毫安级可控恒流源设计
- 格式:pdf
- 大小:1.27 MB
- 文档页数:5
10ma恒流源电路10mA恒流源电路是一种常用的电路设计,它可以提供稳定的10mA电流输出。
恒流源电路在许多应用中都有重要的作用,比如电流源、电流驱动器等。
本文将介绍10mA恒流源电路的原理、设计方法和应用。
一、原理恒流源电路的原理是通过反馈控制,使得输出电流保持恒定。
其中,关键的元件是电流源和负载电阻。
电流源可以是电流镜、差分放大器等,而负载电阻则是通过调节电阻值来控制输出电流大小。
二、设计方法设计一个10mA恒流源电路,需要确定电流源和负载电阻的数值。
常见的电流源设计方法有电流镜电路和差分放大器电路。
1. 电流镜电路设计电流镜电路是一种常用的电流源设计方法。
它使用了一个或多个晶体管来实现恒定的电流输出。
可以通过调整电流镜中晶体管的尺寸比例来控制输出电流大小。
2. 差分放大器电路设计差分放大器也可以用作恒流源电路的设计方法。
通过调整差分放大器中的电阻值和电压源,可以实现恒定的电流输出。
差分放大器电路的设计相对复杂一些,但在某些应用中具有优势。
三、应用10mA恒流源电路在许多应用中都有广泛的应用。
以下是几个常见的应用场景:1. 电流源恒流源电路可以作为电流源来提供稳定的电流输出。
在一些需要恒定电流的电路中,如温度传感器、光电传感器等,恒流源电路可以提供稳定的电流驱动。
2. 电流驱动器恒流源电路也可以作为电流驱动器来驱动其他电路。
比如,在LED 驱动电路中,恒流源电路可以提供恒定的电流输出,保证LED的亮度稳定。
3. 模拟电路在模拟电路设计中,恒流源电路常常用于偏置电流的提供。
通过将恒流源电路连接到某些元件的基极或源极,可以实现对电路的偏置控制。
四、总结10mA恒流源电路是一种常用的电路设计,它可以提供稳定的10mA电流输出。
恒流源电路的设计方法有电流镜电路和差分放大器电路,根据实际应用需求选择合适的设计方法。
恒流源电路在电流源、电流驱动器和模拟电路设计中有着广泛的应用。
通过合理设计和调整,恒流源电路可以满足不同应用场景的需求,提供稳定可靠的电流输出。
word格式-可编辑-感谢下载支持数控直流电流源(F题)一、任务设计并制作数控直流电流源。
输入交流200~240V,50Hz;输出直流电压≤10V。
其原理示意图如下所示。
二、要求1、基本要求(1)输出电流范围:200mA~2000mA;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA;(5)纹波电流≤2mA;(6)自制电源。
2、发挥部分(1)输出电流范围为20mA~2000mA,步进1mA;(2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的0.1%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的0.1%+1 mA;(4)纹波电流≤0.2mA;(5)其他。
数控直流恒流源的设计与制作word格式-可编辑-感谢下载支持发表日期:2006年5月1日出处:本站原创【编辑录入:zouwenkun】指导老师:王贵恩博士制作人:彭浦能、梁星燎、林小涛《数控直流恒流源》《数控恒流源获奖证书》摘要:本系统以直流电流源为核心,AT89S52单片机为主控制器,通过键盘来设置直流电源的输出电流,设置步进等级可达1mA,并可由数码管显示电流设定值和实际输出电流值。
本系统由单片机程控设定数字信号,经过D/A转换器(AD7543)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。
单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转换后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数字量形式的反馈环节,使电流更加稳定,这样构成稳定的压控电流源。
100ma恒流源电路设计
电路设计学起来也不难,那么你想知道100ma恒流源电路设计是怎么样的吗?以下是店铺为你整理推荐100ma恒流源电路设计,希望你喜欢。
100ma恒流源电路设计图
恒流源电路设计
恒流源1
该电路给LED提供一个恒定的电流。
通过LED的电流取决于电阻R2的值。
