全国各地高考文科数学试题平面解析几何及答案
- 格式:doc
- 大小:369.50 KB
- 文档页数:4
近三年高考数学平面解析几何真题和答案1.(2020·全国卷Ⅰ)已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线P A ,PB ,切点为A ,B ,当|PM |·|AB |最小时,直线AB 的方程为( )A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=02.(2020·北京高考)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( )A .4B .5C .6D .73.(2020·全国卷Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为 5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A .1B .2C .4D .84.(2020·全国卷Ⅱ)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .325.(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .96.(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .97.(2020·全国卷Ⅲ)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A .⎝ ⎛⎭⎪⎫14,0B .⎝ ⎛⎭⎪⎫12,0C .(1,0)D .(2,0)8.(2019·全国卷Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A . 2B . 3C .2D .59.(2020·全国卷Ⅱ)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .3210.(2019·浙江高考)渐近线方程为x ±y =0的双曲线的离心率是( )A .22B .1C . 2D .211.(2020·全国卷Ⅲ)在平面内,A ,B 是两个定点,C 是动点,若AC →·BC →=1,则点C 的轨迹为( )A .圆B .椭圆C .抛物线D .直线12.(2019·北京高考)数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x |y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( ) A .① B .② C .①②D .①②③13.(2020·江苏高考)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 25=1(a >0)的一条渐近线方程为y =52x ,则该双曲线的离心率是________.14.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.15.2020·浙江高考)设直线l :y =kx +b (k >0),圆C 1:x 2+y 2=1,C 2:(x -4)2+y 2=1,若直线l 与C 1,C 2都相切,则k =________,b =________.16. (2019·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为________. 大题1.(2020·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,-3),右焦点为F ,且|OA |=|OF |,其中O 为原点.(1)求椭圆的方程;(2)已知点C 满足3OC→=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.2. (2019·全国卷Ⅲ)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎝ ⎛⎭⎪⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.3.(2019·全国卷Ⅱ节选)已知点A (-2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为-12.记M 的轨迹为曲线C .求C 的方程,并说明C 是什么曲线.4.(2020·全国卷Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG →·GB →=8,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.5.(2020·新高考卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1). (1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.参考答案选择题1.DAABC 6.CBABC 11.AC填空 132x 2+y 2-2x =0 33 -233 2 大题 1. 解因为椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,-3), 所以b =3.由|OA |=|OF |,得c =b =3, 所以a 2=b 2+c 2=32+32=18, 所以椭圆的方程为x 218+y 29=1.(2)因为直线AB 与以C 为圆心的圆相切于点P ,所以CP ⊥AB . 根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为y =kx -3, 由⎩⎪⎨⎪⎧y =kx -3,x 218+y 29=1,消去y ,可得(2k 2+1)x 2-12kx =0, 解得x =0或x =12k2k 2+1. 将x =12k2k 2+1代入y =kx -3,得y =k ·12k2k 2+1-3=6k 2-32k 2+1,所以点B 的坐标为⎝⎛⎭⎪⎫12k2k 2+1,6k 2-32k 2+1. 因为P 为线段AB 的中点,点A 的坐标为(0,-3), 所以点P 的坐标为⎝ ⎛⎭⎪⎫6k2k 2+1,-32k 2+1. 由3OC→=OF →,得点C 的坐标为(1,0), 所以直线CP 的斜率为k CP =-32k 2+1-06k 2k 2+1-1=32k 2-6k +1.又因为CP ⊥AB ,所以k ·32k 2-6k +1=-1,整理得2k 2-3k +1=0, 解得k =12或k =1.所以直线AB 的方程为y =12x -3或y =x -3. 2.(1)证明:设D ⎝ ⎛⎭⎪⎫t ,-12,A (x 1,y 1),则x 21=2y 1. 因为y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t=x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0. 故直线AB 的方程为2tx -2y +1=0. 所以直线AB 过定点⎝ ⎛⎭⎪⎫0,12.(2)由(1)得直线AB 的方程为y =tx +12.由⎩⎪⎨⎪⎧y =tx +12,y =x 22可得x 2-2tx -1=0.于是x 1+x 2=2t ,x 1x 2=-1, y 1+y 2=t (x 1+x 2)+1=2t 2+1, |AB |=1+t 2|x 1-x 2| =1+t 2×(x 1+x 2)2-4x 1x 2=2(t 2+1).设d 1,d 2分别为点D ,E 到直线AB 的距离, 则d 1=t 2+1,d 2=2t 2+1. 因此,四边形ADBE 的面积 S =12|AB |(d 1+d 2)=(t 2+3)t 2+1.设M 为线段AB 的中点,则M ⎝ ⎛⎭⎪⎫t ,t 2+12. 因为EM→⊥AB →,而EM→=(t ,t 2-2),AB →与向量(1,t )平行, 所以t +(t 2-2)t =0,解得t =0或t =±1. 当t =0时,S =3;当t =±1时,S =4 2. 因此,四边形ADBE 的面积为3或4 2. 3.由题设,得y x +2·y x -2=-12,化简得x 24+y 22=1(|x |≠2),所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点. 4.依据题意作出如下图象:由椭圆方程E :x 2a 2+y 2=1(a >1)可得A (-a,0),B (a ,0),G (0,1), ∴AG→=(a,1),GB →=(a ,-1). ∴AG→·GB →=a 2-1=8,∴a 2=9. ∴椭圆E 的方程为x 29+y 2=1.(2)证明:由(1)得A (-3,0),B (3,0),设P (6,y 0), 则直线AP 的方程为y =y 0-06-(-3)(x +3),即y =y 09(x +3),直线BP 的方程为y =y 0-06-3(x -3),即y =y 03(x -3).联立直线AP 的方程与椭圆方程可得⎩⎪⎨⎪⎧x 29+y 2=1,y =y 09(x +3),整理得(y 20+9)x 2+6y 20x +9y 20-81=0,解得x =-3或x =-3y 20+27y 20+9.将x =-3y 20+27y 20+9代入y =y 09(x +3)可得y =6y 0y 20+9,所以点C 的坐标为⎝ ⎛⎭⎪⎫-3y 20+27y 20+9,6y 0y 20+9.同理可得,点D 的坐标为⎝ ⎛⎭⎪⎫3y 20-3y 20+1,-2y 0y 20+1. ∴直线CD 的方程为y -⎝ ⎛⎭⎪⎫-2y 0y 20+1=6y 0y 20+9-⎝ ⎛⎭⎪⎫-2y 0y 20+1-3y 20+27y 20+9-3y 20-3y 20+1⎝ ⎛⎭⎪⎫x -3y 20-3y 20+1, 整理可得y +2y 0y 20+1=4y 03(3-y 20)⎝ ⎛⎭⎪⎫x -3y 20-3y 20+1, y =4y 03(3-y 20)⎝ ⎛⎭⎪⎫x -3y 20-3y 20+1-2y 0y 20+1=4y 03(3-y 20)⎝⎛⎭⎪⎫x -32.故直线CD 过定点⎝ ⎛⎭⎪⎫32,0.5.由题意可得⎩⎪⎨⎪⎧c a =22,4a 2+1b 2=1,a 2=b 2+c 2,解得a 2=6,b 2=c 2=3, 故椭圆C 的方程为x 26+y 23=1. (2)证明:设点M (x 1,y 1),N (x 2,y 2). 因为AM ⊥AN ,所以AM→·AN →=0,即(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0.①当直线MN 的斜率存在时,设其方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理,得(1+2k 2)x 2+4kmx +2m 2-6=0, x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2,②根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理,可得 (k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0,将②代入上式,得(k 2+1)2m 2-61+2k 2+(km -k -2)·⎝ ⎛⎭⎪⎫-4km 1+2k 2+(m -1)2+4=0, 整理化简得(2k +3m +1)(2k +m -1)=0,因为A (2,1)不在直线MN 上,所以2k +m -1≠0, 所以2k +3m +1=0,k ≠1, 于是MN 的方程为y =k ⎝ ⎛⎭⎪⎫x -23-13,所以直线过定点E ⎝ ⎛⎭⎪⎫23,-13.当直线MN 的斜率不存在时, 可得N (x 1,-y 1),如图2.代入(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0, 得(x 1-2)2+1-y 21=0,结合x 216+y 213=1,解得x 1=2(舍去)或x 1=23,此时直线MN 过点E ⎝ ⎛⎭⎪⎫23,-13. 因为AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 的中点Q 满足|DQ |为定值⎝ ⎛⎭⎪⎫AE 长度的一半12 ⎝ ⎛⎭⎪⎫2-232+⎝ ⎛⎭⎪⎫1+132=223. 由于A (2,1),E ⎝ ⎛⎭⎪⎫23,-13, 故由中点坐标公式可得Q ⎝ ⎛⎭⎪⎫43,13. 故存在点Q ⎝ ⎛⎭⎪⎫43,13,使得|DQ |为定值.。
专题08平面解析几何(解答题)近三年高考真题1.(2023•新高考Ⅰ)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点1(0,2的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于【解析】(1)设点P 点坐标为(,)x y ,由题意得||y ,两边平方可得:22214y x y y ,化简得:214y x,符合题意.故W 的方程为214y x.(2)解法一:不妨设A ,B ,C 三点在W 上,且AB BC .设21(,)4A a a ,21(,)4B b b ,21(,4C c c ,则22(,)AB b a b a ,22(,)BC c b c b.由题意,0AB BC,即2222()()()()0b a c b b a c b ,显然()()0b a c b ,于是1()()0b a c b .此时,||b a .||1c b .于是{||min b a ,||}1c b .不妨设||1c b ,则1a b b c,则||||||||AB BC b a c b||b a c b|||b a c b||c a1|b c b c设||x b c,则1()(f x x x 322(1)()x f x x ,又11222222222(1)(31)(1)(21)()x x x x x f x x x.显然,2x为最小值点.故()(2f x f 故矩形ABCD的周长为2(||||)2()AB BC f x .注意这里有两个取等条件,一个是||1b c,另一个是||b c ,这显然是无法同时取到的,所以等号不成立,命题得证.解法二:不妨设A ,B ,D 在抛物线W 上,C 不在抛物线W上,欲证命题为||||2AB AD .由图象的平移可知,将抛物线W 看作2y x 不影响问题的证明.设(A a ,2)(0)a a ,平移坐标系使A 为坐标原点,则新抛物线方程为22y x ax ,写为极坐标方程,即22sin cos 2cos a ,即2sin 2cos cos a.欲证明的结论为22sin()2cos()sin 2cos 3322||||cos 2cos ()2a a ,也即222sin 2cos ||||cos cos sin sin a a .不妨设22||||cos sin,将不等式左边看成关于a 的函数,根据绝对值函数的性质,其最小值当22sin 0cos cos a 即sin 2cos a时取得,因此欲证不等式为21cos ||cos sin,即21||cos sin ,根据均值不等式,有2|cos sin |由题意,等号不成立,故原命题得证.2.(2023•上海)已知抛物线2:4y x ,在 上有一点A 位于第一象限,设A 的纵坐标为(0)a a .(1)若A 到抛物线 准线的距离为3,求a 的值;(2)当4a 时,若x 轴上存在一点B ,使AB 的中点在抛物线 上,求O 到直线AB 的距离;(3)直线:3l x ,抛物线上有一异于点A 的动点P ,P 在直线l 上的投影为点H ,直线AP 与直线l 的交点为Q .