第六章-磁共振成像设备
- 格式:ppt
- 大小:9.73 MB
- 文档页数:125
第六章磁共振成像设备 (1)第一节磁共振成像原理 (1)一、磁共振成像基本原理 (1)二、磁共振成像脉冲序列 (5)第二节磁共振成像系统 (8)第三节磁共振成像的临床应用 (13)第六章磁共振成像设备磁共振成像(Magnetic Resonance Imaging,MRI)是利用人体内原子核在磁场内与外加射频磁场发生共振而产生影像的一种成像技术。
MRI是随着计算机技术的飞速发展以及在X线CT的临床应用基础上发展起来的一种医学数字成像技术,既能显示人体形态学结构,又能显示原子核水平上的生化信息,还能显示某些器官的功能状态,以及无辐射等诸多优点,已越来越广泛的应用于临床各系统的检查诊疗中。
随着MRI技术的不断改进,其功能日趋完善,应用范围不断拓宽,是当今医学影像学领域发展最快、最有潜力的一种成像技术。
第一节磁共振成像原理一、磁共振成像基本原理1.核磁共振现象微观领域中的核子都有自旋的特性。
核子的自旋产生小磁矩,类似于小磁棒。
质子数或中子数至少有一个为奇数的大量原子核可在静磁场中体现出宏观磁化来,其磁化矢量与静磁场同向。
而每单个原子核在静磁场中做着不停的进动运动(一方面不断自旋,同时以静磁场为轴做圆周运动),进动频率(Precession Frequency)(即质子每秒进动的次数)为ω0=γB0,γ为原子核的旋磁比(对于每一种原子核,γ是一个常数且各不相同,如氢质子γ值为42.5MHz/T),B0为静磁场的场强大小。
人体含有占比重70%以上的水,又由于氢质子磁矩不为零,这些水中的氢质子是磁共振信号的主要来源,其余信号来自脂肪、蛋白质和其他化合物中的氢质子。
对静磁场中的质子群沿着垂直于静磁场的方向施加某一特定频率的电磁波——其频率在声波范围内,故称为射频(Radio Frequency,RF)——原来的宏观磁化就会以射频场为轴发生偏转(章动),其偏转角度取决于射频场的施加时间、射频强度和射频波形。
当然,一个关键条件是:射频的频率必须与静磁场中的质子的进动频率一致。
磁共振成像设备教案引言磁共振成像(Magnetic Resonance Imaging, MRI)是一种非常重要的医学影像诊断技术。
它通过利用磁场和无害的无线电波来生成具有高分辨率的图像,能够清晰地显示人体内部组织和器官的结构。
本教案将介绍磁共振成像设备的原理、操作和相关注意事项。
一、原理磁共振成像设备利用磁场和无线电波与人体内部的原子核发生相互作用,通过对其响应的检测和处理,生成图像。
其原理主要包括以下几个方面:1.磁场生成:磁共振成像设备通过强大的磁体产生稳定的强静态磁场,常用的是超导磁体。
这个磁场使得人体组织内的原子核有一个方向性的排列。
2.无线电波发射和接收:设备通过无线电频率发射一系列脉冲,并通过线圈接收相应的信号。
发射和接收线圈一般分别放置在人体周围或内部。
3.旋进和松弛:当原子核受到外界磁场和无线电波的作用时,部分原子核的自旋方向会发生改变,产生磁共振现象。
之后,这些原子核逐渐返回到原来的状态,这个过程称为松弛。
4.信号检测和处理:设备通过接收线圈采集到的信号进行处理和分析,获得关于人体组织和器官内部结构的信息。
二、操作步骤使用磁共振成像设备需要按照以下步骤进行操作:1.预检准备:对于患者来说,在进行磁共振成像之前需要除去身上的金属物品,如首饰、硬币、钥匙等。
此外,还需要询问患者是否有带有金属的植入物、心脏起搏器等医疗设备。
2.患者定位:将患者放置在磁共振设备的托盘上,并在设备中心进行定位,使要检查的部位位于磁共振成像的扫描范围内。
3.参数设定:根据具体的检查需要,设定相应的参数,如扫描序列、层厚、选取平面等。
4.扫描开始:在所有准备工作完成后,操作人员可以开始扫描。
设备会发射一系列的无线电波脉冲,并采集相应的信号。
5.扫描结束:扫描完成后,设备会生成一系列图像,操作人员可以对图像进行进一步处理和分析。
三、注意事项使用磁共振成像设备需要注意以下事项:1.安全性:磁共振成像设备产生的磁场非常强大,对患者和操作人员的安全有一定的影响。