假设R2是560Ω。
当1毫安的电流通过R2时,电阻两端将产生0.56V电压,使BC547导通。
这将分流BD679基极电流,使其趋向关闭。
如果电源电压增加,这将使通过电路的电流尝试增加。
如果当前尝试增加,R2两端的电压增加同时BD679关闭得更多,这又促使R2两端电压降低,这样互相钳制使电路保持在一个恒定的电流。
恒流源电路2和3
通过重新排列上面的电路中的元件,它可以被设计为通过一个输入电平来控制恒流源电路的接通或断开。
R的值决定了通过发光二极管(LED)的电流
5毫安R = 120R或150R
10毫安R = 68R
15毫安R = 47R
20毫安R = 33R
25毫安R = 22R或33R
30毫安R = 22R
恒流源电路4
BC328电路,通过使用红色LED和10Ω电阻输出将被限制在100mA,通过使用红色LED和2.2Ω电阻输出将被限制到500mA-800mA。
将BC328换成BD140,使用红色LED和1Ω电阻电流将限制为1A。
第二个恒流源电路输出电流为1.5A,将可以驱动5瓦LED,这种LED的压降约3.2V。
该电路也可改变二极管串接个数来改变输出电流。
4~20ma恒流输出电路分析1,电路概括一些传感器仪表电路,变送器电路中经常用到4~20ma可调恒流输出,本文将为您提供一个廉价简洁的方案,其中包括电路使用说明,电路灵活变通方法,电路计算分析等详细介绍。
2,电路说明电路分为三部分:A,输入部分:输入部分由0~2ma信号源经过R5形成一个“0~1V”的可变电压然后送入前级放大电路U1A,这个输入跟后级电路成线性关系,当输入变化时输出可实现“4~20ma”输出的变化。
输入电路形式可根据实际应用调整变化,只要能产生线性变化的直流电压即可送入前级放大电路,得出的结果是一样的,B,前级放大电路:LM358有两个运算放大器通道,我们用一个作为前级放大电路,前级放大电路由“R7,R9”组成的负反馈比例放大电路,其主要的作用是将“0~1V”的电压放大到“0~11V”,至于为什么要放大到这个电压我们后面再介绍,此处先埋下来。
C,恒流电路恒流电路是由LM358组成的另一个负反馈放大器,其主要作用是在“特定的阻抗”上面产生“特定的电压”,当阻抗和电压固定,那么电流即为恒定。
在固定电阻上面产生固定的电压这也是恒流源设计的核心,掌握了这一点就可以灵活设计各种恒流电路。
通常运算放大器的输出能力很小,所以电路中的三极管Q1起到扩流的作用。
3,电路计算分析A,图中输入为“0~2ma”,根据运算放大器虚断的分析R1上面不过电流,所以“0~2ma”电流全部经过R5到地,设置输入的“0~2ma”为电流i。
得出“0<=V1<=1V”,公式参考如下:V=Iin5*1RB,根据运算放大器虚短可得V2=V1,即“0V<=V2<=1V”,公式如下:V=2V1C , 根据运算放大器虚断,V2处无电流流入运放,即R7和R9的电流值相同,得出V3的电压为“0V<=V3<=11V ”,公式如下:92*)97(392)97(31R V R R V R V R R V i +=Þ=+=将B 公式带入上式,求出V3与V1的关系: 1*1191*)97(3V R V R R V =+=将A 式带入上式,求出V3与Iin 的关系:5**111*113R Iin V V ==D , 根据运算放大器虚断,所以V4无电流流入运算放大器,我们设置V7为已知变量,则可以求出V4的电压,公式如下:34*)42()37(4V R R R V V V ++-=E , 根据运算放大器虚断,所以V5无电流流入运算放大器,我们设置V8为已知变量,则可以求出V5的电压,公式如下:12*)1211(85R R R V V +=F , 根据运算放大器虚短,所以有V4=V5,我们将“D ,E ”的公式带进去,然后解一下方程,公式如下:3*02.07812*)1211(834*)42()37(54V V V R R R V V R R R V V V V =-Þ+=++-Þ= G , 我们前面有讲到恒流源的核心就是有固定的电压在固定的电阻上面就可以产生恒定的电流,那么我们R8-R7的差值恒定,那么是不是可以认为R10上面的电压恒定呢,而这个阻值也是不变的,所以就得出来恒流了,下面我们将公式补全:10)78(R V V i -=我们将F 公式中V8-V7的值带入上式,得出来输出电流和V3的关系:3*002.010)3*02.0(V R V i ==我们将C 式带入上式,得出输出电流i 与Iin 的关系:Iin R Iin i *115**11*002.0==即输出电流的范围为“0ma<= I <=22ma ”.4, 电路分析图中电路是应用在输入“0~2ma ”,输出“4~20ma ”的电路中,输入部分“0~20ma ”是线性变化可调的,所以输出电流也是线性变化可调整的,所以应用在变送器或者仪表电路中最为合适。
