊥AB于N,∴DM=DN. (3)∵∠A=60°,∴∠MDE+∠EDN=120°.∵∠FDN+∠EDN=120°,∴∠MDE=∠FDN.∴Rt△MDE≌Rt△NDF. (4)∴DE=DF. (5)(3)当点F在AC边上时,12BE CF AB+=; (6)当点F在AC延长线上时,12BE CF AB-=. (7)门头沟28.(1)补全图形正确 . …………………1分数量关系:EC=BC + ED. …………2分(2)数量关系:BC ED+=.过D作DF∥AC交BC延长线于F点F∵DF ∥AC ,ED ∥BC ,∴四边形ADCF 为平行四边形. ∴ED=CF , EC=DF . ∵AB =AC , ∴∠ABC =∠ACB . ∵ED ∥BC ,∴∠DEC =∠ECB , ∠EDB =∠DBC . ∴∠CED =∠BDE . ∴AE =AD .∴EC =BD . …………………3分 ∴BD =DF . ∵DF ∥AC ,∴∠BDF =∠BAC =90°.∴△BDF 为等腰直角三角形.…………………4分 在Rt △BDF 中 ∵BF 2=BD 2+DF 2,∴(BC +ED)2=2EC 2.BC ED += . …………………5分(3)数量关系:2sin2BC ED EC α+=⋅.……6分①由(2)可知四边形ACFD 为平行四边形,△BDF 为等腰三角形 过D 点作DN ⊥BC 于N 点可得BN =12BF ,∠BDN =12α②在Rt △BDN 中 Sin ∠BDN =BN BD =sin 2α. 可得2sin 2BC ED EC α+=⋅.……………………………7分海淀28.(1)证明:∵四边形ABCD 为平行四边形,∠ABC =90°, ∴□ABCD 为矩形,AB=CD .∴. ∠D =∠BAD = 90°.∵ B ,B '关于AD 对称,∴ ∠B 'AD =∠BAD =90°,AB =A B '.----------------- 1分 ∴ ∠B 'AD =∠D . ∵ ∠AF B '=∠CFD ,∴ △AF B '≌ △CFD (AAS ). ∴ F B '=FC .∴ F 是C B '的中点. ---------------------------------------------------------------------------- 2分 (2)证明:方法1:过点B '作B G '∥CD 交AD 于点G . ∵ B ,B '关于AD 对称, ∴ ∠1=∠2,AB =A B '. ∵ B 'G ∥CD , AB ∥CD , ∴ B 'G ∥AB . ∴ ∠2=∠3. ∴ ∠1=∠3. ∴ B 'A =B 'G . ∵ AB =CD ,AB =A B ',∴ B 'G =CD . ------------------------------------------------------------------------------------- 3分 ∵ B 'G ∥CD ,∴ ∠4=∠D .----------------------------------------------------------------------------------------- 4分 ∵ ∠B 'FG =∠CFD ,∴ △B 'FG ≌ △CFD (AAS ). ∴ F B '=FC .∴ F 是C B '的中点. ---------------------------------------------------------------------------- 5分方法2:连接BB '交直线AD 于H 点, ∵ B ,B '关于AD 对称,∴ AD 是线段B 'B 的垂直平分线.∴ B 'H =HB .----------------------------- 3分 ∵ AD ∥BC ,∴''1B F B HFC HB ==.-------------------- 4分 ∴ F B '=FC .∴ F 是C B '的中点. --------------------------------------------------------------------------- 5分 方法3:连接BB ',BF ,∵ B ,B '关于AD 对称, ∴ AD 是线段B 'B 的垂直平分线. ∴ B 'F =FB .----------------------------- 3分 ∴ ∠1=∠2. ∵ AD ∥BC , ∴ B 'B ⊥BC . ∴ ∠B 'BC =90°.∴ ∠1+∠3=90°,∠2+∠4=90°. ∴ ∠3=∠4.∴ FB =FC .------------------------------------------------------------------------------------------- 4分 ∴ B 'F =FB =FC .∴ F 是C B '的中点. --------------------------------------------------------------------------- 5分 (3)解:取B 'E 的中点G ,连结GF . ∵ 由(2)得,F 为C B '的中点,∴ FG ∥CE ,12FG CE =.…① ∵ ∠ABC =135°,□ABCD 中,AD ∥BC ,∴ ∠BAD =180°-∠ABC =45°. ∴ 由对称性,∠EAD =∠BAD =45°. ∵ FG ∥CE ,AB ∥CD , ∴ FG ∥AB .∴ ∠GF A =∠F AB =45°. ----------------------------------------------------------------------------- 6分 ∴ ∠FGA =90°,GA =GF . ∴sin FG EAD AF =∠⋅=.…② ∴由①,②可得CEAF------------------------------------------------------------------ 7分丰台28. 解:(1)∵正方形ABCD 的边长为5, BE =2, ∴EC =3.∵四边形ABCD 是正方形, ∴∠B =∠C= 90°, ∴∠1+∠3=90°,∵AE ⊥EF ,∴∠2+∠3=90°, ∴∠1=∠2. ∴△ABE ∽△ECF ,∴FC CE BE AB =,即FC325= ∴FC =56. ………………………………………………………………………2分(2)①依题意补全图形. ……………………………………………………………3分②法1:证明:在AB 上截取AG =EC ,连接EG . ∵AB = BC ,∴GB =EB .∵∠B =90°,∴∠BGE =45°,∴∠AGE =135°. ∵∠DCB =90°,CP 是正方形ABCD 外角平分线, ∴∠ECP =135°. ∴∠AGE =∠ECP .BCE DA F P G 12 F A DC BE132又∵∠1=∠2,∴△AGE ≌△ECP .∴AE =PE . ………………………………………………………………7分法2:证明:作点A 关于BC 的对称点H ,连接BH ,CH ,EH . ∴AB =BH=BC ,∠1=∠4,∠ABE =∠HBE =90°. ∴∠BHC =∠BCH =45°,∠4+∠5=45°.∵∠1=∠2,∴∠2+∠5=45°. ∵∠ECP =135°,∴∠HCP =180°,点H ,C ,P 在同一条直线上.∵∠6=∠2+∠P =45°,∴∠5 =∠P .∴AE =PE . ………………………………………………………………7分法3:证明:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM . ∴MB =EB ,∴∠MEB =45°,∠MEC =135°. 由法1∠ECP =135°,∴∠MEC =∠ECP . ∴ME ∥PC .又∵AB =BC ,∠ABC =∠MBC =90°. ∴△ABE ≌△CBF .∴∠1=∠BCM ,MC =AE .∴MC ∥EP .∴四边形MCPE 为平行四边形. ∴MC =PE .∴AE =PE . ………………………………………………………………7分石景山28.(1)①依题意补全图形,如图1.…………………… 1分②线段AE ,FC ,EF 的数量关系为:222AE FC EF +=. ……… 2分B CE DA F PM112BCEDA F P H4 5 6 M证法一: 过点B 作MBBF 于点B 且BM BF ,连接ME ,MA ,如图2.∵四边形ABCD 是正方形, ∴901245ABC AB BC °,°,.∵345°,∴345MBE °.又∵BEBE , ∴MBE FBE △≌△. ………………………………… 3分 ∴EM EF .∵490ABF °,590ABF °,∴45. 又∵,BMBF ABCB ,∴AMB CFB △≌△. ………………………………… 4分 ∴AM CF ,6245°.∴6190MAE°.在Rt MAE △中,222AE MA EM +=.∴222AE FC EF +=. ………………………………… 5分 证法二: 作2=1,且BN BA ,连接EN ,FN ,如图3.又∵BEBE ,∴BNE BAE △≌△.分 ∴,NEAE 6=5.∵四边形ABCD 是正方形, ∴905845ABC AB BC °,°,.∴BN BC .∵32452EBF°-,4190451451ABCEBF °°°,∴34.又∵BFBF ,∴BNF BCF △≌△. ………………………………… 4分 ∴FNFC ,7845°.∴67454590ENF °°°.MHABC D EFG∴在Rt ENF △中,222NE FN EF +=.∴222AE FC EF +=. ………………………………… 5分 (2)用等式表示这三条线段的数量关系:222AF EC EF +=. …………… 7分通州 28.解:(1)……………………..(1分)21=BD …………..(2分) (2)AE =BD ……..(3分)证明思路1:利用等边三角形的性质, 证明△BDE 与EC 所在的三角形全等; 证明思路2:利用等腰三角形的轴对称性, 作出△BDE 的轴对称图形;证明思路3:将△BDE 绕BE 边的中点旋转180°,构造平行四边形; ……………………..(6分) ……(3)图形正确 ……………………..(7分)怀柔28. 解:(1)31°. ……………………………2分(2)①过点E 作EH ∥AD 交CB 于H 点. ……………………3分 ∵CE ⊥AB 于点E ,AC=BC , ∴点E 是AB 中点.∴BH=DH. ∵点F 是CE 中点,∴HD=DC.∴BD=2CD. ……………………………4分 ②∵CE ⊥AB 于点E ,∴∠CEA=90°.∵CG ⊥AD 于点G ,∴∠CGA=90°.∴AC 为圆的直径. ∵∠ACB=90°,AC=BC ,∴∠CAE =45°.∵CE ⊥AB 于点E ,∴∠ACE =45°.∴∠AGE=45°. ……………………………5分 方法1:解斜三角形法在Rt △DCA 中,因为∠C =90°, CG ⊥AD 于点G ,DC=1. 所以可以求出CG 的长. ……………………………6分 又因为∠CGE==135°,CE=2. 解△ECG 可求出EG 的长.(此题解△AEG 也可行)…………………7分 方法2:证明等腰直角三角形法.CG F E D C B A K A B C D E FG 延长CG 交EH 于M 点.因为EH ∥AD 交CB 于H 点,点F 是CE 中点,所以点G 为MC 的中点.因为==.∴CG=10.∴MG=10.……………………6分 因为∠EGA=∠ACE=45°,所以∠CGE==135°.所以∠MGE=∠GEM=45°,所以GE 可解.∵.,∴.………………………7分 方法3:相似法 ∵AC=BC=3,∴AB=∴AE=2. ∵CD=1,∴BD=2,AD =. ∵∠AGE=∠B= 45°, ∠DAB=∠EAD.∴△AGE △ABD. …………………6分 ∴AE GE AD DB =.2EG =.∴.………………………7分 方法4:旋转法:过E 作EK ⊥GE 交AD 于点K ,可证△AKE ≅△CGE (ASA ). …………………6分 ∴.∵CD=1,AD =,∴∴KG=5.∴EG=5.……………………………7分。