若在P 的位置变化过程中,||4HQ 恒成立,求a 的取值范围.【解析】(1)抛物线2:4y x 的准线为1x ,由于A 到抛物线 准线的距离为3,则点A 的横坐标为2,则2428(0)a a ,解得a ;(2)当4a 时,点A 的横坐标为2444,则(4,4)A ,设(,0)B b ,则AB 的中点为4(,2)2b ,由题意可得24242b ,解得2b ,所以(2,0)B ,则402423AB k,由点斜式可得,直线AB 的方程为2(2)3y x ,即2340x y ,所以原点O 到直线AB13;(3)如图,设22(,),(,),(3,)(0)44t a P t A a H t t a ,则22444AP t a k t a t a,故直线AP 的方程为24()4a y a x t a,令3x ,可得24(3)4a y a t a ,即24(3,(3))4a Q a t a,则24|||(3)|4a HQ t a t a,依题意,24|(3)|44a t a t a恒成立,又24(3)2204a t a a a t a ,则最小值为24a ,即2a ,即2a ,则221244a a a ,解得02a ,又当2a 时,1624442t t,当且仅当2t 时等号成立,而a t ,即当2a 时,也符合题意.故实数a 的取值范围为(0,2].3.(2022•上海)设有椭圆方程2222:1(0)x y a b a b,直线:0l x y , 下端点为A ,M 在l 上,左、右焦点分别为1(F ,0)、2F ,0).(1)2a ,AM 中点在x 轴上,求点M 的坐标;(2)直线l 与y 轴交于B ,直线AM 经过右焦点2F ,在ABM 中有一内角余弦值为35,求b ;(3)在椭圆 上存在一点P 到l 距离为d ,使12||||6PF PF d ,随a 的变化,求d 的最小值.【解析】(1)由题意可得2,a b c ,22:1,(0,42x y A ,AM ∵的中点在x 轴上,M ,代入0x y 得M .(2)由直线方程可知B ,①若3cos 5BAM,则4tan 3BAM ,即24tan 3OAF ,234OA OF ,b.②若3cos 5BMA,则4sin 5BMA ,∵4MBA, 34cos()252510MBA AMB ,cos BAMtan 7BAM .即2tan 7OAF , 7OA , 7b ,综上b或27.(3)设(cos ,sin )P a b ,62a ,很明显椭圆在直线的左下方,则62a ,即) ,222a b ∵,) ,)22a ,|sin()|1 ,整理可得(1)(35)0a a ,即513a ,从而58626233d a .即d 的最小值为83.4.(2022•浙江)如图,已知椭圆22112x y .设A ,B 是椭圆上异于(0,1)P 的两点,且点1(0,2Q 在线段AB上,直线PA ,PB 分别交直线132y x 于C ,D 两点.(Ⅰ)求点P 到椭圆上点的距离的最大值;(Ⅱ)求||CD 的最小值.【解析】(Ⅰ)设椭圆上任意一点(,)M x y ,则222222||(1)12122111213PM x y y y y y y ,[1y ,1],而函数211213z y y 的对称轴为1[1,1]11y ,则其最大值为21114411(213111111, 1441211||1111max PM,即点P 到椭圆上点的距离的最大值为121111;(Ⅱ)设直线11221:,(,),(,)2AB y kx A x y B x y ,联立直线AB 与椭圆方程有2212112y kx x y,消去y 并整理可得,22(121)1290k x kx ,由韦达定理可得,121222129,121121k x x x x k k, 22212121222212366161||()4()121121k k x x x x x x k k k,设3(C x ,3)y ,4(D x ,4)y ,直线111:1y AP y x x ,直线221:1y BP y x x ,联立1111132y y x x y x 以及2211132y y x x y x,可得12341244,(21)1(21)1x x x x k x k x,由弦长公式可得21234124415||1()|||22(21)1(21)1x x CD x x k x k x1212212121225|5|[(21)1][(21)1](21)(21)()1x x x x k x k x k x x k x x66|231555k,当且仅当316k 时等号成立,||CD的最小值为5.5.(2022•北京)已知椭圆2222:1(0)x yE a ba b的一个顶点为(0,1)A,焦距为.(Ⅰ)求椭圆E的方程;(Ⅱ)过点(2,1)P 作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N.当||2MN 时,求k的值.【解析】(Ⅰ)由题意得,12bc,1b,c ,2a ,椭圆E的方程为2214x y .(Ⅱ)设过点(2,1)P 的直线为1(2)y k x,1(B x,1)y,2(C x,2)y,联立得221(2)141y k xx y,即2222(14)(168)16160k x k k x k k,∵直线与椭圆相交, △2222[(168)]4(14)(1616)0k k k k k,0k,由韦达定理得212216814k kx xk,2122161614k kx xk,111ABykx∵, 直线AB为1111yy xx,令0y ,则111xxy,11(1xMy,0),同理22(1xNy ,0),1212211212211||||||()|11(2)(2)22x x x x x xMNy y k x k x k x x212112122()11||||(2)(2)x xk x x k22|216162(168)41414k k,2|2k,1|2,4k .6.(2022•新高考Ⅱ)已知双曲线2222:1(0,0)x y C a b a b的右焦点为(2,0)F,渐近线方程为y .(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点1(P x ,1)y ,2(Q x ,2)y 在C 上,且120x x ,10y .过P且斜率为Q且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立.①M 在AB 上;②//PQ AB ;③||||MA MB .注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)由题意可得ba,2 ,解得1a,b ,因此C 的方程为2213y x ,(2)解法一:设直线PQ 的方程为y kx m ,(0)k ,将直线PQ 的方程代入2213y x 可得222(3)230k x kmx m ,△2212(3)0m k ,120x x ∵122203kmx x k ,2122303m x x k,230k,1222333x x k ,设点M 的坐标为(M x ,)M y,则1122))M M M M y y x x y y x x ,两式相减可得1212)M y y x x ,1212()y y k x x ∵,1212)()M x x k x x ,解得23M kmX k ,两式相加可得12122())M y y y x x ,1212()2y y k x x m ∵,12122)()2M y x x k x x m ,解得M y ,3M M y x k,其中k 为直线PQ 的斜率;若选择①②:设直线AB 的方程为(2)y k x ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y k x y,解得3x,3y ,同理可得4x4y 234243k x x k ,342123ky y k ,此时点M 的坐标满足(2)3M M M My k x y x k,解得234221()32M k X x x k ,34261()32M k y y y k ,M 为AB 的中点,即||||MA MB ;若选择①③:当直线AB 的斜率不存在时,点M 即为点(2,0)F ,此时不在直线3y x k上,矛盾,当直线AB 的斜率存在时,设直线AB 的方程为(2)(0)y m x m ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y m x y,解得3x,3y ,同理可得4x,4y 此时234212()23M m x x x m ,34216()23M my y y m,由于点M 同时在直线3y x k 上,故2362m m k,解得k m ,因此//PQ AB .若选择②③,设直线AB 的方程为(2)y k x ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y k x y,解得3x,3y ,同理可得4x4y 设AB 的中点(C C x ,)C y ,则234212()23C k x x x k ,34216()23C ky y y k ,由于||||MA MB ,故M 在AB 的垂直平分线上,即点M 在直线1()C C y y x x k上,将该直线3y x k 联立,解得2223M C k x x k ,263M C ky y k ,即点M 恰为AB 中点,故点M 在直线AB 上.(2)解法二:由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①② ③,或选由②③ ①:由②成立可知直线AB 的斜率存在且不为0.若选①③ ②,则M 为线段AB 的中点,假设AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,从而12x x ,已知不符.综上,直线AB 的斜率存在且不为0,直线AB 的斜率为k ,直线AB 的方程为(2)y k x .则条件①M 在直线AB 上,等价于20000(2)(2)y k x ky k x ,两渐近线的方程合并为2230x y ,联立方程组,消去y 并化简得:2222(3)440k x k x k ,设3(A x ,3)y ,4(B x ,4)y ,线段中点为(N N x ,)N y ,则2342223N x x k x k .26(2)3N N ky k x k ,设0(M x ,0)y ,则条件③||||AM BM 等价于222203030404()()()()x x y y x x y y ,移项并利用平方差公式整理得:3403434034()[2()]()[(2()]0x x x x x y y y y y ,3403403434[2()][2()]0y y x x x y y y x x,00()0N N x x k y y ,3403403434[2()][2()]0y y x x x y y y x x,00()0N N x x k y y ,200283k x ky k ,由题意知直线PM的斜率为QM的斜率为,由1010)y y x x,2020)y y x x,121202)y y x x x ,直线PQ的斜率1201212122)x x x y y m x x x x,直线00:)PM y x x y,即00y y ,代入双曲线的方程为22330x y,即)3y y 中,得0000(()]3y y ,解得P的横坐标为100)]3x y ,同理,2022003()3x y y x ,012002200323x x x x x y x ,03x m y, 条件②//PQ AB 等价于003m k ky x ,综上所述:条件①M 在AB 上等价于200(2)m k ky k x ,条件②//PQ AB 等价于003ky x ,条件③||||AM BM 等价于200283k x ky k .选①② ③:由①②解得20223k x k 20002843k x ky x k , ③成立;选①③ ②:由①③解得:20223k x k ,20263k ky k ,003ky x , ②成立;选②③ ①:由②③解得:20223k x k ,20263k ky k , 02623x k , ①成立.7.(2022•上海)已知椭圆222:1(1)x y a a,A 、B 两点分别为 的左顶点、下顶点,C 、D 两点均在直线:l x a 上,且C 在第一象限.(1)设F 是椭圆 的右焦点,且6AFB,求 的标准方程;(2)若C 、D 两点纵坐标分别为2、1,请判断直线AD 与直线BC 的交点是否在椭圆 上,并说明理由;(3)设直线AD 、BC 分别交椭圆 于点P 、点Q ,若P 、Q 关于原点对称,求||CD 的最小值.【解析】(1)由题可得(0,1)B ,(,0)F c ,因为6AFB,所以1tan tan 63b AFBc c,解得c ,所以214a ,故 的标准方程为2214x y ;(2)直线AD 与直线BC 的交点在椭圆上,由题可得此时(,0)A a ,(0,1)B ,(,2)C a ,(,1)D a ,则直线3:1BC y x a ,直线11:22AD y x a ,交点为3(5a ,4)5,满足2223()45()15a a ,故直线AD 与直线BC 的交点在椭圆上;(3)(0,1)B ,(cos ,sin )P a ,则直线sin 1:1cos BP y x a ,所以sin 1(,1)cos C a,(,0)A a ,(cos ,sin )Q a ,则直线sin :()cos AQ y x a a a,所以2sin (,cos 1D a,所以222222sin cos 4sin cossin 12sin 222222||11cos cos 12222sin cos CD cos sin sin,设tan 2t ,则11||2()21CD t t,因为114a ba b ,所以114411t t t t,则||6CD ,即||CD 的最小值为6.8.(2021•北京)已知椭圆2222:1(0)x y E a b a b的一个顶点(0,2)A ,以椭圆E 的四个顶点围成的四边形面积为.(Ⅰ)求椭圆E 的方程;(Ⅱ)过点(0,3)P 作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB 、AC 分别与直线3y 交于点M 、N ,当||||15PM PN 时,求k 的取值范围.【解析】(Ⅰ)因为椭圆2222:1(0)x y E a b a b过点(0,2)A ,则2b ,又因为以四个顶点围成的四边形面积为,所以1222a b,解得a ,故椭圆E 的标准方程为22154x y;(Ⅱ)由题意,设过点(0,3)P ,斜率为k 的直线为直线l ,设直线l 的方程为(3)(0)y k x ,即3y kx ,当0k 时,直线l 与椭圆E 没有交点,而直线l 交椭圆E 于不同的两点B ,C ,所以0k ,设1(B x ,1)y ,2(C x ,2)y ,联立方程组223154y kx x y,可得22(45)30250k x kx ,则△22(30)425(45)0k k ,解得||1k ,所以1212223025,4545k x x x x k k,则221212121222036(3)(3)3()945k y y kx kx k x x k x x k ,121212224(3)(3)()645y y kx kx k x x k,直线AB 的方程为11(2)(2)(0)0y y x x ,即1122y y x x ,直线AC 的方程为22(2)(2)0)0y y x x,即2222y y x x ,因为直线AB 交3y 于点M ,所以令3y ,则112M x x y ,故11(,3)2x M y ,同理可得22(,3)2x N y ,注意到12225045x x k,所以1x ,2x 同号,因为120y ,220y ,所以M x ,N x 同号,故||||||||||M N M N PM PN x x x x ,则1212211212(2)(2)|||||||22(2)(2)x x x y x y PM PN y y y y 1221121212(3)(3)2()||2()4x kx x kx x x y y y y 121212122()||2()4kx x x x y y y y 22222253024545||20364844545kk k k k k k5||k ,故||||5||PM PN k ,又||||15PM PN ,即5||15k ,即||3k ,又||1k ,所以1||3k ,故k 的取值范围为[3 ,1)(1 ,3].9.