高精度4-20mA恒流源电路的设计[摘要] 4-20mA电流输出,在远程智能工业控制中占有重要的地位。
本设计提出的高精度可编程恒流源系统,以STC89C52单片机、AD421数模转换器为核心,经分析、处理后,可实现高精度的恒流输出,以为工业设备校准提供精密参考信号。
[关键词] 4-20mA电流恒流源AD421 单片机高精度1.引言恒流源是能够向负载提供恒定电流的电源,现代电子技术的广泛应用,促进了对恒流源的需求。
例如高精度恒流源在为智能仪器仪表的检测和为工业设计提供精密参考信号发挥了很好的作用。
本设计,提出了一种廉价的高精度可编程恒流源的设计方案,使用单片机作为系统的控制核心,通过16位电流输出型DA 转换器AD421输出电流信号。
在实际测试中,恒流输出精度表现出色,达到了设计得要求。
本设计具有如下优点:(1)电流可以由用户自行调整,并通过液晶显示器与用户交互;(2)经过软件校正后,电路线性相对较好, 精度可达到±1uA;(3)电路简单, 容易实现;(4)可用于对防爆有特殊要求的工业现场。
2.系统分析4—20mA可编程恒流源的功能模块图如图1所示。
通过单片机给AD421提供数字信号,经AD421转换后输出4-20mA电流;由于AD421环流输出电路的模拟部分的影响,导致输出电流呈现一定的非线性,本设计通过软件对其进行了校准,使恒流源的精度达1uA;输出电流大小可由用户通过键盘自由设定,并通过液晶显示出来;且由于单片机和AD421之间通过光耦合实现了隔离,使其可用于对防爆有特殊要求的工业现场。
3.基于AD421的主硬件电路设计AD421是美国ADI公司推出的一种单片高性能数模转换器。
它由电流环路供电,16位数字信号以串行方式输入,4-20mA电流输出。
本质上来说,AD421提供了三个功能:将来自微处理器的数字函数变为模拟函数;用作环电流放大器;提供将环流作为能源的稳定的工作电压调节器。
以AD421为核心的主硬件电路的设计如图2所示。
《电子技术》课程设计报告课题名称:电压控制恒流充电电路设计班级学号学生姓名专业系别指导老师电子技术课程设计指导小组2014年5月《电子技术》课程设计报告课题:电压控制恒流充电电路设计一、设计目的电子技术课程设计是模拟电子技术、数字电子技术课程结束后进行的教学环节。
其目的是:1、培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。
2、学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。
3、进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。
4、培养学生的创新能力。
二、设计要求1、充电电流为50mA。
2、控制电压为2.5V和3V,当充电电压上升到3V时自动断电,当用电电压下降到2.5V时自动通电。
3、由5V直流源供电。
4、按照课题设计任务书要求进行设计5、用图、表、文字说明描述电路设计步骤6、对选用的主要元器件(包括集成电路),给出规格型号及技术参数,并附元器件表一份;7、凡是选用的集成电路,必须画完整的接线图,并说明各引线的功能和使用方法,同时应列出功能表8、分析设计电路的工作原理。
9、根据现有实验室条件,对设计的电路进行设计,制作与调试。
10、按要求撰写设计报告三、总体设计(1)在恒流源部分,我们通过利用9012PNP硅管其发射级-基极导通电压0.7V和10Ω电阻输出50mA电流。
(2)在电压的自动控制部分,接入5V电压,调节Rw1,经分压以后,在上部电路中的电位比较器的正向输入端的电压为2.5V。
同理,调节Rw2的大小,使下部电位比较器的反向输入端电压为3V。