几何综合题型汇总1.(2017东城一模)在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________;(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;……请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)图1 图2 图32.(2017西城一模)在△ABC 中,AB =BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形; ②求证:()BF BC BD +=21; (2)点E 在AB 边上,连接CE . 若()BF BC BD +=21,在图2.中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路图1 图23.(2017海淀一模)在ABCD 中,点B 关于AD 的对称点为B ',连接AB ',CB ',CB '交AD 于F 点.(1)如图1,90ABC ∠=︒,求证:F 为CB '的中点;(2)小宇通过观察、实验、提出猜想:如图2,在点B 绕点A 旋转的过程中,点F 始终为CB '的中点. 小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:过点B '作B G '∥CD 交AD 于G 点,只需证三角形全等;想法2:连接BB '交AD 于H 点,只需证H 为BB '的中点; 想法3:连接BB ',BF ,只需证90B BC '∠=︒. ……请你参考上面的想法,证明F 为CB '的中点.(一种方法即可) (3)如图3,当135ABC ∠=︒时,AB ',CD 的延长线相交于点E ,求CE AF的值.图1 图2 图34.(2017朝阳一模)在△ABC中,∠ACB=90°,AC<BC,点D在AC的延长线上,点E在BC边上,且BE=AD,(1) 如图1,连接AE,DE,当∠AEB=110°时,求∠DAE的度数;(2) 在图2中,点D是AC延长线上的一个动点,点E在BC边上(不与点C重合),且BE=AD,连接AE,DE,将线段AE绕点E顺时针旋转90°得到线段EF,连接BF,DE.①依题意补全图形;②求证:BF=DE.图1 图25.(2017丰台一模)在边长为5的正方形ABCD 中,点E ,F 分别是BC ,DC 边上的两个动点(不与点B ,C ,D 重合), 且AE ⊥EF .(1)如图1,当BE = 2时,求FC 的长;(2)延长EF 交正方形ABCD 外角平分线CP 于点P .①依题意将图2补全;②小京通过观察、实验提出猜想:在点E 运动的过程中,始终有AE =PE .小京把这个猜想与同学们进行交流, 通过讨论,形成了证明该猜想的三种想法:想法1:在AB 上截取AG =EC ,连接EG ,要证AE =PE ,需证△AGE ≌△ECP .想法2:作点A 关于BC 的对称点H ,连接BH ,CH ,EH .要证AE =PE ,需证△EHP 为等腰三角形. 想法3:将线段BE 绕点B 顺时针旋转90°,得到线段BM ,连接CM ,EM ,要证AE =PE ,需证四边形MCPE 为平行四边形.请你参考上面的想法,帮助小京证明AE =PE .(一种方法即可)FA BCD EF A BCDE图1 图26.(2017石景山一模)在正方形ABCD 中,点E 是对角线AC 上的动点(与点A ,C 不重合),连接BE . (1)将射线BE 绕点B 顺时针旋转45°,交直线AC 于点F .①依题意补全图1;②小研通过观察、实验,发现线段AE ,FC ,EF 存在以下数量关系:AE 与FC 的平方和等于EF 的 平方.小研把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:想法1: 将线段BF 绕点B 逆时针旋转90°,得到线段BM , 要证AE , FC ,EF 的关系,只需证AE ,AM ,EM 的关系.想法2:将ABE △沿BE 翻折,得到NBE △,要证AE ,FC ,EF 的关系,只需证EN ,FN ,EF 的关系. ……请你参考上面的想法,用等式表示线段AE ,FC ,EF 的数量关系并证明;(一种方法即可) (2)如图2,若将直线..BE 绕点B 顺时针旋转135°,交直线..AC 于点F .小研完成作图后,发现直线AC 上存在三条线段(不添加辅助线)满足:其中两条线段的平方和等于第三条线段的平方,请直接用等式表示ABDC图1图27. (2017房山一模)在△ABC 中,AB=BC ,∠B=90°,点D 为直线BC 上一个动点(不与B 、C 重合),连结AD , 将线段AD 绕点D 按顺时针方向旋转90°,使点A 旋转到点E ,连结EC . (1)如果点D 在线段BC 上运动,如图1: ①依题意补全图1; ②求证:∠BAD=∠EDC③通过观察、实验,小明得出结论:在点D运动的过程中,总有∠DCE=135°.小明与同学讨论后,形成了证明这个结论的几种想法: 想法一:在AB 上取一点F ,使得BF=BD ,要证∠DCE =135°,只需证△ADF ≌△DEC .想法二:以点D 为圆心,DC 为半径画弧交AC 于点F. 要证∠DCE=135°,只需证△AFD ≌△ECD . 想法三:过点E 作BC 所在直线的垂线段EF ,要证∠DCE=135°,只需证EF=CF .……请你参考上面的想法,证明∠DCE=135°.(2)如果点D 在线段CB 的延长线上运动,利用图2画图分析,∠DCE 的度数还是确定的值吗? 如果是,直接写出∠DCE 的度数;如果不是,说明你的理由.CCB CB 8.(2017通州一模)在等边三角形ABC 中,E 为直线AB 上一点,连接EC .ED 与直线BC 交于点D ,ED =EC . (1)如图1,AB =1,点E 是AB 的中点,求BD 的长;(2)点E 是AB 边上任意一点(不与AB 边的中点和端点重合),依题意,将图2补全,判断AE 与BD 间的 数量关系并证明;(3)点E 不在线段AB 上,请在图3中画出符合条件的一个图形.图1 图2 图3BCBC9.(2017门头沟一模)已知△ABC ,AB AC =, BAC α∠=,在BA 的延长线上任取一点D ,过点D 作BC 的平行线 交CA 的延长线于点E .(1)当60BAC ∠=︒时,如图1,依题意补全图形,直接写出EC ,BC ,ED 的数量关系; (2)当90BAC ∠=︒时,如图2,判断EC ,BC ,ED 之间的数量关系,并加以证明;(3)当BAC α∠=时(0180α︒︒<<),请写出EC ,BC ,ED 之间的数量关系并写出解题思路.图1图2图1备用图10.(2017平谷一模)在△ABC 中,AB =AC ,∠A =60°,点D 是BC 边的中点,作射线DE ,与边AB 交于点E ,射线DE 绕点D 顺时针旋转120°,与直线AC 交于点F .(1)依题意将图1补全;(2)小华通过观察、实验提出猜想:在点E 运动的过程中,始终有DE=DF .小华把这个猜想与同学们进行交流, 通过讨论,形成了证明该猜想的几种想法:想法1:由点D 是BC 边的中点,通过构造一边的平行线,利用全等三角形,可证DE =DF ; 想法2:利用等边三角形的对称性,作点E 关于线段AD 的对称点P ,由∠BAC 与∠EDF 互补,可得 ∠AED 与∠AFD 互补,由等角对等边,可证DE =DF ;想法3:由等腰三角形三线合一,可得AD 是∠BAC 的角平分线,由角平分线定理,构造点D 到AB ,AC 的高, 利用全等三角形,可证DE =DF …….请你参考上面的想法,帮助小华证明DE =DF (选一种方法即可); (3)在点E 运动的过程中,直接写出BE ,CF ,AB 之间的数量关系.图2图1FB11.(2017顺义一模)在正方形ABCD 和正方形DEFG 中,顶点B 、D 、F 在同一直线上,H 是BF 的中点.(1)如图1,若AB =1,DG =2,求(2)如图2,连接AH ,GH .小宇观察图2,提出猜想:AH =GH ,AH ⊥GH .小宇把这个猜想与同学们进行交流,通过讨论,形成了 证明该猜想的几种想法:想法1:延长AH 交EF 于点M ,连接AG ,GM ,要证明结论成立只需证△GAM 是等腰直角三角形; 想法2:连接AC ,GE 分别交BF 于点M ,N ,要证明结论成立只需证△AMH ≌△HNG . ……请你参考上面的想法,帮助小宇证明AH =GH ,AH ⊥GH .(一种方法即可)图2GFDCBA图1OBA12.(2017怀柔一模)(1)如图1,在△ACB 和△ADB 中,∠C=∠D =90°,过A ,B ,C 三点可以作一个圆,此时AB为圆的直径,AB 的中点O 为圆心.因为∠D=90°,利用圆的定义可知点D 也在此圆上,若连接DC ,当∠CAB=31° 时,利用圆的知识可知∠CDB=度.(2)如图2,在△ACB 中,∠ACB=90°,AC=BC=3,CE ⊥AB 于E ,点F 是CE 中点,连接AF 并延长交BC 于点D. CG ⊥AD 于点G ,连接EG.①求证:BD=2DC;②借助(1)中求角的方法,写出求EG 长的思路.(可以不写出计算的结果)13.(2017大兴一模)已知,在Rt△ABC中,∠B=90°,AB=3,BC=3,在BC边上取两点E,F(点E在点F左侧),以EF为边作等边三角形DEF,使顶点D与E在边AC异侧,DE,DF分别交AC于点G,H,连结AD.(1)如图1,求证:DE⊥AC;(2)如图2,若∠DAC=30°,△DEF的边EF在线段BC上移动.写出DH与BE的数量关系并证明;(3)若30°<∠DAC<60°,△DEF的周长为m,则m的取值范围是.。
2017-2018北京各区一模分类汇编圆及答案平谷24.如图,以AB 为直径作⊙O ,过点A 作⊙O 的切线AC ,连结BC ,交⊙O 于点D ,点E 是BC 边的中点,连结AE . (1)求证:∠AEB =2∠C ; (2)若AB =6,3cos 5B =,求DE 的长.西城24.如图,⊙O 的半径为r ,ABC △内接于⊙O ,15BAC ∠=︒,30ACB ∠=︒,D 为CB 延长线上一点,AD 与⊙O 相切,切点为A . (1)求点B 到半径OC 的距离(用含r 的式子表示). (2)作DH OC ⊥于点H ,求ADH ∠的度数及CBCD的值.AB C延庆23.如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 是AD 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C .(1)求证:AB BC =;(2)如果AB =5,1tan 2FAC ∠=,求FC 的长.A海淀23.如图,AB 是O 的直径,弦EF AB ⊥于点C ,过点F 作O 的切线交AB 的延长线于点D .(1)已知A α∠=,求D ∠的大小(用含α的式子表示); (2)取BE 的中点M ,连接MF ,请补全图形;若30A ∠=︒,MF ,求O 的半径.大兴23.已知:如图,在△OAB 中,OA OB =,⊙O 经过AB 的中点C ,与OB 交于点D,且与BO 的延长线交于点E ,连接EC CD ,. (1)试判断AB 与⊙O 的位置关系,并加以证明; (2)若1tan 2E =,⊙O 的半径为3,求OA 的长.怀柔23.如图,AC 是⊙O 的直径,点B 是⊙O 内一点,且BA=BC ,连结BO 并延长线交⊙O 于点D ,过点C 作⊙O 的切线CE ,且BC 平分∠DBE. (1)求证:BE=CE ;(2)若⊙O 的直径长8,sin ∠BCE=45,求BE 的长.DA第23题图A顺义24.如图,等腰△ABC 是⊙O 的内接三角形,AB =AC ,过点A 作BC 的平行线AD 交BO 的延长线于点D .(1)求证:AD 是⊙O 的切线;(2)若⊙O 的半径为15,sin ∠D =35,求AB 的长.房山22(此题无答案).如图,AB 、BF 分别是⊙O 的直径和弦,弦CD 与AB 、BF 分别相交于点E 、G ,过点F 的切线HF 与DC 的延长线相交于点H ,且HF =(1)求证:AB ⊥CD ;(2)若sin ∠HGF =43,BF =3,求⊙O 的半径长.门头沟23. 如图,AB 为⊙O 直径,过⊙O 外的点D 作DE ⊥OA 于点E ,射线DC 切⊙O于点C 、交AB 的延长线于点P ,连接AC 交DE 于点F ,作CH ⊥AB 于点H . (1)求证:∠D =2∠A ;(2)若HB =2,cos D =35,请求出AC 的长.丰台23.如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC 于点E,过点D作⊙O的切线交BC的延长线于点F.(1)求证:EF ED;(2)如果半径为5,cos∠ABC =35,求DF的长.东城23.如图,AB为O的直径,点C,D在O上,且点C是BD的中点.过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是O的切线;(2)连接BC. 若AB=5,BC=3,求线段AE的长.朝阳25.(本小题5分)如图,在△ABC中,AB=BC,∠A=45°,以AB为直径的⊙O交CO于点D.(1)求证:BC是⊙O的切线;(2)连接BD,若BD=m,tan∠CBD=n,写出求直径AB的思路.燕山25.如图,在△ABC 中,AB=AC ,AE 是BC 边上的高线,BM 平分∠ABC 交 AE 于点M ,经过 B ,M 两点的⊙O 交 BC 于点G ,交AB 于点F ,FB 为⊙O 的直径. (1)求证:AM 是⊙O 的切线 (2)当BE =3,cosC=52时,求⊙O 的半径.答案24.(1)证明:∵AC 是⊙O 的切线, ∴∠BAC =90°...................................................................... 