(2021•浙江)如图,已知F 是抛物线22(0)y px p 的焦点,M 是抛物线的准线与x 轴的交点,且||2MF .(Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足2||||||RN PN QN ,求直线l 在x轴上截距的取值范围.【解析】(Ⅰ)依题意,2p ,故抛物线的方程为24y x ;(Ⅱ)由题意得,直线AB 的斜率存在且不为零,设直线:(1)AB y k x ,将直线AB 方程代入抛物线方程可得,2222(24)0k x k x k ,则由韦达定理有,242,1A B A B x x x x k,则4A B y y ,设直线1:(1)AM y k x ,其中11A A y k x,设直线2:(1)BM y k x ,其中21B B yk x ,则12(1)(1)(1)(1)0011(1)(1)(1)(1)(1)(1)A B A B A B A B A B A B A B A B A B A B A B y y y x y y x y k x x k x k x x k x k k x x x x x x x x,2122244(1)(1)1121A B A B y y k k k x x k k,设直线:2()l y x t ,联立2()(1)y x t y k x ,可得22R k t x k ,则2||||||22R k t k kt x t t k k ,联立12()(1)y x t y k x ,可得1122P k t x k ,则111112||||||22P k t k k t x t t k k ,同理可得,222222,||||22Q Q k t k k tx x t k k,又2||||||RN PN QN ,2112212||||222k k t k k tk kt k k k ,即2222(1)()234k kt k t k k ,22222222(1)343(2)12(2)16161243333()(1)(1)(2)(2)(2)22244t k k k t t k k k k k ,224(21)3(21)t t t t ,即21410t t,解得7t或71)t t ;当直线AB 的斜率不存在时,则直线:1AB x ,(1,2)A ,(1,2)B ,(1,0)M ,直线MA 的方程为1y x ,直线MB 的方程为1y x ,设直线:2()l y x t ,则(12,22)P t t ,2122(,)33t t Q ,(1,22)R t ,(,0)N t ,又2||||||RN PN QN,故22(1)(22)t t 解得t满足(,77,1)(1,) .直线l 在x轴上截距的取值范围为(,77,1)(1,) .10.(2021•新高考Ⅰ)在平面直角坐标系xOy中,已知点1(F ,0),2F ,0),点M 满足12||||2MF MF .记M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且||||||||TA TB TP TQ ,求直线AB 的斜率与直线PQ 的斜率之和.【解析】(1)由双曲线的定义可知,M 的轨迹C 是双曲线的右支,设C 的方程为22221(0,0),1x y a b x a b ,根据题意22222c a c a b,解得14a b c,C 的方程为221(1)16y x x ;(2)(法一)设1(,)2T m ,直线AB 的参数方程为1cos 2sin x t y m t,将其代入C 的方程并整理可得,2222(16cos sin )(16cos 2sin )(12)0t m t m ,由参数的几何意义可知,1||TA t ,2||TB t ,则2212222121216117m m t t sin cos cos,设直线PQ 的参数方程为1cos 2sin x y m,1||TP ,2||TQ ,同理可得,212212117m cos ,依题意,22221212117117m m cos cos,则22cos cos ,又 ,故cos cos ,则cos cos 0 ,即直线AB 的斜率与直线PQ 的斜率之和为0.(法二)设1(,)2T t ,直线AB 的方程为11()2y k x t ,1(A x ,1)y ,2(B x ,2)y ,设1212x x ,将直线AB 方程代入C 的方程化简并整理可得,22222111111(16)(2)1604k x k tk x k k t t ,由韦达定理有,22211111212221111624,1616k k t t k k tx x x x k k ,又由111111(,),(,)22A x k x k t T t可得11||)2AT x ,同理可得21||)2BT x ,222111221(1)(12)11||||(1)()()2216k t AT BT k x x k,设直线PQ 的方程为233441(),(,),(,)2y k x t P x y Q x y ,设3412x x ,同理可得22222(1)(12)||||16k t PT QT k ,又||||||||AT BT PT QT ,则22122212111616k k k k ,化简可得2212k k ,又12k k ,则12k k ,即120k k ,即直线AB 的斜率与直线PQ 的斜率之和为0.11.(2021•乙卷(文))已知抛物线2:2(0)C y px p 的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF,求直线OQ 斜率的最大值.【解析】(1)由题意知,2p ,24y x .(2)由(1)知,抛物线2:4C y x ,(1,0)F ,设点Q 的坐标为(,)m n ,则(1,)QF m n,9(99,9)PQ QF m nP 点坐标为(109,10)m n ,将点P 代入C 得21004036n m ,整理得22100362594010n n m ,当0n 时,2100259n n K m n,当0n 时,2101019259325n n K m n n n,当且仅当925n n ,即35n 时,等号成立,取得最大值.故答案为:13.12.(2022•甲卷(文))设抛物线2:2(0)C y px p 的焦点为F ,点(,0)D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,||3MF .(1)求C 的方程;(2)设直线MD ,ND 与C 的另一个交点分别为A ,B ,记直线MN ,AB 的倾斜角分别为 , .当 取得最大值时,求直线AB 的方程.【解析】(1)由题意可知,当x p 时,222y p,得M y,可知||MD ,||2p FD .则在Rt MFD 中,222||||||FD DM FM,得22())92p,解得2p .则C 的方程为24y x ;(2)设1(M x ,1)y ,2(N x ,2)y ,3(A x ,3)y ,4(B x ,4)y ,当MN 与x 轴垂直时,由对称性可知,AB 也与x 轴垂直,此时2,则0 ,由(1)可知(1,0)F ,(2,0)D ,则1212221212124tan 44MN y y y y k y y x x y y,又N 、D 、B 三点共线,则ND BD k k ,即24240022y y x x,242224002244y y y y,得248y y ,即428y y;同理由M 、D 、A 三点共线,得318y y .则34123434124tan 2()y y y y x x y y y y.由题意可知,直线MN 的斜率不为0,设:1MN l x my ,由241y x x my ,得2440y my ,124y y m ,124y y ,则41tan 4m m,41tan 242m m,则11tan tan 12tan()1111tan tan 122m m m m m m,∵1tan m,1tan 2m,tan 与tan 正负相同,22, 当 取得最大值时,tan() 取得最大值,当0m时,1tan()142m m;当0m 时,tan() 无最大值, 当且仅当12m m,即2m 时,等号成立,tan() 取最大值,此时AB 的直线方程为33344()y y x x y y ,即34344()0x y y y y y ,又123412128()888y y y y m y y y y∵34128816y y y y ,AB的方程为4160x,即40x .13.(2023•甲卷(文))已知直线210x y 与抛物线2:2(0)C y px p 交于A ,B两点,||AB .(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且0FM FN,求MFN 面积的最小值.【解析】设1(A x ,1)y ,2(B x ,2)y ,联立22102(0)x y y px p,消去x 得:2420y py p ,124y y p ,122y y p ,△21680p p ,(21)0p p ,12p,12|||4AB y y ,216848p p ,2260p p ,(23)(2)0p p ,2p ,(2)由(1)知24y x ,所以(1,0)F ,显然直线MN 的斜率不可能为零,设直线:MN x my n ,1(M x ,1)y ,2(N x ,2)y 由24y x x my n,可得2440y m n ,所以124y y m ,124y y n ,△22161600m n m n ,因为0MF NF,所以1212(1)(1)0x x y y ,即1212(1)(1)0my n my n y y ,即221212(1)(1)()(1)0m y y m n y y n ,将124y y m ,24y n ,代入得22461m n n ,224()(1)0m n n ,所以1n ,且2610n n ,解得3n 或3n 设点F 到直线MN 的距离为d ,所以d12|||MN y y1|n ,所以MNF 的面积11||1|22S MN d n,又3n 或3n 3n 时,MNF 的面积2(212min S .14.(2023•甲卷(理))设抛物线2:2(0)C y px p ,直线210x y 与C 交于A ,B 两点,且||AB .(1)求p 的值;(2)F 为22y px 的焦点,M ,N 为抛物线上的两点,且0MF NF,求MNF 面积的最小值.【解析】设1(A x ,1)y ,2(B x ,2)y ,联立22102(0)x y y px p,消去x 得:2420y py p ,124y y p ,122y y p ,△21680p p ,(21)0p p ,12p,12|||4AB y y ,216848p p ,2260p p ,(23)(2)0p p ,2p ;(2)由(1)知24y x ,所以(1,0)F ,显然直线MN 的斜率不可能为零,设直线:MN x my n ,1(M x ,1)y ,2(N x ,2)y ,由24y x x my n,可得2440y my n ,所以124y y m ,124y y n ,△22161600m n m n ,因为0MF NF ,所以1212(1)(1)0x x y y ,即1212(1)(1)0my n my n y y ,即221212(1)(1)()(1)0m y y m n y y n ,将124y y m ,24y n ,代入得22461m n n ,224()(1)0m n n ,所以1n ,且2610n n ,解得3n 或3n 设点F 到直线MN 的距离为d ,所以d12|||MN y y1|n ,所以MNF 的面积11||1|22S MN d n ,又3n 或3n 3n 时,MNF 的面积2(212min S .15.(2023•天津)设椭圆22221(0)x y a b a b的左、右顶点分别为1A ,2A ,右焦点为F ,已知1||3A F ,2||1A F .(Ⅰ)求椭圆方程及其离心率;(Ⅱ)已知点P 是椭圆上一动点(不与顶点重合),直线2A P 交y 轴于点Q ,若△1A PQ 的面积是△2A FP 面积的二倍,求直线2A P 的方程.【解析】(Ⅰ)由题意可知,31a c a c ,解得21a c,222413b a c .则椭圆方程为22143x y ,椭圆的离心率为12c e a ;(Ⅱ)由题意可知,直线2A P 的斜率存在且不为0,当0k 时,直线方程为(2)y k x ,取0x ,得(0,2)Q k .联立22(2)143y k x x y ,得2222(43)1616120k x k x k .△2222(16)4(43)(1612)1440k k k ,221612243P k x k ,得228643P k x k ,则21243P k y k .11212322111216124(2)4()224343A PQ A A Q A A Pk k k S S S k k k .22211261()24343A FP k k S k k . 3221612124343k k k k k ,即223k ,得6(0)2k k ;同理求得当0k 时,62k . 直线2A P 的方程为6(2)2y x .16.(2022•天津)椭圆22221(0)x y a b a b的右焦点为F 、右顶点为A ,上顶点为B ,且满足||3||2BF AB .(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于(N N 异于)M .记O 为坐标原点,若||||OM ON ,且OMN 3【解析】(1)∵22||3||BF aAB a b 22234a a b ,223a b ,2223()a a c ,2223a c ,222633c e a ;(2)由(1)可知椭圆为222213x y a a,即2223x y a ,设直线:l y kx m ,联立2223x y a ,消去y 可得:2222(31)6(3)0k x kmx m a ,又直线l 与椭圆只有一个公共点,△2222364(31)(3)0k m k m a ,2223(31)m a k ,又2331M km x k , 22233131M M k m m y kx m m k k ,又||||OM ON , 222223(()3131km m m k k ,解得213k,3k ,又OMN的面积为2113||||||||2231M km ON x m k ,212224m ,又k 2223(31)m a k ,26a ,22b , 椭圆的标准方程为22162x y .17.(2022•新高考Ⅰ)已知点(2,1)A 在双曲线2222:1(1)1x y C a a a 上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ,求PAQ 的面积.