磁共振成像设备教案简介磁共振成像(Magnetic Resonance Imaging,MRI)是一种非侵入性的医学影像技术,利用磁场和无害的无线电波产生详细的身体结构和组织信息。
MRI广泛应用于医学领域,用于诊断和评估多种疾病,包括神经系统疾病、肿瘤、心脑血管疾病等。
本教案将介绍MRI设备的原理、操作和安全事项。
1. MRI设备原理MRI设备基于核磁共振原理工作。
核磁共振是指原子核在恒定磁场下吸收外加无线电波而发生共振的现象。
MRI设备通过创建一个强大的恒定磁场,使人体内的原子核取向于该磁场。
然后,设备会产生一系列无线电波脉冲,激发和检测原子核的共振信号。
根据这些信号,计算机可以生成详细的图像。
2. MRI设备组成MRI设备主要由以下组件组成:2.1 主磁体主磁体是MRI设备中最重要的部分之一,它产生恒定的强大磁场。
主磁体通常由超导体制成,需要冷却至极低温度才能保持超导状态。
主磁体的强度通常以特斯拉(Tesla,T)为单位进行描述,例如1.5T、3.0T等。
2.2 梯度线圈梯度线圈是用于产生空间梯度磁场的部件。
通过改变梯度线圈的电流,可以使得磁场的强度在空间上发生变化,从而实现对图像的定位和空间解析度的控制。
2.3 高频线圈高频线圈用于产生无线电波脉冲,激发和接收原子核的共振信号。
高频线圈与被检查者的身体部位紧密接触以提高信号强度和图像质量。
2.4 计算机系统计算机系统用于控制MRI设备的各个组件,并处理和生成图像。
操作员可以通过计算机的界面来设置扫描参数、观察图像和存储数据。
3. MRI设备操作步骤下面是MRI设备的基本操作步骤:3.1 患者准备在进入扫描室前,患者需要脱掉所有金属物品,并更换为无金属材质的服装。
某些情况下,可能需要患者服用对比剂或注射针对性药物。
3.2 定位操作员根据患者需要和医生的要求,选择相应的扫描协议和扫描范围。
操作员将患者放置在扫描床上,并保证所要检查的部位在扫描范围内。
磁共振成像设备简介介绍汇报人:日期:CATALOGUE 目录•磁共振成像技术概述•磁共振成像设备组成及工作原理•磁共振成像设备的特点与优势•磁共振成像设备的市场与发展趋势•磁共振成像设备的维护与保养建议01磁共振成像技术概述磁场与射频脉冲在强磁场中,原子核发生能级分裂,射频脉冲激发后,原子核发生跃迁并发出共振信号。
空间编码与图像重建通过梯度磁场进行空间编码,获取共振信号后,利用计算机技术进行图像重建。
核磁共振现象利用射频脉冲激发原子核,通过观察共振信号进行成像。
磁共振成像技术的原理03技术进步与普及随着科技进步,磁共振成像技术不断优化,分辨率和速度大幅提升,逐渐成为临床重要检查手段。
01早期探索20世纪初,科学家发现原子核的磁性,奠定了核磁共振的理论基础。
02第一台磁共振成像仪1970年代,第一台磁共振成像仪问世,开启了医学影像学的新篇章。
磁共振成像技术的历史与发展用于检测病变、肿瘤、血管疾病等,对某些疾病具有早期发现和诊断价值。
医学诊断用于研究生物组织的功能和代谢过程,为疾病机制探索提供支持。
科研领域如工业检测、材料科学等,应用范围较广。
其他领域磁共振成像技术的应用范围02磁共振成像设备组成及工作原理磁体系统射频系统计算机系统冷却系统磁共振成像设备的组成01020304包括主磁场和梯度磁场,主磁场产生强大的磁场,梯度磁场则用于定位和导航。
产生并发送射频脉冲,同时接收并处理从组织中返回的射频信号。
进行数据处理和图像重建。
保持设备的稳定运行,防止过热。
人体内的氢原子核具有自旋磁矩,会在主磁场中产生不同的能级。
原子核的自旋磁矩射频脉冲信号采集通过射频脉冲将氢原子核激发到高能级,然后回到低能级释放能量。
设备接收这些能量信号,经过处理后得到图像。
030201患者需要在专业人员的指导下进入扫描室,并按照要求躺在扫描床上。
患者进入扫描室设备会根据预设的扫描序列对目标部位进行扫描,期间患者需要保持静止。
扫描过程扫描完成后,数据会被传输到计算机系统进行处理和图像重建。