1 ∵点E 是BC 边的中点, ∴AE=EC . ∴∠C =∠EAC , ...................................................................... 2 ∵∠AEB =∠C +∠EAC , ∴∠AEB =2∠C . .. (3)(2)解:连结AD .∵AB 为直径作⊙O , ∴∠ABD =90°. ∵AB = 6,3cos 5B =, ∴BD =185. (4)在Rt △ABC 中,AB =6,3cos 5B =,∴BC =10.∵点E 是BC 边的中点, ∴BE =5. ····························· 5 ∴75DE =. ························ 6 24.(1)如图4,作BE OC ⊥于点E . ∵在⊙O 的内接ABC △中,15BAC ∠=︒, ∴230BOC BAC ∠=∠=︒.在Rt BOE △中,90OEB ∠=︒,30BOE ∠=︒,OB r =, ∴22OB rBE ==, ∴点B 到半径OC 的距离为2r. (2)如图4,连接OA .由BE OC ⊥,DH OC ⊥,可得BE DH ∥. ∵AD 于⊙O 相切,切点为A , ∴AD OA ⊥, ∴90OAD ∠=︒. ∵DH OC ⊥于点H , ∴90OHD ∠=︒.∵在OBC △中,OB OC =,30BOC ∠=︒,∴180752BOCOCB ︒-∠∠==︒.∵30ACB ∠=︒,∴45OCA OCB ACB ∠=∠-∠=︒. ∵OA OC =,∴45OAC OCE ∠=∠=︒, ∴180290AOC OCA ∠=︒-∠=︒, ∴四边形AOHD 为矩形,90ADH ∠=︒, ∴DH AO r ==.∵2r BE =, ∴2DHBE =.∵BE DH ∥, ∴CBE CDH ∽△△, ∴12CB BE CD DH ==. 图4CB A23.证明:(1)连接BE .∵AB 是直径, ∴∠AEB =90°.∴∠CBE +∠ECB =90°∠EBA +∠EAB =90°. ∵点E 是AD 的中点, ∴∠CBE =∠EBA .∴∠ECB =∠EAB . ……1分 ∴AB =BC . ……2分(2)∵FA 作⊙O 的切线, ∴FA ⊥AB . ∴∠FAC +∠EAB =90°. ∵∠EBA +∠EAB =90°, ∴∠FAC =∠EBA .∵1tan 2FAC ∠=AB =5,∴AEBE =. ……4分过C 点作CH ⊥AF 于点H , ∵AB =BC ∠AEB =90°, ∴AC =2AE=25. ∵1tan 2FAC ∠=, ∴CH =2. ……5分 ∵CH ∥AB AB =BC=5, ∴255FCFC =+. ∴FC=310.…6分 23.解:(1)连接OE ,OF .∵EF AB ⊥,AB 是O 的直径,∴DOF DOE =∠∠.∵2DOE A =∠∠,A α=∠,∴2DOF α=∠. ………………1分∵FD 为O 的切线,∴OF FD ⊥.∴90OFD ︒=∠. ∴+90D DOF ︒=∠∠.902D α∴∠=︒-. ………………2分 (2)图形如图所示.连接OM .∵AB 为O 的直径,∴O 为AB 中点, 90AEB ∠=︒.∵M 为BE 的中点,∴OM AE ∥,1=2OM AE . ………………3分∵30A ∠=︒,∴30MOB A ∠=∠=︒.∵260DOF A ∠=∠=︒ , ∴90MOF ∠=︒. ………………4分∴222+OM OF MF =.设O 的半径为r .∵90AEB ∠=︒,30A ∠=︒,∴cos30AE AB ︒=⋅=.∴OM .…………5分∵FM222)+r =.解得=2r .(舍去负根)∴O 的半径为2.………DADAABCDEO23. (1)AB 与⊙O 的位置关系是相切 ·················································································· 1分证明:如图,连接OC . OA OB =,C 为AB 的中点,OC AB ∴⊥.∴AB 是⊙O 的切线. ······································································································· 2分 (2)ED 是直径,90ECD ∴∠=.∴90E ODC ∠+∠=.又90BCD OCD ∠+∠=,OCD ODC ∠=∠, ∴BCD E ∠=∠. 又CBD EBC ∠=∠, ∴BCD BEC △∽△.BC BDBE BC∴=. ∴2BC BD BE =⋅.··········································································································· 3分1tan 2E ∠=,∴12CD EC =. BCD BEC △∽△,∴12BD CD BC EC ==. ············································································································ 4分 设BD x =,则2BC x =. 又2BC BD BE =⋅, ∴2(2)(6)x x x =+. 解得10x =,22x =.0BD x =>,∴2BD =.235OA OB BD OD ∴==+=+=. ·············································································· 5分23.(1)∵BA=BC ,AO=CO, ∴BD ⊥AC. ∵CE 是⊙O 的切线, ∴CE ⊥AC.∴CE ∥BD. ……………………………………1分 ∴∠ECB=∠CBD. ∵BC 平分∠DBE, ∴∠CBE=∠CBD. ∴∠ECB=∠CBE.∴BE=CE. …………………………………………2分 (2)解:作EF ⊥BC 于F. …………………………3分 ∵⊙O 的直径长8, ∴CO=4.∴sin ∠CBD= sin ∠BCE= 45=OC BC. …………………………………………………………4分 ∴BC=5,OB=3. ∵BE=CE, ∴BF=1522BC =. ∵∠BOC=∠BFE=90°,∠CBO=∠EBF, ∴△CBO ∽△EBF.∴BE BF BC OB =. ∴BE=256. ……………………………………………………………………………………5分24.(1)证明:连接AO ,并延长交⊙O 于点E ,交BC 于点F .∵AB =AC ,∴=AB AC .∴AE ⊥BC . ∵AD ∥BC , ∴AE ⊥AD .∴AD 是⊙O 的切线.…………… 2分(2)解法1:∵AD ∥BC , ∴∠D =∠1.∵sin ∠D =35, ∴sin ∠1=35. ∵AE ⊥BC , ∴OF OB =35. ∵⊙O 的半径OB =15, ∴OF =9,BF =12. ∴AF =24.∴AB= 5分3解法2:过B 作BH ⊥DA 交DA 延长线于H .E∵AE ⊥AD ,sin ∠D =35, ∴OA OD =35. ∵⊙O 的半径OA =15,∴OD =25,AD =20.∴BD =40.∴BH =24,DH =32.∴AH =12.∴AB = 5分23. (本小题满分5分)(1)证明:连接OC ,∵射线DC 切⊙O 于点C , ∴∠OCP =90°∵DE ⊥AP ,∴∠DEP =90°∴∠P +∠D =90°,∠P +∠COB =90°∴∠COB =∠D …………………1分∵OA =OC , ∴∠A =∠OCA∵∠COB=∠A +∠OCA ∴∠COB =2∠A∴∠D =2∠A …………………2分(2)解:由(1)可知:∠OCP =90°,∠COP =∠D , ∴cos ∠COP =cos ∠D =35, …………………3∵CH ⊥OP ,∴∠CHO =90°,设⊙O 的半径为r ,则OH =r ﹣2.在Rt △CHO 中,cos ∠HOC =OH OC =2r r-=35, ∴r =5, …………………4分 ∴OH =5﹣2=3,∴由勾股定理可知:CH =4,∴AH =AB ﹣HB =10﹣2=8.在Rt △AHC 中,∠CHA =90°,∴由勾股定理可知:AC =…………………5分23.(1)证明:∵BD 平分∠ABC ,∴∠1=∠2.∵DE ∥AB ,∴∠2=∠3.∴∠1=∠3.∵BC 是⊙O 的切线,∴∠BDF =90°. ∴∠1+∠F =90°,∠3+∠EDF =90°. ∴∠F =∠EDF .∴EF =DE . (2)解:连接CD .∵BD 为⊙O 的直径,∴∠BCD =90°.∵DE ∥AB ,∴∠DEF =∠ABC .∵cos∠ABC=35,∴在Rt△ECD中,cos∠DEC=CEDE=35.设CE=3x,则DE=5x .由(1)可知,BE= EF=5x.∴BF=10x,CF=2x.在Rt△CFD中,由勾股定理得DF=.∵半径为5,∴BD=10.∵BF×DC= FD×BD,∴1041025x x x=,解得x=.∴DF ==5. …….…….……………5分(其他证法或解法相应给分.)23. (1)证明:连接OC.∵CD CB=∴∠1=∠3.∵OA OC=,∴∠1=∠2.∴∠3=∠2.∴AE OC∥.∵AE EF⊥,∴OC EF⊥.∵OC是O的半径,∴EF是O的切线. ----------------------2分(2)∵AB为O的直径,∴∠ACB=90°.根据勾股定理,由AB=5,BC=3,可求得AC=4.∵AE EF⊥,∴∠AEC=90°.∴△AEC∽△ACB.∴AE AC AC AB=.∴445AE =. ∴165AE =. ----------------------5分 25.(1)证明:∵AB =BC ,∠A =45°,∴∠ACB =∠A =45°.∴∠ABC =90°. …………………………………………………………1分∵AB 是⊙O 的直径,∴BC 是⊙O 的切线. …………………………………………………2分(2)求解思路如下:①连接AD ,由AB 为直径可知,∠ADB =90°,进而可知∠BAD =∠CBD ;……3分 ②由BD =m ,tan ∠CBD =n ,在Rt △ABD 中,可求AD =m n;………………………4分 ③在Rt △ABD 中,由勾股定理可求AB 的长. ……………………………………5分25.解: (1)连结OM.∵BM 平分∠ABC∴∠1 = ∠2 又OM=OB∴∠2 = ∠3∴ OM ∥ BC …………………………………2′AE 是BC 边上的高线∴AE ⊥BC,∴AM ⊥OM∴AM 是⊙O 的切线…………………………………3′(2)∵AB=AC∴∠ABC = ∠C AE ⊥BC,∴E 是BC 中点 ∴EC=BE=3∵cosC=52=ACEC ∴AC=25EC= 215 …………………………………4′ ∵OM ∥ BC ,∠AOM =∠ABE ∴△AOM ∽△ABE ∴ABAO BE OM = 又∠ABC = ∠C ∴∠AOM =∠C 在Rt △AOM 中cos ∠AOM = cosC=52 52=AO OM ∴AO=OM 25 AB=OM 25+OB=OM 27 而AB= AC= 215∴OM 27=215 OM=715 ∴⊙O 的半径是715 …………………………………6′。
2017年北京市房山区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是()A.a B.b C.c D.d2.下列图案是轴对称图形的是( )A.B.C.D.3.北京地铁燕房线,是北京地铁房山线的西延线,现正在紧张施工,通车后将是中国大陆第二条全自动无人驾驶线路,预测初期客流量日均132300人次,将132300用科学记数法表示为( )A.1。
323×105B.1。