【解析】(1)将点A 代入双曲线方程得224111a a ,化简得42440a a ,22a ,故双曲线方程为2212x y ,由题显然直线l 的斜率存在,设:l y kx m ,设1(P x ,12)(y Q x ,2)y ,则联立双曲线得:222(21)4220k x kmx m ,故122421km x x k ,21222221m x x k ,12121212111102222AP AQ y y kx m kx m k k x x x x ,化简得:12122(12)()4(1)0kx x m k x x m ,故2222(22)4(12)(4(1)02121k m km m k m k k ,即(1)(21)0k m k ,而直线l 不过A 点,故1k ;(2)设直线AP 的倾斜角为,由tan PAQ22tan21tan 2PAQ PAQ,得tan 22PAQ 由2PAQ , 2PAQ,得tan AP k,即1112y x ,联立1112y x ,及221112x y得1110533x y ,同理22x y 故12122068,39x x x x ,而12||2|,|||2|AP x AQ x,由tan PAQsin 3PAQ,故12121||||sin 2()4|29PAQ S AP AQ PAQ x x x x .18.(2023•新高考Ⅱ)已知双曲线C中心为坐标原点,左焦点为( 0).(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0) 的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于P ,证明P 在定直线上.【解析】(1)双曲线C中心为原点,左焦点为( 0),则222c a b c c e a,解得24a b ,故双曲线C 的方程为221416x y ;(2)证明:过点(4,0) 的直线与C 的左支交于M ,N 两点,则可设直线MN 的方程为4x my ,1(M x ,1)y ,2(N x ,2)y ,记C 的左,右顶点分别为1A ,2A ,则1(2,0)A ,2(2,0)A ,联立224416x my x y ,化简整理可得,22(41)32480m y my ,故△222(32)448(41)2641920m m m 且2410m ,1223241m y y m ,1224841y y m ,直线1MA 的方程为11(2)2y y x x,直线2NA 方程22(2)2y y x x ,故21211212(2)(2)22(2)(6)y x y my x x y x y my 121211212()26my y y y y my y y 12212483222414148641m m y m m m y m 1212162141483641m y m m y m ,故2123x x ,解得1x ,所以1P x ,故点P 在定直线1x 上运动.19.(2021•上海)已知22:12x y ,1F ,2F 是其左、右焦点,直线l 过点(P m,0)(m ,交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上.(1)若B 是上顶点,11||||BF PF ,求m 的值;(2)若1213F A F A ,且原点O 到直线l的距离为15,求直线l 的方程;(3)证明:对于任意m 12//F A F B 的直线有且仅有一条.【解析】(1)因为 的方程:2212x y ,所以22a ,21b ,所以2221c a b ,所以1(1,0)F ,2(1,0)F ,若B 为 的上顶点,则(0,1)B ,所以1||BF ,1||1PF m ,又11||||BF PF ,所以1m(2)设点A ,sin ) ,则2221211)213F A F A sin cos sin ,因为A 在线段BP 上,横坐标小于0,解得cos ,故()33A ,设直线l的方程为(0)33y kx k ,由原点O 到直线l,则15d ,化简可得231030k k ,解得3k 或13k ,故直线l的方程为13y x或3y x(舍去,无法满足m ,所以直线l的方程为139y x ;(3)联立方程组2212y kx km x y ,可得22222(12)4220k x k mx k m ,设1(A x ,1)y ,2(B x ,2)y ,则222121222422,1212k m k m x x x x k k ,因为12//F A F B ,所以2112(1)(1)x y x y ,又y kx km ,故化简为122212x x k ,又122216882||||1212k k m x x k k ,两边同时平方可得,2224210k k m ,整理可得22142k m ,当m 时,221042k m ,因为点A ,B 在x 轴上方,所以k 有且仅有一个解,故对于任意m ,使得12//F A F B 的直线有且仅有一条.20.(2021•甲卷(文))在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P满足AP ,写出P 的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.【解析】(1)由极坐标方程为,得2cos ,化为直角坐标方程是22x y ,即22(2x y,表示圆心为C 0)(2)【解法1】根据题意知,点P 的轨迹是以A为缩放比例将圆1C 作位似变换得到的,因此1C的圆心为(3 0),半径差为2 ,所以圆C 内含于圆1C ,圆C 与圆1C 没有公共点.【解法2】设点P 的直角坐标为(,)x y ,1(M x ,1)y ,因为(1,0)A ,所以(1,)AP x y ,1(1AM x ,1)y ,由AP ,即1111)x x y ,解得11(1)122x x y y ,所以1)1M x)y ,代入C的方程得221)1)2x ,化简得点P的轨迹方程是22(34x y,表示圆心为1(3C ,0),半径为2的圆;化为参数方程是32cos 2sin x y, 为参数;计算1|||(332CC ,所以圆C 与圆1C 内含,没有公共点.21.(2023•北京)已知椭圆2222:1(0)x y E a b a b,A 、C 分别为E 的上、下顶点,B 、D 分别为E 的左、右顶点,||4AC .(1)求E 的方程;(2)点P 为第一象限内E 上的一个动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y 交于点N .求证://MN CD .【解析】(1)由题意可得:24b,c e a,222a b c ,解得2b ,29a , 椭圆E 的方程为22194x y .(2)证明:(0,2)A ,(3,0)B ,(0,2)C ,(3,0)D ,直线BC 的方程为132x y ,化为2360x y .设直线AP 的方程为:2y kx ,(0)k ,4(N k ,2) .联立222194y kx x y ,化为:22(49)360k x kx ,解得0x 或23649k k,236(49k P k ,22818)49k k .直线PD 方程为:22218849(3)36349k k y x k k ,即22188(3)273612k y x k k ,与2360x y 联立,解得26432k x k k ,2281896k y k k.264(32k M k k,2281896k k k .2228182296464332MN k k k k k k k k,23CD k,//MN CD .22.(2021•新高考Ⅱ)已知椭圆C 的方程为22221(0)x y a b a b,右焦点为F ,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x 相切.证明:M ,N ,F 三点共线的充要条件是||MN .【解析】(Ⅰ)由题意可得,椭圆的离心率3c a,又c所以a 2221b a c ,故椭圆的标准方程为2213x y ;(Ⅱ)证明:先证明充分性,当||MN 时,设直线MN 的方程为x ty s ,此时圆心(0,0)O 到直线MN的距离1d ,则221s t ,联立方程组2213x ty s x y ,可得222(3)230t y tsy s ,则△22222244(3)(3)12(3)24t s t s t s ,因为2||3MN t ,所以21t ,22s ,因为直线MN 与曲线222(0)x y b x 相切,所以0s,则s ,则直线MN的方程为x ty恒过焦点F ,故M ,N ,F 三点共线,所以充分性得证.若M ,N ,F 三点共线时,设直线MN的方程为x my ,则圆心(0,0)O 到直线MN的距离为1d ,解得21m ,联立方程组2213x my x y,可得22(3)10m y ,即2410y ,所以||44MN所以必要性成立;综上所述,M,N,F三点共线的充要条件是||MN.23.(2021•天津)已知椭圆22221(0)x y a ba b的右焦点为F,上顶点为B,离心率为,且||BF.(1)求椭圆的标准方程;(2)直线l与椭圆有唯一的公共点M,与y轴的正半轴交于点N,过N与BF垂直的直线交x轴于点P.若//MP BF,求直线l的方程.【解析】(1)因为离心率5e,||BF所以222caaa b c,解得a ,2c ,1b ,所以椭圆的方程为2215x y .(2)先证明椭圆22221x ya b上过点(M x,)y的椭圆的切线方程为:00221xx yya b.由于椭圆过点0(x,0)y,则2200221x ya b①,对椭圆求导得22b xya y,即切线的斜率22b xka y,故切线的方程2002()b xy y x xa y,将①代入得00221xx yya b.则切线MN 的方程为0015x x y y ,令0x ,得01N y y,因为PN BF ,所以1PN BF k k ,所以1(12PN k ,解得2NP k ,设1(P x ,0),则01120NPy k x ,即1012x y ,因为//MP BF ,所以MP BF k k ,所以0001122y x y ,即000122y x y ,所以000122x y y,又因为220015x y ,所以22002042115520y y y ,解得06y ,因为0N y ,所以00y ,所以06y,036x ,所以6156y,即0x y .24.(2021•甲卷(文))抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线:1l x 交C 于P ,Q 两点,且OP OQ .已知点(2,0)M ,且M 与l 相切.(1)求C ,M 的方程;(2)设1A ,2A ,3A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【解析】(1)因为1x 与抛物线有两个不同的交点,故可设抛物线C 的方程为:22(0)y px p ,令1x ,则2y p ,根据抛物线的对称性,不妨设P 在x 轴上方,Q 在x 轴下方,故2),(1,2P p Q p ,因为OP OQ ,故112(202p p p,抛物线C 的方程为:2y x ,因为M 与l 相切,故其半径为1,故22:(2)1M x y .另(1)根据抛物线的对称性,由题意可得45POx QOx ,因此点P ,Q 的坐标为(1,1) ,由题意可设抛物线C 的方程为:22(0)y px p ,可得12p ,因此抛物线C 的方程为2y x .而圆M 的半径为圆心M 到直线l 的距离为1,可得M 的方程为22(2)1x y .(2)很明显,对于12A A 或者13A A 斜率不存在的情况以及23A A 斜率为0的情况满足题意.否则:设11(A x ,1)y ,22(A x ,2)y ,33(A x ,3)y .当1A ,2A ,3A 其中某一个为坐标原点时(假设1A 为坐标原点时),设直线12A A 方程为0kx y ,根据点(2,0)M 到直线距离为11,解得k 联立直线12A A 与抛物线方程可得3x ,此时直线23A A 与M 的位置关系为相切,当1A ,2A ,3A 都不是坐标原点时,即123x x x ,直线12A A 的方程为1212()0x y y y y y ,1 ,即22212121(1)230y y y y y ,同理,由对称性可得,22213131(1)230y y y y y ,所以2y ,3y 是方程222111(1)230y t y t y 的两根,则2112323221123,11y y y y y y y y ,依题意有,直线23A A 的方程为2323()0x y y y y y ,令M 到直线23A A 的距离为d ,则有22122223122123213(2)(2)1121()1()1y y y y d y y y y ,此时直线23A A 与M 的位置关系也为相切,综上,直线23A A 与M 相切.(2)另设2(i i A y ,)i y ,1i ,2,3,由直线的两点式可知,直线12A A 的方程为222122122()()()()y y y y y y x y ,化简可得1212()0x y y y y y ,因为直线12A A 与圆M2212121(2)1()y y y y ,整理得22212121(1)230y y y y y ,同理有22213131(1)230y y y y y ,所以2y ,3y 是关于y 的方程222111(1)230y y y y y 的两个根,则2112323221123,11y y y y y y y y ,依题意有,直线23A A 的方程为2323()0x y y y y y ,令M 到直线23A A 的距离为d ,则有22122223122123213(2)(2)1121()1()1y y y y d y y y y ,此时直线23A A 与M 的位置关系也为相切,综上,直线23A A 与M 相切.25.(2023•乙卷(文))已知椭圆2222:1(0)y x C a b a b的离心率为3,点(2,0)A 在C 上.(1)求C 的方程;(2)过点(2,3) 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【解析】(1)由题意,22232c a b a b c,解得32a b c . 椭圆C 的方程为22194y x ;证明:(2)如图,要使过点(2,3) 的直线交C 于点P ,Q 两点,则PQ 的斜率存在且小于0,设:3(2)PQ y k x ,即23y kx k ,0k ,1(P x ,1)y ,2(Q x ,2)y ,联立2223194y kx k y x ,得22(49)8(23)16(3)0k x k k x k k .△22[8(23)]4(49)16(3)17280k k k k k k .1228(23)49k k x x k ,12216(3)49k k x x k ,直线11:(2)2y AP y x x,取0x ,得112(0,)2y M x ;直线22:(2)2y AQ y x x,取0x ,得222(0,2y N x . 1212211212222(2)2(2)22(2)(2)y y y x y x x x x x 12211212(23)(2)(23)(2)22()4kx k x kx k x x x x x 121212122(43)()4(23)22()4kx x k x x k x x x x 222216(3)8(23)2(43)4(23)4949216(3)8(23)244949k k k k k k k k k k k k k k k 32322322223296649648723272481082164832481636k k k k k k k k k k k k k k 1082636.MN 的中点为(0,3),为定点.。