工作原理接通电源,由于A点初始电压为0,Ⅰ电位比较器工作1端输出高电平,驱动晶闸管工作,继电器1跟着工作其开关闭合,开始给电容器充电;当A 点电压达到3V,Ⅱ电位比较器工作1端输出高电平,三极管9018导通,继电器2工作使得晶闸管不工作,继电器1跟着不工作其开关断开,电容通过R3开始放电;当A点电压降到2.5V,Ⅰ电位比较器工作7端输出高电平,又驱动晶闸管工作,继电器2跟着工作其开关闭合,给电容器充电。
毫安级可控恒流源设计于保军;孙伦杰;边亚辉;刘静;于文函【摘要】在检测安全气囊的工作电阻时,为使得工作能够安全高效的进行,文章设计出了毫安级高精度可控恒流源.该恒流源由两大块组成,分别是恒流源控制模块和电源模块,文章中将镜像电源电路作为恒流源控制模块,采用精密电阻Ro作为采样电阻,把Ro输出的电压通过AD芯片反馈给控制系统,经过程序运算,控制DA芯片输出电流,把输出电流转变成电压,然后经过放大电路进行调整输入恒流源控制模块电压,从而实现恒流源可调.最后,通过实验验证,该直流恒流源电流最大误差为3.23%,满足5%以内的要求;最大纹波系数为0.00032%,满足低于0.001%的要求.【期刊名称】《汽车实用技术》【年(卷),期】2017(000)012【总页数】5页(P51-55)【关键词】控制模块;电源模块;镜像电源电路;恒流源精度;纹波系数【作者】于保军;孙伦杰;边亚辉;刘静;于文函【作者单位】长春工业大学,吉林长春 130012;长春工业大学,吉林长春 130012;长春工业大学,吉林长春 130012;山东协和学院,山东济南 250107;长春工业大学,吉林长春 130012【正文语种】中文【中图分类】U463.6恒流源是能够向负载提供恒定电流的稳定电源模块,它被广泛地应用于各种测量与控制系统中,在电子技术中具有非常重要的地位[1]。
随着中国经济的迅速发展,汽车已经迈入普通家庭的消费视野,随之而来驾驶汽车的被动安全性开始成为人们谈论的热点,而安全气囊作为被动安全性的重要组成之一,在发生事故时,其能否安全正常的工作至关重要。
因此,对于安全气囊工作电阻是否合格的检测是必要的,在检测时如果使用大电流检测会引爆安全气囊,而使用 1mA恒流源对工作电阻进行检测既不会引爆安全气囊又大大提高工作效率,因此,1mA恒流源的设计显得尤为重要。
恒流源分为流出(Current Source)和流入(Current Sink)两种形式。
可调恒流源电路设计1. 引言可调恒流源电路是一种常用的电子电路,用于提供稳定的恒定电流输出。
它在各种应用中都有广泛的用途,如功率放大器、LED驱动器等。
本文将介绍可调恒流源电路的基本原理、设计要点以及实现方法。
2. 基本原理可调恒流源电路的基本原理是通过负反馈控制输出电流,使其保持在设定值。
其主要由一个电流传感器、一个比较器和一个功率放大器组成。
2.1 电流传感器电流传感器用于检测输出电流,并将其转换为相应的电压信号。
常见的电流传感器包括霍尔效应传感器、磁阻传感器等。
在可调恒流源电路中,选择合适的电流传感器对于整个系统的性能至关重要。
2.2 比较器比较器用于比较设定值和实际输出值之间的差异,并产生相应的误差信号。
常见的比较器包括运算放大器、数字比较器等。
在设计中,需要根据具体需求选择合适类型和参数的比较器。
2.3 功率放大器功率放大器用于根据误差信号调整输出电流,使其逼近设定值。
常见的功率放大器包括晶体管、场效应管等。
在设计中,需要考虑功率放大器的稳定性、响应速度以及能耗等因素。
3. 设计要点在设计可调恒流源电路时,需要考虑以下几个重要要点:3.1 输出电流范围根据具体应用需求确定输出电流范围。
不同应用对电流的要求不同,因此在设计中需要充分考虑并满足实际需求。
3.2 稳定性可调恒流源电路需要具备良好的稳定性,能够在各种工作条件下保持输出电流的稳定性。
为了提高稳定性,可以采用负反馈控制、温度补偿等方法。
3.3 响应速度可调恒流源电路需要具备快速响应能力,能够在瞬时变化的负载情况下迅速调整输出电流。
为了提高响应速度,可以采用高速比较器和快速功率放大器等元件。
3.4 效率可调恒流源电路应尽可能提高能效,减少能耗。
在设计时可以采用高效的功率放大器、优化电路拓扑等方法来提高效率。
4. 实现方法根据上述设计要点,可调恒流源电路的实现方法如下:4.1 选择合适的电流传感器根据输出电流范围和精度要求选择合适的电流传感器。