323×104C.1.3×105 D.1.323×1064.如图,直线a∥b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=55°,那么∠2等于()A.65°B.55°C.45°D.35°5.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D6.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,从这个盒子中随机摸出一个球,摸到红球的概率为( )A.B.C.D.7.雷达二维平面定位的主要原理是:测量目标的两个信息﹣﹣距离和角度,目标的表示方法为(γ,α),其中,γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A (5,30°),目标B的位置表示为F(4,150°).用这种方法表示目标C的位置,正确的是( )A.(﹣3,300°)B.(3,60°)C.(3,300°)D.(﹣3,60°)8.2022年将在北京﹣﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市,某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如表所示:队员1队员2队员3队员4队员5队员6甲组176177175176177175乙组178175170174183176设两队队员身高的平均数依次为甲,乙,方差依次为S甲2,S乙2,下列关系中正确的是()A.甲=乙,S甲2<S乙2B.甲=乙,S甲2>S乙2C.甲<乙,S甲2<S乙2D.甲>乙,S甲2>S乙29.在同一平面直角坐标系中,正确表示函数y=kx+k(k≠0)与y=(k≠0)的图象的是()A.B.C.D.10.如图1,已知点E,F,G,H是矩形ABCD各边的中点,AB=6,BC=8,动点M从点E出发,沿E→F→G→H→E匀速运动,设点M运动的路程x,点M到矩形的某一个顶点的距离为y,如果表示y关于x函数关系的图象如图2所示,那么这个顶点是矩形的()A.点A B.点B C.点C D.点D二、填空题(本小题共6小题,每小题3分,共18分)11.二次根式有意义,则x的取值范围是.12.分解因式:2m2﹣18= .13.如图中的四边形均为矩形,根据图形,利用图中的字母,写出一个正确的等式: .14.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章,记载了一道“折竹抵地"问题,叙述为:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”翻译成数学问题是:在Rt△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,可列出的方程为.15.中国国家邮政局公布的数据显示,2016年中国快递业务量突破313.5亿件,同比增长51。
圆的综合题1. 如图,AB 是⊙O 的弦,AB =4,过圆心O 的直线垂直AB 于点D ,交⊙O 于点C 和点E ,连接AC 、BC 、OB ,cos ∠ACB =13,延长OE 到点F ,使EF =2OE .(1)求证:∠BOE =∠ACB ; (2)求⊙O 的半径;(3)求证:BF 是⊙O 的切线.2. 如图,AB 为⊙O 的直径,点C 为圆外一点,连接AC 、 BC ,分别与⊙O 相交于点D 、点E ,且»»AD DE ,过点D 作DF ⊥BC 于点F ,连接BD 、DE 、AE . (1)求证:DF 是⊙O 的切线;(2)试判断△DEC 的形状,并说明理由;(3)若⊙O 的半径为5,AC =12,求sin ∠EAB 的值.3. (2016长沙9分)如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25DE,求tan∠ABD的值.4. (2016德州10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC 于点D,过点E作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.5. (2015永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE =CE ;(2)试判断四边形BFCD 的形状,并说明理由; (3)若BC =8,AD =10,求CD 的长.6 (2017原创)如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 和点D ,点E 为»DC的中点,连接OE 交CD 于点F ,连接BE 交CD 于点G .(1) 求证:AB =AG ;(2) (2)若DG =DE ,求证:GB 2=GC ·GA ;(3)在(2)的条件下,若tan D =34,EG =10,求⊙O 的半径.7.(2015达州)在△ABC 的外接圆⊙O 中,△ABC 的外角平分线CD 交⊙O 于点D ,F 为»AD 上一点,且»»AF BC ,连接DF ,并延长DF 交BA 的延长线于点E. (1)判断DB 与DA 的数量关系,并说明理由;(2)求证:△BCD ≌△AFD ;(3)若∠ACM =120°,⊙O 的半径为5,DC =6,求DE 的长.8. 如图,AB 为⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CG 是⊙O 的弦,CG ⊥AB ,垂足为点D .(1)求证:△ACD ∽△ABC ;(2)求证:∠PCA =∠ABC ;(3)过点A 作AE ∥PC 交⊙O 于点E ,交CG 于点F ,连接BE ,若sin P =35,CF =5,求BE 的长.9、(2016大庆9分)如图,在Rt △ABC 中,∠C =90°,以BC 为直径的⊙O 交斜边AB于点M,若H是AC的中点,连接MH。
平谷区2017年初三统一练习(一)一、选择题(本题共30分,每小题3分)1.为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统计,目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为 A .0.35×104 B . 3.5×103C .3.5×102D . 35×1022.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A ,则点A 对应的数是A .1 B. C. D .23.右图是某几何体从不同角度看到的图形,这个几何体是A .圆锥B .圆柱C .正三棱柱D .三棱锥4.如果x+y =4,那么代数式222222x yx y x y ---的值是A .﹣2B .2C .12 D .12- 5.下列图形中,既是轴对称图形,又是中心对称图形的是A .B .C .D .6.某商场一楼与二楼之间的手扶电梯如图所示.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是A.B .8 m CmD .4 m7.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有凫(凫:野鸭)起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海.野鸭与大雁从南海和北海同时起飞,经过几天相遇.设野鸭与大雁从南海和北海同时起飞,经过x 天相遇,根据题意,下面所列方程正确的是A .1)79(=-xB.1)79(=+xC. 1)9171(=+xD. 1)9171(=-x8.如图,是利用平面直角坐标系画出的天安门广场的平面示意图,若这个坐标系分别以正东、 正北方向为x 轴、y 轴的正方向, 表示国旗杆的点的坐标为(0,2.5), 表示中国国家博物馆的点的坐标为(4,1), 则表示下列建筑的点的坐标正确的是A .天安门(0, 4)B .人民大会堂(﹣4,1)C .毛主席纪念堂(﹣1,﹣3)D .正阳门(0,﹣5)主视图 左视图 俯视图9.1-7月份,某种蔬菜每斤的进价与每斤的售价的信息如图所示,则出售该种蔬菜每斤利润最大的月份是A.3月份B.4月份C.5月份D.6月份10.AQI 是空气质量指数(Air Quality Index )的简称,是描述空气质量状况的指数.其数值越大说明空气污染状况越严重,对人体的健康危害也就越大.AQI 共分六级,空气污染指数为0-50一级优,51-100二级良,101-150三级轻度污染,151-200四级中度污染,201-300五级重度污染,大于300六级严重污染.小明查阅了2015年和2016年某市全年的AQI 指数,并绘制了如下统计图,并得出以下结论:①2016年重度污染的天数比2015年有所减少;②2016年空气质量优良的天数比2015年有所增加;③ 2015年和2016年AQI 指数的中位数都集中在51-100这一档中;④2016年中度污染的天数比2015年多13天.以上结论正确的是A . ①③B . ①④C .②③ D .②④ 二、填空题(本题共18分,每小题3分) 11.如果分式31-+x x 的值为0,那么x 的值是 . 12.如图,一个正方形被分成两个正方形和两个一模一样的矩形,请根据图形,写出一个含有a ,b 的正确的等式 .13.请写出一个在各自象限内,y 的值随x 值的增大而增大的反比例函数表达式 .14.一个猜想是否正确,科学家们要经过反复的论证.下表是几位科学家“掷硬币”的实验 请根据以上数据,估计硬币出现正面朝上的概率为 (精确到).15.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m ,桌面距离地面0.8m (桌面厚度不计算),若桌面的面积是1.2m²,则地面上的阴影面积是 m². 16.小米是一个爱动脑筋的孩子,他用如下方法作∠AOB 的角平分线: 作法:如图,(1)在射线OA 上任取一点C ,过点C 作CD ∥OB ;(2)以点C 为圆心,CO 的长为半径作弧,交CD 于点E ;(3)作射线OE .所以射线OE 就是∠AOB 的角平分线.请回答:小米的作图依据是____________________________ ____________________________________________________.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程. 17.计算:012cos302017︒-.18.解不等式组32,211,52-≤⎧⎪++⎨<⎪⎩x x x x 并写出它的所有非负整数解......19.如图,在矩形ABCD 中,点E 是BC 上一点,且DE =DA ,AF ⊥DE 于F ,求证:AF=CD .20.已知关于x 的一元二次方程x 2-(m +2)x +2m =0.(1)求证:方程总有两个实数根; (2)当m =2时,求方程的两个根. 21.在平面直角坐标xOy 中,直线()10y kx k =+≠与双曲线()0my m x=≠的一个交点为A (﹣2,3),与x 轴交于点B .(1) 求m 的值和点B 的坐标;(2) 点P 在y 轴上,点P 到直线()10y kx k =+≠,直接写出点P 的坐标.22.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行.某自行车厂生产的某型号自行车去年销售总额为8万元.今年该型号自行车每辆售价预计比去年降低200元.若该型号车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求该型号自行车去年每辆售价多少元?23.如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.(1)求证:DE=DF;(2)若∠ABC=30°,∠C=45°,DE=4,求CF的长.24.阅读以下材料:2017年1月28日至2月1日农历正月初一至初五,平谷区政府在占地面积6万平方米的琴湖公园举办主题为“逛平谷庙会乐百姓生活”的平谷区首届春节庙会.本次庙会共设置了文艺展演区、非遗展示互动区、特色商品区、儿童娱乐游艺区、特色美食区等五个不同主题的展区.展区总面积1720平方米.文艺展演区占地面积600平方米,占展区总面积的34.9%;非遗展示区占地190平方米,占展区总面积的11.0%;特色商品区占地面积是文艺展演区的一半,占展区总面积的17.4%;特色美食区占地200平方米,占展区总面积的11.6%;还有孩子们喜爱的儿童娱乐游艺区.此次庙会本着弘扬、挖掘、展示平谷春节及民俗文化,以京津冀不同地域的特色文化为出发点,全面展示平谷风土人情及津冀人文特色.大年初一,来自全国各地的约3.2万人踏着新春的脚步,揭开了首届平谷庙会的帷幕.大年初二尽管天气寒冷,市民逛庙会热情不减,又约有4.3万人次参观了庙会,品尝特色美食,观看绿都古韵、秧歌表演、天桥绝活,一路猜灯谜、赏图片展,场面火爆.琳琅满目的泥塑、木版画、剪纸、年画等民俗作品也让游客爱不释手,纷纷购买.大年初三,单日接待游客约4万人次,大年初四风和日丽的天气让庙会进入游园高峰,单日接待量较前日增长了约50%.大年初五,活动进入尾声,但庙会现场仍然人头攒动,仍约有5.5万人次来园参观.(1)直接写出扇形统计图中m的值;(2)初四这天,庙会接待游客量约_______万人次;(3)请用统计图或统计表,将庙会期间每日接待游客的人数表示出来.25.如图,⊙O为等腰三角形ABC的外接圆,AB=AC,AD是⊙O的直径,切线DE 与AC的延长线相交于点E.(1)求证:DE∥BC;(2)若DF=n ,∠BAC =2α,写出求CE 长的思路.26.有这样一个问题:探究函数y x =+的图象与性质.小军根据学习函数的经验,对函数y x =+的图象与性质进行了探究. 下面是小军的探究过程, 请补充完整:(1)函数y x =+的自变量x 的取值范围是 ;在平面直角坐标系xOy 中, 描出了以上表中各对对应值为坐标的点,根据描出的点, 画出该函数的图象;(3)观察图象,函数的最小值是 ; (4)进一步探究,结合函数的图象, 写出该函数的一条..性质(函数最小值除外): .27.