教学资料范本【2020最新】人教版最新高考文科数学解析几何练习题及参考答案编辑:__________________时间:__________________(附参考答案)一.考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.抛物线及其标准方程.抛物线的简单几何性质.二.考试要求:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.掌握双曲线的定义、标准方程和双曲线的简单几何性质.掌握抛物线的定义、标准方程和抛物线的简单几何性质.了解圆锥曲线的初步应用.【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题.三.基础知识:椭圆及其标准方程椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段.2.椭圆的标准方程:(>>0),(>>0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.4.求椭圆的标准方程的方法:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.椭圆的简单几何性质椭圆的几何性质:设椭圆方程为(>>0).⑴范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=和y=所围成的矩形里. ⑵对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b).线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.2.椭圆的第二定义⑴定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数(e<1=时,这个动点的轨迹是椭圆.⑵准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x换成y就可以了,即.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设(-c,0),(c,0)分别为椭圆(>>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为,.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程只需两个独立条件.4.椭圆的参数方程椭圆(>>0)的参数方程为(θ为参数).说明⑴这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:;⑵椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆的参数方程是.5.椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.6. 椭圆的切线方程椭圆上一点处的切线方程是.(2)过椭圆外一点所引两条切线的切点弦方程是.(3)椭圆与直线相切的条件是双曲线及其标准方程双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数2a(小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件2a<||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=||,则动点的轨迹是两条射线;若2a>||,则无轨迹.若<时,动点的轨迹仅为双曲线的一个分支,又若>时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程:和(a>0,b>0).这里,其中||=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.双曲线的简单几何性质双曲线的实轴长为2a,虚轴长为2b,离心率>1,离心率e越大,双曲线的开口越大.双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:,其中k是一个不为零的常数.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线,它的焦点坐标是(-c,0)和(c,0),与它们对应的准线方程分别是和.双曲线的焦半径公式,.双曲线的内外部点在双曲线的内部.点在双曲线的外部.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.若渐近线方程为双曲线可设为.若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).双曲线的切线方程双曲线上一点处的切线方程是.(2)过双曲线外一点所引两条切线的切点弦方程是.(3)双曲线与直线相切的条件是.抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。
绝密★启用前2024年普通高等学校招生全国统一考试文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,92.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 23. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2-B.73C. 1D.295. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.236. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A. 4B. 3C. 2D.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( ) A.16B.C.12D. 8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-大致图像为()A. B.C. D.9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③B. ②④C. ①②③D. ①③④11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A.32B.C.D.二、填空题:本题共4小题,每小题5分,共20分.原13题略的的12. 函数()sin f x x x =在[]0,π上的最大值是______. 13. 已知1a >,8115log log 42a a -=-,则=a ______. 14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.16. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离.17. 已知函数()()1ln 1f x a x x =--+. (1)求()f x 单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x -<恒成立.18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.的的(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 直角坐标方程; (2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算. 【详解】依题意得,对于集合B 中元素x ,满足11,2,3,4,5,9x +=, 则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =, 于是{1,2,3,4}A B ⋂=. 故选:A 2.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 2【答案】D 【解析】的的【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=. 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =-⨯=-. 故选:D.4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2- B.73C. 1D.29【答案】D【解析】【分析】可以根据等差数列基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质 根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=. 故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D5. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意; 基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B6. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )的A. 4B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===. 故选:C.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( )A.16B.C.12D. 【答案】A 【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =--=-,故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236⨯⨯= 故选:A.8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D. 【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C , 又()11πe 11111e sin11e sin 10e e 622e 42ef ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭, 故可排除D. 故选:B. 9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1【答案】B 【解析】 【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭, 故选:B . 原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥其中所有真命题编号是( ) A. ①③ B. ②④C. ①②③D. ①③④【答案】A的【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β, 当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确; 对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s , 同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β, 因为s ⊂平面α,m αβ=I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误; 综上只有①③正确, 故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==. 由余弦定理可得:22294b ac ac ac =+-=, 即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==, 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=, 因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=. 故选:C.二、填空题:本题共4小题,每小题5分,共20分.原13题略12. 函数()sin f x x x =在[]0,π上的最大值是______. 【答案】2 【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可. 【详解】()πsin 2sin 3f x x x x ⎛⎫==-⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤-∈-⎢⎥⎣⎦, 当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:213. 已知1a >,8115log log 42a a -=-,则=a ______. 【答案】64 【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=, 2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______. 【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+> 则()()()2325351g x x x x x =+-=+-',令()()00g x x '=>得1x =, 当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点, 所以等价于y a =与()g x 有两个交点,所以()2,1a ∈-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.【答案】(1)153n n a -⎛⎫= ⎪⎝⎭(2)353232n ⎛⎫- ⎪⎝⎭ 【解析】 【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求n S .【小问1详解】因为1233n n S a +=-,故1233n n S a -=-,所以()12332n n n a a a n +=-≥即153n n a a +=故等比数列的公比为53q =, 故1211523333533a a a a =-=⨯-=-,故11a =,故153n n a -⎛⎫= ⎪⎝⎭.【小问2详解】 由等比数列求和公式得5113353523213n n n S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-. 16. 如图,在以A ,B ,C ,D ,E ,F 为顶点五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.【答案】(1)证明见详解;(2【解析】的【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作FO AD ⊥,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V --=即可求解.【小问1详解】因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM V 为等边三角形,O 为AM中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM V 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,由等体积法可得M ABF F ABM V V --=,2112333F ABM ABM V S FO -=⋅=⋅=△,222cos 2FA AB FB FAB FAB FA AB +-∠===∠=⋅11sin 222FAB S FA AB FAB =⋅⋅∠==△,设点M 到FAB的距离为d ,则1133M FAB F ABM FAB V V S d d --==⋅⋅==△, 解得d =,即点M 到ABF . 