磁共振成像设备的工作原理磁共振成像(Magnetic Resonance Imaging,MRI)是一种常用于医学诊断的非侵入性扫描技术,它利用磁共振原理,通过对人体组织的磁性物质的成像进行分析,得出病灶位置和病理变化的信息。
下面将详细介绍MRI设备的工作原理。
MRI设备主要由主磁场系统、梯度线圈系统、射频系统和计算机系统组成。
1. 主磁场系统主磁场系统是MRI设备的核心组成部分,它由一个超导磁体构成。
这个超导磁体能产生一个稳定的高强度磁场,通常是1.5T或3T。
这个磁场可以将人体内的水和脂肪等有机分子的原子核(如氢核、氧核等)原子核自旋取向,从而为后续成像提供必要的条件。
2. 梯度线圈系统梯度线圈系统由三个互相垂直的线圈组成,即横向、纵向和轴向梯度线圈。
这些线圈的作用是产生稳定强度和变化频率的梯度磁场,用于在空间上定位图像中不同的区域。
梯度线圈系统的变化频率决定了成像的分辨率,变化强度决定了成像的对比度。
3. 射频系统射频系统由发射线圈和接收线圈组成,它的作用是产生高频电磁场和接收返回的信号。
在成像过程中,射频系统会向人体内部提供一个高频脉冲电磁场,导致人体内的原子核自旋发生能级跃迁。
原子核回到基态时,会发送出一个特定的信号,通过接收线圈接收并传回计算机系统进行处理。
4. 计算机系统计算机系统是MRI设备的控制中心,它负责控制整个设备的运行、数据采集、图像重建和存储。
在成像过程中,计算机会通过梯度线圈和射频线圈产生的信号,对人体内部的原子核进行测量和记录。
然后利用这些数据,通过复杂的数学计算和图像处理算法,生成最终的MRI图像。
具体工作流程如下:1. 开始扫描前,患者需要去除身上的金属物品,因为磁场会对金属产生吸引力和磁化。
2. 患者躺在MRI设备的扫描床上,床会进入主磁场系统中央,电脑通过脚踏开关控制床的位置。
3. 当主磁场系统通电后,会产生一个均匀的磁场。
此时,射频系统会向人体内部发送射频脉冲,使原子核自旋发生能级跃迁。
磁共振成像设备介绍1. 概述磁共振成像(Magnetic Resonance Imaging, MRI)是一种利用磁共振现象对人体或物体进行成像的无创检查技术。
它能够提供高对比度、高分辨率的图像,对于诊断疾病和观察生理过程具有重要价值。
磁共振成像设备是实现MRI检查的关键设备,下面将对其进行详细介绍。
2. 磁共振成像设备的组成磁共振成像设备主要由以下几个部分组成:2.1. 主磁体主磁体是磁共振成像设备的核心部件之一,它产生强大的静态磁场,用于对采集的信号进行定向和扩散。
主磁体通常采用超导磁体或永磁体。
超导磁体利用超导材料在极低温下产生极强的磁场,能够提供更稳定和均匀的磁场质量。
永磁体则是通过特殊磁材制造的,相对于超导磁体具有较低的成本和更小的体积。
2.2. 梯度线圈梯度线圈用于在磁共振成像过程中产生梯度磁场,通过改变梯度磁场的方向和强度,可以对磁共振信号进行空间编码,从而实现对物体内部结构的定位和分辨。
2.3. RF线圈RF线圈是用于向被检体中输入射频信号以及接收磁共振信号的设备。
它是磁共振成像设备的重要组成部分,能够产生高频的交变电磁场,激发被检体内部的磁共振信号。
2.4. 接收器接收器用于接收从被检体中采集到的磁共振信号,并将其转换为电信号进一步处理。
接收器通常包括信号放大器、滤波器、模数转换器等。
2.5. 控制与处理系统控制与处理系统负责操纵磁共振成像设备的各部分,并对采集到的信号进行处理和重建。
它通常由计算机和相应的软件组成,能够实现图像采集、重建和显示。
3. 磁共振成像设备的工作原理磁共振成像设备的工作原理是基于核磁共振现象。
当被检体置于强磁场中时,其中的原子核会受到磁场的影响,处于不同的能级。
通过向被检体中输入射频脉冲,可以使原子核从低能级跃迁至高能级。
当射频脉冲结束后,原子核会返回到低能级,并释放出能量。
这些能量以磁共振信号的形式被接收器采集,并由控制与处理系统转化为图像。
4. 磁共振成像设备的应用磁共振成像设备广泛应用于医学领域,主要用于以下方面:4.1. 诊断疾病磁共振成像设备能够提供高对比度和高分辨率的图像,可用于检测和诊断各种疾病,如脑卒中、肿瘤、心血管病等。