直线33y x =-+与x 轴,y轴分别交于A ,B 两点,点A 关于直线1x =-的对称点为点C . (1)求点C 的坐标;(2)若抛物线()230y mx nx m m =+-≠经过A ,B ,C 三点,求该抛物线的表达式;(3)若抛物线()230y ax bx a =++≠ 经过A ,B 两点,且顶点在第二象限,抛物线与线段AC 有两个公共点,求a 的取值范围.28.在△ABC 中,AB =AC ,∠A =60°,点D 是BC 边的中点,作射线DE ,与边AB 交于点E ,射线DE 绕点D 顺时针旋转120°,与直线AC 交于点F .(1)依题意将图1补全;(2)小华通过观察、实验提出猜想:在点E 运动的过程中,始终有DE=DF .小华把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:由点D 是BC 边的中点,通过构造一边的平行线,利用全等三角形,可证DE =DF ;想法2:利用等边三角形的对称性,作点E 关于线段AD 的对称点P ,由∠BAC 与∠EDF 互补,可得∠AED 与∠AFD 互补,由等角对等边,可证DE =DF ;想法3:由等腰三角形三线合一,可得AD 是∠BAC 的角平分线,由角平分线定理,构造点D 到AB ,AC 的高,利用全等三角形,可证DE =DF …….请你参考上面的想法,帮助小华证明DE =DF (选一种方法即可); (3)在点E 运动的过程中,直接写出BE ,CF ,AB 之间的数量关系.29.在平面直角坐标系中,点Q 为坐标系上任意一点,某图形上的所有点在∠Q 的内部(含角的边),这时我们把∠Q 的最小角叫做该图形的视角.如图1,矩形ABCD ,作射线OA ,OB,则称∠AOB 为矩形ABCD 的视角.(1)如图1,矩形ABCD ,A (﹣3,1),B (3,1),C (3,3),D (﹣3,3),直接写出视角∠AOB 的度数;(2)在(1)的条件下,在射线CB 上有一点Q ,使得矩形ABCD 的视角∠AQB =60°,求点Q 的坐标;(3)如图2,⊙P 的半径为1,点P (1,3),点Q 在x 轴上,且⊙P 的视角∠EQF 的度数大于60°,若Q (a ,0),求a 的取值范围.平谷区2016—2017学年度初三统练(一)数学答案 2017.4图1图1 图2备用图备用图11.3;12.()2222+=++a b a ab b ; 13.答案不唯一,如1y x=-;14.0.50; 15.2.7; 16.两直线平行,内错角相等; (1)等腰三角形两底角相等; ················································································· 3 (其他正确依据也可以).三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.解:020173021231-︒+--cos121- .......................................................................... 4 =﹣2. .. (5)18.解:322 112 5①②-≤⎧⎪⎨++<⎪⎩x x x x ,解不等式①得x ≤1, ··············································································· 1 解不等式②得x >﹣3, ··········································································· 2 ∴不等式组的解集是:﹣3<x ≤1. ······························································· 3 ∴不等式组的非负整数解为0,1.······························································· 5 19.证明:∵矩形ABCD ,∴AD ∥BC .∴∠ADE =∠DEC . ····································· 1 ∵AF ⊥DE 于F ,∴∠AFD =∠C =90°. ··································· 2 ∵DE =DA , ··············································· 3 ∴△ADF ≌△DEC .···································· 4 ∴AF =CD . ··············································· 5 20.(1)证明: ∵ Δ=[-(m +2)]2-4×2m ····· (1)=(m -2)2∵ (m -2)2≥0,∴方程总有两个实数根. (2)(2)当m =2时,原方程变为x 2-4x +4=0. ··························································· 3 解得x 1=x 2=2. ························································································· 5 21.解:(1)∵双曲线()0my m x=≠经过点,A (﹣2,3), ∴6=-m . ···················································································· 1 ∵直线()10y kx k =+≠经过点A (﹣2,3),∴1=-k . ····················································································· 2 ∴此直线与x 轴交点B 的坐标为(1,0). ············································ 3 (2)(0,3),(0,-1). ························· (5)22.解:设去年该型号自行车每辆售价x 元,则今年每辆售价为(x ﹣200)元. (1)由题意,得()%8000011080000200-=-x x ,····························································· 2 解得:x =2000. ······················································································ 3 经检验,x =2000是原方程的根. ································································ 4 答:去年该型号自行车每辆售价为2000元. · (5)23.(1)证明:∵EF 垂直平分BD ,∴EB=ED ,FB=FD . ················································································ 1 ∵BD 平分∠ABC 交AC 于D , ∴∠ABD =∠CBD .∵∠ABD +∠BEG =90°,∠CBD +∠BFG =90°,∴∠BEG =∠BFG .∴BE=BF . ∴四边形BFDE 是菱形. ∴DE=DF . ···························································································· 2 (2)解:过D 作DH ⊥CF 于H . ∵四边形BFDE 是菱形, ∴DF ∥AB ,DE=DF =4.在Rt △DFH 中,∠DFC =∠ABC =30°, ∴DH =2.∴FH =32. .......................................................................................... 3 在Rt △CDH 中,∠C =45°, ∴DH=HC =2. ......................................................................................... 4 ∴CF =2+32. (5)24.(1)扇形统计图中m 的值是25.1%; (1)(2)6; ...................................................................................................... 2 (3)如图. . (5)25.(1)证明:∵AB =AC ,AD 是⊙O 的直径,∴AD ⊥BC 于F . ····················································································· 1 ∵DE 是⊙O 的切线, ∴DE ⊥AD 于D .2 ∴DE ∥BC . ···························································································· 2 (2)连结CD .由AB =AC ,∠BAC =2α,可知∠BAD =α. ···················································· 3 由同弧所对的圆周角,可知∠BCD =∠BAD=α. 由AD ⊥BC ,∠BCD =α,DF=n , 根据sin α=DFCD,可知CD 的长. ··············· 4 由勾股定理,可知CF 的长由DE ∥BC ,可知∠CDE =∠BCD . 由AD 是⊙O 的直径,可知∠ACD =90°. 由∠CDE =∠BCD ,∠ECD =∠CFD , 可知△CDF ∽△DEC ,可知DF CF=CE CD,可求CE 的长. .............................. 5 26.(1)2x ≥-; . (1)(2)该函数的图象如图所示; (3)(3) ................................................................................................. 4 (4)该函数的其它性质:当20x -≤<时,y 随x 的增大而减小; (5)(答案不唯一,符合函数性质即可写出一条即可)27.解:(1)令y =0,得x =1.∴点A 的坐标为(1,0). ··································································· 1 ∵点A 关于直线x =﹣1对称点为点C , ∴点C 的坐标为(﹣3,0). ·················· 2 (2)令x =0,得y =3.∴点B 的坐标为(0,3). ∵抛物线经过点B , ∴﹣3m =3,解得m =﹣1. (3)∵抛物线经过点A , ∴m+n ﹣3m =0,解得n =﹣2.∴抛物线表达式为223y x x =--+. (4)(3)由题意可知,a <0.根据抛物线的对称性,当抛物线经过(﹣1,0)时,开口最小,a =﹣3, ·········· 5 此时抛物线顶点在y 轴上,不符合题意.当抛物线经过(﹣3,0)时,开口最大,a =﹣1. ········ (6)结合函数图像可知,a 的取值范围为31a -<≤-. (7)28.解:(1)如图1, (1)(2)想法1证明:如图2,过D 作DG ∥AB ,交AC 于G , ····································· 2 ∵点D 是BC 边的中点,∴DG =12AB . ∴△CDG 是等边三角形.∴∠EDB +∠EDG=120°.∵∠FDG +∠EDG=120°,∴∠EDB =∠FDG . ·················································································· 3 ∵BD=DG ,∠B =∠FGD =60°,∴△BDE ≌△GDF . ················································································· 4 ∴DE =DF . ····························································································· 5 想法2证明:如图3,连接AD ,∵点D 是BC 边的中点,∴AD 是△ABC 的对称轴.