的17. 已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x -<恒成立.【答案】(1)见解析(2)见解析【解析】 【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【小问1详解】()f x 定义域为(0,)+∞,11()ax f x a x x'-=-= 当0a ≤时,1()0ax f x x -'=<,故()f x 在(0,)+∞上单调递减; 当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减. 综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫ ⎪⎝⎭上单调递减. 【小问2详解】2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-≥-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可.11()e 2x g x x -'=-+,再令()()h x g x '=,则121()e x h x x-'=-, 显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=-=,即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=-+=,即()g x 在(1,)+∞上单调递增,故0()(1)e 21ln10g x g >=-++=,问题得证18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴. (1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b = 故椭圆方程为22143x y +=. 【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k =-+->,故1122k -<<, 又22121222326412,3434k k x x x x k k-+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Q y y y x x --==--, 所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=-- ()()()12224253425k x x k x x -⨯-+-=- ()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==-- 2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值. 【答案】(1)221y x =+(2)34a =【解析】 【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程. (2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-, 且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =. 法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=, ()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=, 解得34a = 20. 实数,ab 满足3a b +≥.(1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+; 【小问2详解】 222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。
专题08 平面解析几何(解答题)1.【2020年高考全国Ⅰ卷文数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线C D 过定点.2.【2020年高考全国Ⅱ卷文数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.3.【2020年高考全国Ⅲ卷文数】已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.4.【2020年高考北京】已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.5.【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.6.【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.7.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.8.【2020年新高考全国Ⅱ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.9.【2020年高考天津】已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.10.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由.11.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.12.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 13.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.14.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.15.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.16.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.17.【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.18.【2018年高考全国Ⅱ卷文数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.19.【2018年高考全国Ⅱ卷文数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.20.【2018年高考北京卷文数】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)44Q -共线,求k .21.【2018年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3,||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.22.【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.23.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+24y=1(x<0)上的动点,求△P AB面积的取值范围.。
第13章 平面解析几何初步1.(2011全国文20)在平面直角坐标系中,曲线与坐标轴的交点都在圆上.(1)求圆的方程;(2)若圆与直线交于,两点,且,求的值.2.(2013全国I 文21)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线.(1)求的方程;(2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求.3.(2013全国II 文20)在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为1)求圆心的轨迹方程;(2)若点到直线的距离为,求圆的方程.4.(2014新课标Ⅰ文20)(本小题满分12分)已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积.5.(2014新课标Ⅱ文12)设点,若在圆上存在点,使得,则的取值范围是()A. B. C. D. 6. (2016全国I 文20)已知过点且斜率为k 的直线l 与圆C:交于M ,两点.(1)求k 的取值范围;(2)若,其中O 为坐标原点,求.7.(2016新课标Ⅰ文15)(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若 ,则圆C 的面积为xOy 261y x x =-+CC C 0x y a -+=A B OA OB ⊥a ()22:11M x y ++=()22:19N x y -+=P M N P C C l P M l C A B ,P AB xOy P x y P P y x =2P ()2,2P C 2280x y y +-=P l C ,A B AB M O M OP OM =l POM △()0,1M x 22:1O x y +=N °45OMN ∠=0x []1,1-1122⎡⎤-⎢⎥⎣⎦,⎡⎣22⎡-⎢⎣⎦,()0,1A ()()22231x y -+-=N 12OM ON ⋅=MN8.(2014新课标Ⅰ文15)15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.高考真题详解1.解析:(1)曲线与轴的交点为,与轴的交点为.故可设的圆心为,则有,解得.则圆的半径为,所以圆的方程为.(2)设,,其坐标满足方程组 消去,得方程.由已知可得,判别式,因此,从而,.①由于,可得.又,所以.② 由①②得,满足,故.2.分析(1)结合圆的几何性质和椭圆的定义求解;(2)利用直线与圆相切的性质求解,要注意直线的斜率是不是存在.解析:由已知得圆的圆心为,半径;圆的圆心为,半径. 设圆的圆心为,半径为.(1)因为圆与圆外切并且与圆内切,所以.由椭圆的定义可知,曲线是以为左,右焦点,长半轴长为2的椭圆(左顶点除外),其方程为.(2)对于曲线上任意一点,由于,所以,当且仅当圆的圆心为时,,所以当圆的半径最长时,其方程为.若的倾斜角为,则与轴重合,可得.261y x x =-+y (0,1)x ()3,+()3-C ()3,t ()(222231t t +-=+1t =C 3=C ()()22319x y -+-=()11,A x y ()22,B x y ()()220,319.x y a x y -+=⎧⎪⎨-+-=⎪⎩y ()22228210x a x a a +-+-+=2561640a a ∆=-->()1,2824a x -=124x x a +=-212212a a x x -+=OA OB ⊥12120x x y y +=11y x a =+22y x a =+212122()0x x a x x a +++=1a =-0∆>1a =-M ()1,0M -11r =N ()1,0N 23r =P (),P x y R P M N ()()12124PM PN R r r R r r +=++-=+=C ,M N ()221243x y x +=≠-C (),P x y 222PM PN R -=-≤2R ≤P ()2,0=2R P ()2224x y -+=l 90︒l y AB若的倾斜角为,由知不平行于轴,设与轴的交点为,则,可求得,所以可设.由与圆相切得,解得. 当时,将,并整理得,解得,所以.当时,由图形的对称性可知.综上,或. 3.分析(1)先设出点的坐标,根据已知条件和勾股定理求出的轨迹方程;(2)根据点到直线的距离公式列出方程,然后结合(1)得出方程组进行求解.解析:(1)设,圆的半径为.由题设,从而 故点的轨迹方程为.(2)设.又点在双曲线上,从而得由得此时,圆的半径 由得此时,圆的半径 故圆的方程为或4.解析 (I )圆的方程可化为,所以圆心为,半径为.设,则,.由题设知, 故,即由于点在圆的内部,所以的轨迹方程是.(II)由(I)可知的轨迹是以点为圆心,为半径的圆.由于, 故在线段的垂直平分线上,又在圆上,从而.因为的斜率为,l 90︒1r R ≠l x l x Q 1QP RQMr =()40Q -,():4l y k x =+l M 1=4k =±k =y x =+22143x y +=27880x x +-=1,2x =21187AB x =-=k =187AB =AB =187AB =P P (),P xy P r 22222,3y r x r +=+=222 3.y x +=+P 221y x -=()00,P x y 2=P 221y x -=0022001,1.x y y x ⎧-=⎪⎨-=⎪⎩0022001,1x y y x -=⎧⎪⎨-=⎪⎩000,1.x y =⎧⎨=-⎩P r =0022001,1x y y x -=-⎧⎪⎨-=⎪⎩000,1x y =⎧⎨=⎩P r =P ()2213x y ++=()221 3.x y +-=C ()22416x y +-=()0,4C 4(),M x y (),4CM x y =-()2,2MP x y =--0CM MP ⋅=()()()2420x x y y -+--=()()22132x y -+-=P C M ()()22132x y -+-=M ()1,3N OP OM =O PM P N ON PM ⊥ON 3所以得斜率为,故的方程为.又,到的距离为,,所以的面积为. 评注本题考查轨迹方程的求法,直线与圆的位置关系,在解决直线与圆的相关问题时,利用图形的几何性质可简化运算.5.解析解法一:过作圆的两条切线,切点分别为,若在圆上存在点,使,则,所以,所以,故选A.解法二:过作于,则,所以,即,故选A.评注本题考查直线与圆的位置关系,体现了数形结合的思想方法. 6.解析(1)由与圆交于两点,所以直线的斜率必存在.设直线的斜率为,则直线的方程为.由圆的方程,可得圆心为, 则,即,解得. (2)设,,则,,.把直线代入到中,得.由韦达定理得,. 则,解得.所以直线的方程为. 又圆心到直线的距离,即直线过圆心.所以.l 13-l 1833y x =-+OM OP ==O l 5PM =POM △165M O ,MA MB ,A B O N 45OMN ∠=45OMB OMN ∠∠=...90AMB ∠ 011x -剟O OP MN ⊥P sin 451OP OM =...OM (2)01x 011x -剟l ,M N l k l 1y kx =+C ()2,3C (),1d C l <1<4433k <<()11,M x y ()22,N x y ()11,OM x y =()22,ON x y =121212OM ON xx y y =+=1y kx =+()()22231x y -+-=()()2214470k x k x +-++=12271x x k =+122441kx x k ++=+()()21212121224117111121k k x x y y x x kx kx k++⋅+⋅=⋅+++=+=+1k =l 1y x =+()2,3C l (),0d C l ==l C 2MN =6. (2016全国I 文20)已知过点且斜率为k 的直线l 与圆C :交于M ,两点.(1)求k 的取值范围;(2)若,其中O 为坐标原点,求.7.(2016新课标Ⅰ文15)(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若 ,则圆C 的面积为 【答案】4π8.(2014新课标Ⅰ文15)15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.()0,1A ()()22231x y -+-=N 12OM ON ⋅=MN。