恒流源的工作原理和设计方法恒流源是一种电路,它可以提供一个恒定的电流输出。
它的工作原理基于负反馈控制,通过调节输出电压来保持输出电流恒定。
设计一个恒流源需要考虑以下几个因素:1. 选择合适的电路拓扑结构:常见的恒流源电路有电压跟随器、差分放大器、反向串联放大器等。
不同的拓扑结构具有不同的性能指标和适用范围。
2. 选择合适的元器件:在设计过程中需要选择合适的元器件,如晶体管、二极管、电阻等。
这些元器件应该具有高精度、低温漂移、高稳定性等特点。
3. 负反馈控制:通过负反馈控制可以调节输出电压来保持输出电流恒定。
在设计过程中需要确定合适的反馈网络,以及调节参数如增益、带宽等。
下面是一个基于差分放大器拓扑结构实现的恒流源设计方法:1. 确定基准电压:选择一个稳定可靠的基准电压源作为参考,例如使用稳压二极管或者参考电路芯片。
2. 设计差分放大器:选择合适的差分放大器电路,其中包括晶体管、电阻等元器件。
通过调整差分放大器的增益和带宽来满足设计要求。
3. 设计反馈网络:使用反馈电路将输出电流与基准电压进行比较,并通过调节输出电压来保持输出电流恒定。
在设计过程中需要确定合适的反馈网络,例如使用运算放大器或者其他反馈元件。
4. 选择合适的控制元件:在设计过程中需要选择合适的控制元件,如可变电阻、可变电容等。
这些元件可以用来调节差分放大器的增益和带宽,以及调节反馈网络的参数。
5. 优化性能指标:在完成基本设计后,可以通过对各种参数进行优化来提高性能指标,例如增加稳定性、减小温漂等。
总之,恒流源是一种非常实用的电路,在很多应用中都有广泛的应用。
通过选择合适的拓扑结构、元器件和反馈网络,以及进行精细化优化可以实现高精度、高稳定性的恒流源设计。
10mA恒流源电路1. 介绍恒流源电路是一种能够在负载端提供恒定电流的电路。
在很多应用中,需要将电流保持在一个固定的值,而不受负载变化或其他因素的影响。
10mA恒流源电路就是一种提供10mA恒定电流的电路。
本文将详细介绍10mA恒流源电路的原理、设计和应用。
2. 原理10mA恒流源电路的原理基于负反馈。
它由一个差分放大器、一个电流源和一个负载组成。
差分放大器是恒流源电路的核心部分。
它采用了负反馈原理,通过比较输入信号和输出信号的差异来调整输出电流,以保持恒定的电流。
电流源是为差分放大器提供恒定电流的部分。
它可以采用多种形式,如电流镜电路或恒流二极管。
负载是电流源输出的电流经过的部分。
它可以是电阻、电容或其他电子元件。
3. 设计步骤设计一个10mA恒流源电路,需要以下步骤:步骤1:选择差分放大器选择一个合适的差分放大器作为恒流源电路的核心部分。
常用的差分放大器有普通放大器、运算放大器等。
根据具体需求选择一个适合的差分放大器。
步骤2:选择电流源选择一个合适的电流源作为差分放大器的输入信号。
常用的电流源有电流镜电路、恒流二极管等。
根据具体需求选择一个适合的电流源。
步骤3:选择负载选择一个合适的负载作为电流源输出的部分。
根据具体需求选择一个适合的负载,如电阻、电容等。
步骤4:进行电路仿真和优化使用电路仿真软件对设计的电路进行仿真和优化。
通过调整电路参数,使得输出电流保持在10mA恒定值。
步骤5:制作原型电路并测试根据设计的电路图,制作一个原型电路进行测试。
通过测量电路的输出电流,验证电路的恒流源功能。
4. 应用10mA恒流源电路在实际应用中有广泛的用途,例如:•LED驱动器:LED需要恒定的电流进行正常工作,10mA恒流源电路可以用于LED的驱动。
•电池充电器:充电电流需要稳定且可控,10mA恒流源电路可以用于电池充电器的设计。
•传感器接口:一些传感器需要恒定的电流进行正常工作,10mA恒流源电路可以用于传感器的接口电路。
电子测试Dec. 2012 2012 年12月第12 期ELECTRONIC TEST No.12高精度恒流源的设计与制作米卫卫,杨风,徐丽丽(中北大学信息与通信工程学院太原市030051)摘要:恒流源在现代检测计量领域中发挥了极其重要的作用。
通过对恒流源的工作原理和设计方法进行研究,对现有的恒流源设计方案进行对比,设计出毫安级高精度可调恒流源。
电路由基准电压源、比较放大器、调整管、采样电阻等部分构成,具体的工作过程:通过采样电阻把输出电流转变成电压,反馈给比较放大器输入端,再与基准电压相比较,放大器把误差电压放大后去控制调整管的内阻对输出电流进行调整、维持输出电流恒定。