作点E 关于线段AD 的对称点P ,点P 在边AC 上, ········································ 2 ∴△ADE ≌△ADP .∴DE=DP ,∠AED =∠APD .∵∠BAC +∠EDF =180°,∴∠AED +∠AFD =180°.∵∠APD +∠DPF =180°,∴∠AFD =∠DPF . ··················································································· 3 ∴DP=DF . ···························································································· 4 ∴DE =DF . ····························································································· 5 想法3证明:如图4,连接AD ,过D 作DM ⊥AB 于M ,DN ⊥AB 于N , ············· 2 ∵点D 是BC 边的中点,∴AD 平分∠BAC .∵DM ⊥AB 于M ,DN ⊥AB 于N ,∴DM=DN . ···························································································· 3 ∵∠A =60°,图1图2图3图4∴∠MDE +∠EDN=120°.∵∠FDN +∠EDN=120°,∴∠MDE=∠FDN .∴Rt △MDE ≌Rt △NDF . ............................................................................. 4 ∴DE =DF . (5)(3)当点F 在AC 边上时,12BE CF AB +=; ·........................................... 6 当点F 在AC 延长线上时,12BE CF AB -=. .. (7)29.解:(1)120°; ............................................................................................ 1 (2)连结AC ,在射线CB 上截取CQ=CA ,连结AQ . .................................... 2 ∵AB =23,BC =2, ∴AC =4. .......................... 3 ∴∠ACQ =60°. ∴△ACQ 为等边三角形, 即∠AQC =60°. ................ 4 ∵CQ =AC =4, ∴Q (3,﹣1). ............. 5 (3) 如图1,当点Q 与点O 重合时,∠EQF=60°, ∴Q (0,0). ................................................................................ 6 如图2,当FQ ⊥x 轴时,∠EQF=60°, ∴Q (2,0). ................................................................................ 7 ∴a 的取值范围是0<a <2. (8)图2图1。
类型1:圆基础(1)求角度 1、(海淀一模7)如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠ACO =50°,则∠B 的度数为( )A .60°B .50°C .40°D .30°2、(石景山二模6)如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧上任意一点(与点B 不重合),则BPC ∠的度数为( ) A .30°B .45°C .60°D .90°3、(怀柔二模8)如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为( )A .32°B .58°C .64°D .116°4、(苏州中考9)如图,在Rt △ABC 中,∠ACB =90°,∠A=56°.以BC 为直径的⊙O 交AB 于点D ,E 是⊙O 上一点,且 CECD =,连接OE ,过点E 作EF ⊥OE ,交AC 的延长线于点F ,则∠F 的度数为( )A .92B .108C .112D .1245、(西城一模14)如图,四边形ABCD 是⊙O 内接四边形,若∠BAC =30°,∠CBD =80°,则∠BCD 的度数为____________. 6、(朝阳一模13)如图,⊙O 是△ABC 的外接圆,∠ACO=45°,则∠B 的度数为___________.7、(昌平二模12)如图,四边形ABCD 的顶点均在⊙O 上,∠A =70°,则∠C =___________°.8、(青岛中考13)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.COABOADBC第13题图9、(丰台一模14)如下图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在大量角器上对应的度数为40°,那么在小量角器上对应的度数为______________.(只考虑小于90°的角度)10、(北京中考14)如图,AB 为O 的直径,C D 、为O 上的点,AD CD =.若040CAB ∠=,则CAD ∠= . 11、(怀柔二模13)一个扇形的半径长为5,且圆心角为60°,则此扇形的弧长为___________.12、(房山二模13)如图,四边形ABCD 的顶点均在⊙O 上,⊙O 的半径为2. 如果∠D =45°,那么»AC 的长为__________.(结果用π表示)*13、(海淀二模10)利用量角器可以制作“锐角正弦值速查卡”.制作方法如下:如图,设OA =1,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,再以OA 为直径作⊙M .利用“锐角正弦值速查卡”可以读出相应锐角正弦的近似值.例如:A .70°B .50°C .40°D .30°P(2)求线段长 1、(门头沟一模7)如图,AB 是⊙O 的弦,当半径4OA =,120AOB ∠=︒时,弦AB 的长( ) A .2 B .4 C. D.2、(燕山一模7)如图,⊙O 的半径长3cm ,点C 在⊙O 上,弦AB 垂直平分OC 于点D ,则弦AB 的长为( )A .29cm B .233cm C.33cmD .49cm第1题图 第2题图 第3题图 第4题图 3、(海淀二模7)如图,OA 为⊙O 的半径,弦BC ⊥OA 于P 点.若OA =5,AP =2,则弦BC的长为( )A .10B .8C .6D .4 4、(朝阳二模9)如图,⊙O 的半径OC 垂直于弦AB ,垂足为D ,OA =,∠B =22.5°,AB的长为( )A .2B .4C .D . 5、(丰台二模7)如图,A ,B ,E 为⊙O 上的点,⊙O 的半径OC ⊥AB 于点D ,已知∠CEB =30°,OD =1,则⊙O 的半径为( ) A .3 B .2 C .32 D .4 6、(平谷二模5)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为6,则圆心O 到弦CD 的距离OE 长为( )A .6B .5C .D .37、(遵义中考17)如图,AB 是⊙O 的直径,AB=4,点M 是OA 的中点,过点M 的直线与⊙O 交于C ,D 两点.若∠CMA=45°,则弦CD 的长为 . 8、(东城二模14)如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB ,OC .若∠BAC 与∠BOC 互补,则弦BC 的长为 .AOBABDOPC BAOEBCD OA9、如图,在平面直角坐标系xOy 中,A (3,4)为⊙O 上一点,B 为⊙O内一点,请写出一个符合要求的点B 的坐标 . 10、(西城二模14)在平面直角坐标系xOy 中,⊙O 半径是5,点A为⊙O 上一点,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,若四边形ABOC 面积为12,写出一个符合条件的点A 坐标 .(3)求面积1、(西城二模8)如图,以点O 为圆心,AB 为直径的半圆经过点C ,若C 为弧AB 的中点,若AB =2,则图中阴影部分的面积是( )A .2πB .122π+C .4πD .124π+2、(石景山二模13)如图,ABC △是⊙O 的内接正三角形,图中阴影部分 的面积是12π,则⊙O 的半径为 .3、(山西中考10)右图是某商品的标志图案,AC 与BD 是O 的两条直径,首尾顺次连接点,,,A B C D ,得到四边形ABCD .若10,36AC cm BAC =∠= ,则图中阴影部分的面积为( )A .25cm πB .210cm πC .215cm πD .220cm π4、(丰台二模15)如图,扇形纸扇完全打开后,外侧两竹条AB ,AC夹角为120°,AB 的长为30cm ,无贴纸部分AD 的长为10cm ,则贴纸部分的面积等于 cm 2. 5、(东城二模15)如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,竹条AB 的长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则一面贴纸的面积为 cm 2. (结果保留π)*6、(河南中考10)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .2π3B .2 3﹣π3 C .2 3﹣2π3D .4 3﹣2π3*7、(德州中考17)某景区修建一栋复古建筑,其窗户设计如图所示.圆的圆心与矩形对角线的交点重合,且圆与矩形上下两边相切(为上切点),与左右两边相交(,为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,根据设计要求,若∠EOF =45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为_____________.*8、(成都中考23)已知O 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O 内的概率为2P ,则12P P ______________.O ABCD E FG。
平谷区2017年初三统一练习(一)一、选择题(此题共30分,每题3分)1.为解决“最后一千米”的交通接驳问题,平谷区投放了大量公租自行车供市民利用.据统计,目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为 A .×104B . ×103C .×102D . 35×1022.把一个边长为1的正方形如下图放在数轴上,以正方形的对角线为半径画弧交数轴于点A ,那么点A 对应的数是A .1B .2 C .3 D .23.右图是某几何体从不同角度看到的图形,那个几何体是A .圆锥B .圆柱C .正三棱柱D .三棱锥4.若是x+y =4,那么代数式222222x yx y x y ---的值是A .﹣2B .2C .12 D .12- 5.以下图形中,既是轴对称图形,又是中心对称图形的是A .B .C .D .6.某商场一楼与二楼之间的手扶电梯如图所示.其中AB 、CD 别离表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,那么乘电梯从点B 到点C 上升的高度h 是A .43mB .8 mC .833mD .4 m7.在我国古代数学高作《九章算术》中记载了一道有趣的数学问题:“今有凫(凫:野鸭)起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日重逢?”意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海.野鸭与大雁从南海和北海同时起飞,通过几天相遇.设野鸭与大雁从南海和北海同时起飞,通过x 天相遇,依照题意,下面所列方程正确的选项是A-1321C D150° h 主视图 左视图 俯视图A .1)79(=-xB.1)79(=+xC. 1)9171(=+xD. 1)9171(=-x8.如图,是利用平面直角坐标系画出的天安门广场的平面示用意,假设那个坐标系别离以正东、 正北方向为x 轴、y 轴的正方向, 表示国旗杆的点的坐标为(0,, 表示中国国家博物馆的点的坐标为(4,1), 那么表示以下建筑的点的坐标正确的选项是A .天安门(0, 4)B .人民大会堂(﹣4,1)C .