高考数学历年(2018-2022)真题按知识点分类平面解析几何(圆锥曲线之椭圆)练习一、单选题1.(2022ꞏ全国ꞏ统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B C .12D .132.(2022ꞏ全国ꞏ统考高考真题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x y +=C .22132x y +=D .2212x y +=3.(2021ꞏ全国ꞏ统考高考真题)设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦4.(2021ꞏ全国ꞏ统考高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .65.(2020ꞏ山东ꞏ统考高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( )A .3B .6C .8D .126.(2019ꞏ全国ꞏ高考真题)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=7.(2018ꞏ全国ꞏ高考真题)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .148.(2018ꞏ全国ꞏ高考真题)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 1-9.(2018ꞏ全国ꞏ高考真题)已知椭圆C :2221(0)4x y a a+=>的一个焦点为(20),,则C 的离心率为A .13B .12C .2D .310.(2018ꞏ全国ꞏ专题练习)(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B .3C 3D .1311.(2019ꞏ北京ꞏ高考真题)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b二、多选题12.(2020ꞏ海南ꞏ高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =D .若m =0,n >0,则C 是两条直线三、填空题13.(2022ꞏ全国ꞏ统考高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.14.(2019ꞏ全国ꞏ统考高考真题)设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.四、解答题15.(2022ꞏ全国ꞏ统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.16.(2022ꞏ北京ꞏ统考高考真题)已知椭圆:2222:1(0)x y E a b a b +=>>的一个顶点为(0,1)A ,焦距为(1)求椭圆E 的方程;(2)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当||2MN =时,求k 的值.17.(2022ꞏ天津ꞏ统考高考真题)椭圆()222210x y a b a b +=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足BF AB(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN18.(2021ꞏ北京ꞏ统考高考真题)已知椭圆2222:1(0)x y E a b a b +=>>一个顶 点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为 (1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点,M N ,当|PM |+|PN |≤15时,求k 的取值范围. 19.(2021ꞏ全国ꞏ统考高考真题)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F . (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =20.(2021ꞏ天津ꞏ统考高考真题)已知椭圆()222210x y a b a b +=>>的右焦点为F ,上顶点为B ,且BF = (1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.21.(2020ꞏ全国ꞏ统考高考真题)已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.22.(2020ꞏ山东ꞏ统考高考真题)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.23.(2020ꞏ全国ꞏ统考高考真题)已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.24.(2020ꞏ海南ꞏ高考真题)已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.25.(2020ꞏ全国ꞏ统考高考真题)已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 26.(2019ꞏ全国ꞏ高考真题)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形; (ii )求PQG 面积的最大值.27.(2019ꞏ全国ꞏ高考真题)已知12,F F 是椭圆2222:1(0)x y C a b a b +=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2 POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.28.(2019ꞏ北京ꞏ高考真题)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |ꞏ|ON |=2,求证:直线l 经过定点.29.(2019ꞏ天津ꞏ高考真题)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.30.(2018ꞏ天津ꞏ高考真题)设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3,AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M均在第四象限.若BPM △的面积是BPQ V 面积的2倍,求k 的值.31.(2018ꞏ天津ꞏ高考真题)设椭圆22221x y a b +=(a >b >0)的左焦点为F ,上顶点为B . 已知A 的坐标为(),0b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若sin 4AQ AOQ PQ=∠(O 为原点) ,求k 的值.32.(2018ꞏ北京ꞏ高考真题)已知椭圆2222:1(0)x y M a b a b +=>>,焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A 、B .(Ⅰ)求椭圆M 的方程; (Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C 、D 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .五、双空题33.(2021ꞏ浙江ꞏ统考高考真题)已知椭圆22221(0)x y a b a b+=>>,焦点1(,0)F c -,2(,0)F c (0)c >,若过1F 的直线和圆22212x c y c ⎛⎫-+= ⎪⎝⎭相切,与椭圆在第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是___________,椭圆的离心率是___________.参考答案1.A【要点分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b +=,将1y 用1x 表示,整理,再结合离心率公式即可得解. 【答案详解】[方法一]:设而不求 设()11,P x y ,则()11,Q x y - 则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+, 由2211221x y a b +=,得()2221212b a x y a-=, 所以()2221222114b a x ax a -=-+,即2214b a =, 所以椭圆C的离心率c e a === A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a = 所以椭圆C的离心率c e a === A.2.B【要点分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【答案详解】解:因为离心率13c e a ==,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -, B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y +=.故选:B. 3.C【要点分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【答案详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即 02e <≤; 当32b b c->-,即22b c <时, 42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C .【名师点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值. 4.C【要点分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点睛】 5.B【要点分析】根据椭圆中,,a b c 的关系即可求解. 【答案详解】椭圆的长轴长为10,焦距为8, 所以210a =,28c =,可得5a =,4c =, 所以22225169b a c =-=-=,可得3b =, 所以该椭圆的短轴长26b =, 故选:B. 6.B【要点分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得2n =,从而可求解.【答案详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养. 7.D【答案详解】要点分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 答案详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 名师点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 8.D【答案详解】要点分析:设2||PF m =,则根据平面几何知识可求121,F F PF ,再结合椭圆定义可求离心率.答案详解:在12F PF ∆中,122190,60F PF PF F ∠=∠=︒设2||PF m =,则1212||2,||c F F m PF ==,又由椭圆定义可知122||||1)a PF PF m =+=+则离心率212c ce a a ====-, 故选D.名师点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 9.C【答案详解】要点分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得a =最后利用椭圆离心率的公式求得结果.答案详解:根据题意,可知2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率为e =C. 名师点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中,,a b c 的关系求得结果.10.A【答案详解】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即()2223,a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===故选A.【名师名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.11.B【要点分析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式.【答案详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.【名师点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.12.ACD【要点分析】结合选项进行逐项要点分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【答案详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线Cn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【名师点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.13.13【要点分析】利用离心率得到椭圆的方程为222222213412043x y x y c c c+=+-=,即,根据离心率得到直线2AF 的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,利用弦长公式求得138c =,得1324a c ==,根据对称性将ADE V 的周长转化为2F DE △的周长,利用椭圆的定义得到周长为413a =. 【答案详解】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为3,斜率倒数直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,∴12226461313cDE y y =-=⨯=⨯⨯⨯=, ∴138c =, 得1324a c ==, ∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==. 故答案为:13.14.(【要点分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.