采用基本没有温度漂移的精密电阻作为采样电阻,功率达林顿管作为调整管,实现高精度的目的。
比较放大器的输入电压可调,从而实现恒流源的可调。
用高精度电流表对输出电流进行检测,实现对恒流源输出进行实时监测。
此次所设计的恒流源具有精度高、结构简单、工作稳定、操作方便、成本低廉等优点。
关键词:恒流源;高精度;可调中图分类号:TP277文献标识码: AHigh precision constant current sourcedesign and productionMi Weiwei,Yang Feng,Xu Lili(Northern University of China,College of Informational and Communicating Engineering,Taiyuan 030051)Abstract:Constant-current source in the metrology area in modern detection plays a very important role.Through the constant current source of working principle and design method of the existing study, constant current source design schemes are compared, design a precision adjustable constant-current source.Circuit voltage source, comparative by benchmark amp- lifier, adjust tubes, sampling resistor etc components, specific work process: the output by sampling resistance, electric flow into voltage feedback to the comparative amplifier input, compared with benchmark voltage again the voltage amplifier, amplifier to control the adjustment tube after adjustment for output current internal, maintain the output current constant. Using basic no temperature drift precision resistor as sampling resistance, power of linton tube as adjust tube, realize high precision purpose. Compare the amplifier's input voltage of adjustable, so as to realize the constant-current source is adjustable. Adopting high precision testing of output current ammeter is to realize constant-current source real-time monitoring output. The design has the constant-current source of high precision, simple structure, stable work, convenient operation, low cost, etc.Keywords:constant-current source;precision;adjustable652012.12Test Tools & Solution0 引言一定的个体差异。
恒流源的工作原理和设计方法
恒流源是一种电子电路,可以在特定的负载下提供稳定的电流输出。
它的工作原理是通过对电路中电压和电流的控制,使得输出电流始终保持不变。
在很多电子设备中,恒流源都是必不可少的元件,例如LED驱动电路、电池充电器等。