毛主席纪念堂(﹣1,﹣3)D .正阳门(0,﹣5)9.1-7月份,某种蔬菜每斤的进价与每斤的售价的信息如下图,那么出售该种蔬菜每斤利润最大的月份是A .3月份B .4月份C .5月份D .6月份10.AQI 是空气质量指数(Air Quality Index )的简称,是描述状况的指数.其数值越大说明空气污染状况越严峻,对人体的健康危害也就越大.AQI 共分六级,空气污染指数为0-50一级优,51-100二级良,101-150三级轻度污染,151-200四级中度污染,201-300五级重度污染,大于300六级严峻污染.小明查阅了2021年和2016年某市全年的AQI 指数,并绘制了如下统计图,并得出以下结论:①2016年重度污染的天数比2021年有所减少;②2016年空气质量优良的天数比2021年有所增加;③ 2021年和2016年AQI 指数的中位数都集中在51-100这一档中;④2016年中度污染的天数比2021年多13天.以上结论正确的选项是A . ①③B . ①④C .②③D .②④ 二、填空题(此题共18分,每题3分) 11.若是分式31-+x x 的值为0,那么x 的值是 . 12.如图,一个正方形被分成两个正方形和两个一模一样的矩形,请依照图形,写出一个含有a ,b 的正确的等式 .bbaa13.请写出一个在各自象限内,y 的值随x 值的增大而增大的反比例函数表达式 . 实验者德·摩根 蒲丰 费勒 皮尔逊 罗曼诺夫斯基掷币次数6 140 4 040 10 000 36 000 80 640 出现“正面朝上”的次数 3 109 2 048 4 97918 03139 699 频率请依照以上数据,估量硬币显现正面朝上的概率为 (精准到).15.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面,桌面距离地面(桌面厚度不计算),假设桌面的面积是²,那么地面上的阴影面积是 m².16.小米是一个爱动脑筋的小孩,他用如下方式作∠AOB 的角平分线:作法:如图,(1)在射线OA 上任取一点C ,过点C 作CD ∥OB ; (2)以点C 为圆心,CO 的长为半径作弧,交CD 于点E ; (3)作射线OE .因此射线OE 确实是∠AOB 的角平分线. 请回答:小米的作图依据是____________________________ ____________________________________________________.三、解答题(此题共72分,第17-26题,每题5分,第27题7分,第28题7分,第29题8分)解许诺写出文字说明、演算步骤或证明进程. 17.计算:013122cos302017--+︒-.18.解不等式组32,211,52-≤⎧⎪++⎨<⎪⎩x x x x 并写出它的所有非负整数解......19.如图,在矩形ABCD 中,点E 是BC 上一点,且DE =DA ,AF ⊥DE 于F ,求证:AF=CD .20.已知关于x 的一元二次方程x 2-(m +2)x +2m =0.F OE DC BA(1)求证:方程总有两个实数根; (2)当m =2时,求方程的两个根.21.在平面直角坐标xOy 中,直线()10y kx k =+≠与双曲线()0my m x=≠的一个交点为A (﹣2,3),与x 轴交于点B . (1) 求m 的值和点B 的坐标;(2) 点P 在y 轴上,点P 到直线()10y kx k =+≠P 的坐标.22.随着人们“节能环保,绿色出行”生产的某型号自行车去年销售总额为8行车去年每辆售价多少元?23.如图,在△ABC 中,BD 平分∠ABC 交AC 于D ,EF 垂直平分BD ,别离交AB ,BC ,BD 于E ,F ,G ,连接DE ,DF .(1)求证:DE=DF ; (2)假设∠ABC =30°,∠C =45°,DE =4,求CF 的长.24.阅读以下材料:2017年1月28日至2月1日农历正月初一至初五,平谷区政府在占地面积6万平方米的琴湖公园举行主题为“逛平谷庙会乐百姓生活”的平谷区首届春节庙会.本次庙会共设置了文艺展演区、非遗展现互动区、特色商品区、儿童娱乐游艺区、特色美食区等五个不同主题的展区.展区总面积1720平方米.文艺展演区占地面积600平方米,占展区总面积的%;非遗展现区占地190平方米,占展区总面积的%;特色商品区占地面积是文艺展演区的一半,占展区总面积的%;特色美食区占地200平方米,占展区总面积的%;还有小孩们喜爱的儿童娱乐游艺区.这次庙会本着宏扬、挖掘、展现平谷春节及风俗文化,以京津冀不同地域的特色文化为起点,全面展现平谷风土人情及津冀人文特色.大年初一,来自全国各地的约万人踏着新春的脚步,揭开了首届平谷庙会的帷幕.大年初二尽管天气严寒,市民逛庙会热情不减,又约有万人次参观了庙会,品尝特色美食,观看绿都古韵、秧歌演出、天桥绝活,一路猜灯谜、赏图片展,场面火爆.琳琅满目的泥塑、木版画、剪纸、年画等风俗作品也让游客爱不释手,纷纷购买.大年初三,单日接待游客约4万人次,大年初四风和日丽的天气让庙会进入游园顶峰,单日接待量较前日增加了约50%.大年初五,活动进入尾声,但庙会现场仍然人头攒动,仍约有万人次来园参观.(1)直接写出扇形统计图中m 的值;(2)初四此日,庙会接待游客量约_______万人次;(3)请用统计图或统计表,将庙会期间每日接待游客的人数表示出来.25.如图,⊙O 为等腰三角形ABC 的外接圆,AB =AC ,AD 是⊙O 的直径,切线DE 与AC 的延长线相交于点E . (1)求证:DE ∥BC ;(2)假设DF=n ,∠BAC =2α,写出求CE 长的思路.F E BD OAC26.有如此一个问题:探讨函数+2y x x =-+的图象与性质.小军依照学习函数的体会, 对函数+2y x x =-+的图象与性质进行了探讨. 下面是小军的探讨进程, 请补充完整:(1)函数+2y x x =-+的自变量x 的取值范围是 ; x ﹣2 ﹣ ﹣ ﹣1 ﹣ 01 2 3 4 … y2﹣﹣﹣…在平面直角坐标系xOy 中, 描出了以上表中各对对应值为坐标的点,依照描出的点, 画出该函数的图象;yx–3–2–11234–2–112345O(3)观看图象,函数的最小值是 ;(4)进一步探讨,结合函数的图象, 写出该函数的一条..性质(函数最小值除外): .27.直线33y x =-+与x 轴,y 轴别离交于A ,B 两点,点A 关于直线1x =-的对称点为点C . (1)求点C 的坐标;yx–2–112345–5–4–3–2–112O(2)若抛物线()230y mx nx m m =+-≠通过A ,B ,C 三点,求该抛物线的表达式;(3)若抛物线()230y ax bx a =++≠ 通过A ,B 两点,且极点在第二象限,抛物线与线段AC 有两个公共点,求a 的取值范围.28.在△ABC 中,AB =AC ,∠A =60°,点D 是BC 边的中点,作射线DE ,与边AB 交于点E ,射线DE 绕点D 顺时针旋转120°,与直线AC 交于点F . (1)依题意将图1补全;(2)小华通过观看、实验提出猜想:在点E 运动的进程中,始终有DE=DF .小华把那个猜想与同窗们进行交流,通过讨论,形成了证明该猜想的几种方式:方式1:由点D 是BC 边的中点,通过构造一边的平行线,利用全等三角形,可证DE =DF ; 方式2:利用等边三角形的对称性,作点E 关于线段AD 的对称点P ,由∠BAC 与∠EDF 互补,可得∠AED 与∠AFD 互补,由等角对等边,可证DE =DF ;方式3:由等腰三角形三线合一,可得AD 是∠BAC 的角平分线,由角平分线定理,构造点D 到AB ,AC 的高,利用全等三角形,可证DE =DF …….请你参考上面的方式,帮忙小华证明DE =DF (选一种方式即可); (3)在点E 运动的进程中,直接写出BE ,CF ,AB 之间的数量关系.29.在平面直角坐标系中,点Q 为坐标系上任意一点,某图形上的所有点在∠Q 的内部(含角的边),这时咱们把∠Q 的最小角叫做该图形的视角.如图1,矩形ABCD ,作射线OA ,OB ,那么称∠AOB 为矩形ABCD 的视角.图1 备用图(1)如图1,矩形ABCD ,A(﹣3,1),B (3,1),C (3,3),D (﹣3,3),直接写出视角∠AOB 的度数;(2)在(1)的条件下,在射线CB 上有一点Q ,使得矩形ABCD 的视角∠AQB =60°,求点Q 的坐标;(3)如图2,⊙P 的半径为1,点P (1,3),点Q 在x 轴上,且⊙P 的视角∠EQF 的度数大于60°,假设Q (a ,0),求a 的取值范围.平谷区2016—2017学年度初三统练(一)数学答案一、选择题(此题共30分,每题3分)题号 1 2 3 4 5 6 7 8 9 10 答案BBACDDCBAC二、填空题(此题共18分,每题3分)11.3;12.()2222+=++a b a ab b ; 13.答案不唯一,如1y x=-;14.; 15.; 16.两直线平行,内错角相等; ·············································································· 1 等腰三角形两底角相等; ················································································· 3 (其他正确依据也能够).三、解答题(此题共72分,第17-26题,每题5分,第27题7分,第28题7分,第29题8分)解许诺写出文字说明、演算步骤或证明进程. 17.解:020173021231-︒+--cos=33123212--+⨯- ·········································································· 4 图1图2备用图=﹣2. (5)18.解:322 11 2 5①②-≤⎧⎪⎨++<⎪⎩x x x x ,解不等式①得x ≤1, ··············································································· 1 解不等式②得x >﹣3, ··········································································· 2 ∴不等式组的解集是:﹣3<x ≤1. ······························································· 3 ∴不等式组的非负整数解为0,1.······························································· 5 19.证明:∵矩形ABCD ,∴AD ∥BC .∴∠ADE =∠DEC . ····································· 1 ∵AF ⊥DE 于F ,∴∠AFD =∠C =90°. ··································· 2 ∵DE =DA , ··············································· 3 ∴△ADF ≌△DEC .···································· 4 ∴AF =CD . ·.............................................. 5 20.(1)证明: ∵ Δ=[-(m +2)]2-4×2m .. (1)=(m -2)2 ∵ (m -2)2≥0,∴方程总有两个实数根. (2)(2)当m =2时,原方程变成x 2-4x +4=0. ··························································· 3 解得x 1=x 2=2. · (5)21.解:(1)∵双曲线()0my m x=≠通过点,A (﹣2,3), ∴6=-m . ···················································································· 1 ∵直线()10y kx k =+≠通过点A (﹣2,3),∴1=-k . ..................................................................................... 2 ∴此直线与x 轴交点B 的坐标为(1,0). ............................................ 3 (2)(0,3),(0,-1). (5)22.解:设去年该型号自行车每辆售价x 元,那么今年每辆售价为(x ﹣200)元. (1)由题意,得()%8000011080000200-=-x x ,····························································· 2 解得:x =2000. ······················································································ 3 经查验,x =2000是原方程的根. ································································ 4 答:去年该型号自行车每辆售价为2000元. ················································ 5 F23.(1)证明:∵EF 垂直平分BD ,∴EB=ED ,FB=FD . ················································································ 1 ∵BD 平分∠ABC 交AC 于D , ∴∠ABD =∠CBD .∵∠ABD +∠BEG =90°,∠CBD +∠BFG =90°,∴∠BEG =∠BFG .∴BE=BF . ∴四边形BFDE 是菱形. ∴DE=DF . ···························································································· 2 (2)解:过D 作DH ⊥CF 于H . ∵四边形BFDE 是菱形, ∴DF ∥AB ,DE=DF =4.在Rt △DFH 中,∠DFC =∠ABC =30°, ∴DH =2.∴FH =32. .......................................................................................... 3 在Rt △CDH 中,∠C =45°, ∴DH=HC =2. ......................................................................................... 4 ∴CF =2+32. (5)24.(1)扇形统计图中m 的值是%; (1)(2)6; ...................................................................................................... 2 (3)如图. . (5)25.(1)证明:∵AB =AC ,AD 是⊙O 的直径,∴AD ⊥BC 于F . ..................................................................................... 1 ∵DE 是⊙O 的切线, ∴DE ⊥AD 于D .2 ∴DE ∥BC . .. (2)E G D(2)连结CD .由AB =AC ,∠BAC =2α,可知∠BAD =α. ···················································· 3 由同弧所对的圆周角,可知∠BCD =∠BAD=α. 由AD ⊥BC ,∠BCD =α,DF=n , 依照sin α=DFCD,可知CD 的长. ··············· 4 由勾股定理,可知CF 的长由DE ∥BC ,可知∠CDE =∠BCD . 由AD 是⊙O 的直径,可知∠ACD =90°. 由∠CDE =∠BCD ,∠ECD =∠CFD , 可知△CDF ∽△DEC ,可知DF CF=CE CD,可求CE 的长. .............................. 5 26.(1)2x ≥-; . (1)(2)该函数的图象如下图; (3)yx–3–2–11234–2–112345O(3)-2 ................................................................................................. 4 (4)该函数的其它性质:当20x -≤<时,y 随x 的增大而减小; (5)(答案不唯一,符合函数性质即可写出一条即可)27.解:(1)令y =0,得x =1.∴点A 的坐标为(1,0). ··································································· 1 ∵点A 关于直线x =﹣1对称点为点C , ∴点C 的坐标为(﹣3,0). ·················· 2 (2)令x =0,得y =3.∴点B 的坐标为(0,3). ∵抛物线通过点B , ∴﹣3m =3,解得m =﹣1. (3)∵抛物线通过点A , ∴m+n ﹣3m =0,解得n =﹣2.∴抛物线表达式为223y x x =--+. (4)(3)由题意可知,a <0.依照抛物线的对称性,当抛物线通过(﹣1,0)时,开口最小,a =﹣3, (5)F BO C y x–2–112345–4–3–2–112A B C O现在抛物线极点在y 轴上,不符合题意.当抛物线通过(﹣3,0)时,开口最大,a =﹣1. (6)结合函数图像可知,a 的取值范围为31a -<≤-. (7)28.解:(1)如图1, (1)(2)方式1证明:如图2,过D 作DG ∥AB ,交AC 于G , (2)∵点D 是BC 边的中点, ∴DG =12AB . ∴△CDG 是等边三角形. ∴∠EDB +∠EDG=120°. ∵∠FDG +∠EDG=120°, ∴∠EDB =∠FDG . ·················································································· 3 ∵BD=DG ,∠B =∠FGD =60°, ∴△BDE ≌△GDF . ················································································· 4 ∴DE =DF . ····························································································· 5 方式2证明:如图3,连接AD , ∵点D 是BC 边的中点, ∴AD 是△ABC 的对称轴.作点E 关于线段AD 的对称点P ,点P 在边AC 上, ········································ 2 ∴△ADE ≌△ADP .∴DE=DP ,∠AED =∠APD . ∵∠BAC +∠EDF =180°, ∴∠AED +∠AFD =180°. ∵∠APD +∠DPF =180°, ∴∠AFD =∠DPF . ................................................................................... 3 ∴DP=DF . .. (4)图2图3图4图1∴DE =DF . ····························································································· 5 方式3证明:如图4,连接AD ,过D 作DM ⊥AB 于M ,DN ⊥AB 于N , ············· 2 ∵点D 是BC 边的中点, ∴AD 平分∠BAC .∵DM ⊥AB 于M ,DN ⊥AB 于N , ∴DM=DN . ···························································································· 3 ∵∠A =60°,∴∠MDE +∠EDN=120°. ∵∠FDN +∠EDN=120°, ∴∠MDE=∠FDN .∴Rt △MDE ≌Rt △NDF . ············································································· 4 ∴DE =DF . ····························································································· 5 (3)当点F 在AC 边上时,12BE CF AB +=; ············································ 6 当点F 在AC 延长线上时,12BE CF AB -=. (7)29.解:(1)120°; (1)(2)连结AC ,在射线CB 上截取CQ=CA ,连结AQ . (2)∵AB =23,BC =2,∴AC =4. (3)∴∠ACQ =60°.∴△ACQ 为等边三角形, 即∠AQC =60°. ················ 4 ∵CQ =AC =4,∴Q (3,﹣1). (5)(3)如图1,当点Q 与点O 重合时,∠EQF=60°,图2图1∴Q(0,0). (6)如图2,当FQ⊥x轴时,∠EQF=60°,∴Q(2,0). (7)∴a的取值范围是0<a<2. (8)。
【2017东城一模】
25.如图,四边形ABCD 内接于O ,对角线AC 为O 的直径,过点C 作AC 的垂线交
AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DF .
(1)求证:DF 是
O 的切线;
(2)若DB 平分∠ADC ,AB =a ,AD :DE =4:1,写出求DE 长的思路.
【2017西城一模】
25.如图,AB 为⊙O 的直径,C 为⊙O 上一点,过点C 作⊙O 的切线,交BA 的延长线交于点D ,过点B 作BE ⊥BA ,交DC 延长线于点E ,连接OE ,交⊙O 于点F ,交BC 于点
H ,连接AC .
(1)求证:∠ECB =∠EBC ;
(2)连接BF ,CF ,若CF =6,sin ∠FCB =3
5,求AC 的长.
【2017海淀一模】
25.如图,在△ABC 中,点O 在边AC 上,⊙O 与△ABC 的边BC ,AB 分别相切于C ,D
两点,与边AC 交于E 点,弦CF 与AB 平行,与DO 的延长线交于M 点. (1)求证:点M 是CF 的中点;
(2)若E 是DF 的中点,BC =a ,写出求AE 长的思路.
E
B
D
【2017朝阳一模】
25.如图,在Rt △ABC 中, ∠ACB=90°,∠A=30°,点D 在AB 上,以BD 为直径的⊙
O 切AC 于点E ,连接DE 并延长,交BC 的延长线于点F .
(1)求证:△BDF 是等边三角形;
(2)连接AF 、DC ,若BC =3,写出求四边形AFCD 面积的思路.
【2017丰台一模】
25.如图,AB 是⊙O 的直径,C ,D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 交AD 的
延长线于点E ,且CE =CF . (1)求证:CE 是⊙O 的切线;
(2)连接CD ,CB .若AD =CD =a ,写出求四边形ABCD 面积的思路.
【2017石景山一模】
25.如图,在四边形ABCD 中,90D ∠=°,AC 平分DAB ∠,
且点C 在以AB 为直径的⊙O 上. (1)求证:CD 是⊙O 的切线;
(2)点E 是⊙O 上一点,连接BE ,CE .若
A
E
B
F
42BCE ∠=°,
9
cos 10DAC ∠=
,AC m =,写出求线段CE 长的思路.
【2017房山一模】
22. 已知:如图,点A ,B ,C 三点在⊙O 上,AE 平分∠BAC ,交⊙O 于点E ,交BC 于点
D ,过点
E 作直线l ∥BC ,连结BE .
(1)求证:直线l 是⊙O 的切线;
(2)如果DE=a ,AE=b ,写出求BE 的长的思路.
【2017通州一模】
24.如图,点C 在以AB 为直径的⊙O 上,BD 与过点C 的切线垂直于点D ,BD 与⊙O 交于点E .
(1)求证:BC 平分∠DBA ;
(2)连接AE 和AC ,若cos ∠ABD =21
,OA=m ,
请写出求四边形AEDC 面积的思路.
【2017门头沟一模】
25.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C ∠=∠,OE 交BC 于点F . (1)求证:OE ∥BD ;
C D B
O
A
E
D
O A
C
(2)当⊙O 的半径为5,2
sin 5DBA ∠=
时,求EF 的长.
【2017平谷一模】
25.如图,⊙O 为等腰三角形ABC 的外接圆,AB =AC ,AD 是⊙O 的直径,切线DE 与
AC 的延长线相交于点E .
(1)求证:DE ∥BC ;
(2)若DF=n ,∠BAC =2α,写出求CE 长的思路.
【2017顺义一模】
25.如图,AB 是⊙O 的直径,PA 切⊙O 于点A ,PO 交⊙O 于点C ,连接BC ,∠P=∠B . (1)求∠P 的度数;
(2)连接PB ,若⊙O 的半径为a ,写出求△PBC 面积的思
路.
C B
P
A
O。