恒流源的设计方法取决于所需的输出电流和电压范围以及所使用的元器件。
一般来说,恒流源由三个基本元件组成:电流参考源、电感元件和功率晶体管。
电流参考源是恒流源的核心部件,它可以提供一个稳定的电流参考值。
常见的电流参考源有基准二极管和基准电阻。
基准二极管是一种特殊的二极管,具有稳定的电压降和温度系数,可以被用来产生一个稳定的电流。
基准电阻是一种具有非常小的温度系数的电阻,可以用来产生稳定的电压,进而产生一个稳定的电流。
电感元件通常是一个线圈,它可以在电路中产生一个电磁场,限制电流的变化。
在恒流源中,电感元件的作用是限制电流的变化,以保持输出电流的稳定性。
功率晶体管是恒流源中的开关元件,它可以通过控制电路中的电压来改变电路中的电流。
在恒流源中,功率晶体管用于调节电路中的电流,以保持稳定的输出电流。
恒流源的设计需要考虑多个因素,例如输入电压范围、输出电流范围、效率、成本等。
为了提高效率,可以选择低压降的元器件和高效率的拓扑结构。
为了降低成本,可以选择较便宜的元器件和简单的拓扑结构。
恒流源是一种重要的电子元件,具有广泛的应用领域。
恒流源的设计方法取决于所需的输出电流和电压范围以及所使用的元器件。
在设计恒流源时,需要考虑多个因素,例如输入电压范围、输出电流范围、效率、成本等。
20mA-2000mA连续可调步进1mA恒流源核心采样控制电路
目标:
1、设计一可调恒流源系统;
2、电流范围20mA-2000mA;
3、步进1mA;
4、负载0-5Ω。
核心采样控制电路:
电路说明:
1、V2为用于控制输出电流大小的DAC输出,电压输出范围50mV-5V,对应电流输出大小为20mA-2A,为了达到1mA的步进精度,至少要选择11位精度的DAC;
2、R10为0-5Ω负载;
3、R8为采样电阻,精度1%;
4、R3,R7,R4,U1B组成放大电路,将采样电压放大为合适的值(50mV-5V);
5、R2,C3,R1,R5,C2,C4,C1,R6,U1A组成PID控制电路;
6、R9和Q1组成输出电路;
7、V1为额定值18V/2A电源;
8、XSC1为示波器,用于检测输出电流是否和设置大小一致。
仿真结果:
1、控制电压0.05V,输出电流为20mA;
2、控制电压1V ,输出电流为
3、控制电压5V
,输出电流为流为400mA ;
流为2A ;。
一种0~2A数控可调恒流源设计摘要:本文是一种0~2A电流输出的数控恒流源的电路设计,其数控MCU采用了AT89S52单片机,以运放放大器OP07作为控制端与大功率三极管TIP31构成的达林顿管组成恒流驱动输出,数模转换部分采用了十二位D/A芯片MAX532、模数转换部分采用十六位A/D芯片AD7715及高精度的采样电阻,可以实现1MA的步进可调。
本系统对于软件核心算法采用的是PID控制算法,其P、I、D的参数设置采用经验法。
最后本文对此恒流电源系统的主要性能参数进行了相关的测试,结果表示:系统性能稳定可靠。
关键词:数控恒流;单片机;PID算法0引言恒流源是让输出的电流趋于恒定不变的电流源,本文要设计的是一种基于单片机控制的直流恒流源,该设计由单片机控制系统、数模及模数转换模块、电源模块、恒流源模块、负载及键盘显示模块构成。
随着电子技术的不断发展,在现实生活中(如LED恒流)及实验的许多设备及接口电路中都普遍用到恒流电源,但是现如今市场上所销售的恒流电源在许多方面还存在着不足,比如精度不够高,稳定性不够好,带负载能力还不够这样的问题,这不仅仅影响着科学实验的进程,也影响着我们的生活质量的提高。
所以本课题就当前恒流源存在的问题,设计一款在稳定性和输出精度方面都比较好的直流恒流源,系统在达林顿管和运算放大器为基础的主体上,先由A/D转换器对输出信号进行采样反馈到单片机,再由单片机控制D/A转换器使得输出电压发生变化,从而使得电流恒定输出。
1硬件设计1.1系统框图本设计的是基于MCU51单片机控制的直流恒流电源,由MCU控制系统、A/D数模转换、D/A模数输出模块、恒流输出模块、电源供电模块以及负载等几个主要的模块构成,如图1所示:图1系统框图1.2恒流源电路设计图2恒流源主电路图大功率三极管TIP31构成达林顿管其控制端通过一个500Ω的电阻连接至运算放大器OP07的输出端,发射级连接一个采样电阻接地,然后将采样电阻电压采集端连接到A/D转换器,用于实现电流检测。