【答案详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=, 又M 为C 上一点且在第一象限,12MF F △为等腰三角形,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =,22013620x ∴+=,解得03x =(03x =-舍去), M ∴的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.15.(1)22143y x +=(2)(0,2)-【要点分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. 【答案详解】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,(1,)3N ,代入AB 方程223y x =-,可得(3,)3T+-,由MT TH=得到(5,3H--.求得HN方程:(22y x=-,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234ky ykk ky yk⎧-++=⎪+⎪⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【名师点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.16.(1)2214xy+=(2)4k=-【要点分析】(1)依题意可得22212bcc a b=⎧⎪=⎨⎪=-⎩,即可求出a,从而求出椭圆方程;(2)首先表示出直线方程,设()11,B x y、()22,C x y,联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出M x 、N x ,根据N M MN x x =-得到方程,解得即可; 【答案详解】(1)解:依题意可得1b =,2c =222c a b =-,所以2a =,所以椭圆方程为2214x y +=;(2)解:依题意过点()2,1P -的直线为()12y k x -=+,设()11,B x y 、()22,C x y ,不妨令1222x x -≤<≤,由()221214y k x x y ⎧-=+⎪⎨+=⎪⎩,消去y 整理得()()22221416816160k x k k x k k +++++=, 所以()()()222216841416160k k k k k ∆=+-++>,解得0k <, 所以212216814k k x x k++=-+,2122161614k kx x k +⋅=+, 直线AB 的方程为1111y y x x --=,令0y =,解得111M xx y =-, 直线AC 的方程为2211y y x x --=,令0y =,解得221N xx y =-,所以212111N M x xMN x x y y =-=--- ()()2121121121x x k x k x =--++-++⎡⎤⎡⎤⎣⎦⎣⎦()()212122x x k x k x =+-++()()()()2121212222x x x x k x x +-+=++()()12212222x x k x x -==++,所以()()122122x x k x x -=++, ()212124k x x x x =+++⎡⎤⎣⎦22221616168241414k k k k k k k ⎡⎤⎛⎫++=+-+⎢⎥ ⎪++⎝⎭⎣⎦()()22221616216841414kk k k k k k ⎡⎤=+-+++⎣⎦+整理得4k =,解得4k =-17.(1)e =(2)22162x y +=【要点分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由Δ0=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程. 【答案详解】(1)解:()222224332BF a b a a b AB===⇒=+⇒=,离心率为3c e a ==. (2)解:由(1)可知椭圆的方程为2223x y a +=, 易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=, 由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+, 由=OM ON 可得()()222229131m k m k+=+,②由OMN S =可得31213km m k ⋅=+③ 联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=.18.(1)22154x y +=;(2)[3,1)(1,3]--⋃. 【要点分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,a b ,从而可求椭圆的标准方程.(2)设()()1122,,,B x y C x y ,求出直线,AB AC 的方程后可得,M N 的横坐标,从而可得PM PN +,联立直线BC 的方程和椭圆的方程,结合韦达定理化简PM PN +,从而可求k的范围,注意判别式的要求.【答案详解】(1)因为椭圆过()0,2A -,故2b =,因为四个顶点围成的四边形的面积为1222a b ⨯⨯=,即a =,故椭圆的标准方程为:22154x y +=.(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令=3y -,则112M x x y =-+,同理222N x x y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x >又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤, 综上,31k -≤<-或13k <≤.19.(1)2213x y +=;(2)证明见解析.【要点分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN = 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【答案详解】(1)由题意,椭圆半焦距c =ce a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F 三点共线,可设直线(:MN yk x =-即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k=±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x-+=,所以1212324x x x x +=⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==213k =+ 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=-或y x =-所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N,F 三点共线的充要条件是||MN = 【名师点睛】关键点名师点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.20.(1)2215x y +=;(2)0x y -=.【要点分析】(1)求出a 的值,结合c 的值可得出b 的值,进而可得出椭圆的方程; (2)设点()00,M x y ,要点分析出直线l 的方程为0015x xy y +=,求出点P 的坐标,根据//MP BF 可得出MP BF k k =,求出0x 、0y 的值,即可得出直线l 的方程.【答案详解】(1)易知点(),0F c 、()0,B b,故BF a ===因为椭圆的离心率为c e a==2c =,1b =, 因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215xy +=上一点,先证明直线MN 的方程为0015x xy y +=, 联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭, 直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭, 因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=, 所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,06x =-, 所以,直线l的方程为166x y -+=,即0x y -=. 【名师点睛】结论名师点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b+=在其上一点()00,x y 的切线方程为00221x x y y a b +=,再应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.21.(1)221612525x y +=;(2)52. 【要点分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)方法一:过点P 作x 轴垂线,垂足为M ,设6x =与x 轴交点为N ,可得 PMB BNQ ≅△△,可求得P 点坐标,从而求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.【答案详解】(1) 222:1(05)25x y C m m+=<<∴5a =,b m =,根据离心率c e a ====,解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=.(2)[方法一]:通性通法不妨设P ,Q 在x 轴上方,过点P 作x 轴垂线,垂足为M ,设直线6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥, 90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒, 90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=, 可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -, (6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ===根据两点间距离公式可得:AQ ==,∴APQ △面积为:15252⨯=; ②当P 点为(3,1)-时,故5+38MB ==, PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -, (6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ===,根据两点间距离公式可得:AQ ==∴APQ △面积为:1522=,综上所述,APQ △面积为:52. [方法二]【最优解】:由对称性,不妨设P ,Q 在x 轴上方,过P 作PE x ⊥轴,垂足为E .设(6,0)D ,由题知,PEB BDQ ≌.故131p BP PE PEPE x QB BD ==⇒=⇒=±, ①因为(3,1),(5,0),(6,2)P A Q -,如图,所以,52APQAQD PEDQ PEA S S S S =--=.②因为(3,1),(5,0),(6,8)P A Q --,如图,所以52APQAQD PEDQ PEA S S S S =--=.综上有52APQ S =△ [方法三]:由已知可得()5,0B ,直线,BP BQ 的斜率一定存在,设直线BP 的方程为()5y k x =-,由对称性可设0k <,联立方程22(5),161,2525y k x x y =-⎧⎪⎨+=⎪⎩消去y 得()22221161601625250k x k x k +-+⨯-=,由韦达定理得221625255116P k x k ⨯-=+,所以22805116P k x k -=+,将其代入直线BP 的方程得210116P ky k -=+,所以22280510,116116k k P k k ⎛⎫-- ⎪++⎝⎭,则||BP == 因为BP BQ ⊥,则直线BQ 的方程为1(5)y x k=--,则16,,||Q BQ k ⎛⎫-== ⎪⎝⎭因为||||BP BQ ==,422566810k k -+=, 即()()22641410k k --=,故2164k =或214k =,即18k =-或12k =-.当18k =-时,点P ,Q 的坐标分别为(3,1),(6,8),||P Q PQ -=直线PQ 的方程为71093y x =+,点A 到直线PQ故APQ △的面积为1522=.当12k =-时,点P ,Q 的坐标分别为(3,1),(6,2),||P Q PQ =直线PQ 的方程为13y x =,点(5,0)A -到直线PQ 的距离为2,故APQ △的面积为15222⨯=.综上所述,APQ △的面积为52.[方法四]:由(1)知椭圆的方程为221612525x y +=,(5,0),(5,0)A B -.不妨设()00,P x y 在x 轴上方,如图.设直线:(5)(0)AP y k x k =+>.因为||||,BP BQ BP BQ =⊥,所以00||1,||5Q y BN y BM x ====-.由点P 在椭圆上得201612525x +=,所以209x =.由点P 在直线AP 上得()015k x =+,所以015k x k -=.所以2159k k -⎛⎫= ⎪⎝⎭,化简得216101k k =-. 所以0110155516k x k k k -⎛⎫-=--== ⎪⎝⎭,即(6,16)Q k . 所以,点Q 到直线AP 的距离d ==.又)0||5AP x k==+=.故115222APQS AP d =⋅== .即APQ △的面积为52.[方法五]:由对称性,不妨设P ,Q 在x 轴上方,过P 作PC x ⊥轴,垂足为C ,设(6,0)D , 由题知PCB BDQ ≌,所以131p BP PC PCPC x QB BD==⇒=⇒=±.(1)(3,1),(5,0),(6,2)P A Q -.则1221115|82111|222APQ S x y x y ==-=⨯-⨯= . (其中()()1122,,,AP x y AQ x y ==). (2)(3,1),(5,0),(6,8)P A Q --.同理,1221115|28111|222APQ S x y x y ==-=⨯-⨯= . (其中()()1122,,,AP x y AQ x y == ) 综上,APQ △的面积为52. 【整体点评】(2)方法一:根据平面几何知识可求得点P 的坐标,从而得出点Q 的坐标以及直线AQ 的方程,再根据距离公式即可求出三角形的面积,是通性通法;方法二:同方法一,最后通过面积分割法求APQ △的面积,计算上有简化,是本题的最优解;方法三:通过设直线BP 的方程()5y k x =-与椭圆的方程联立,求出点P 的坐标,再根据题目等量关系求出k 的值,从而得出点Q 的坐标以及直线AQ 的方程,最后根据距离公式即可求出三角形的面积,思想简单,但运算较繁琐;方法四:与法三相似,设直线AP 的方程:(5)(0)AP y k x k =+>,通过平面知识求出点P 的坐标,表示出点Q ,再根据距离公式即可求出三角形的面积;方法五:同法一,只是在三角形面积公式的选择上,利用三角形面积的正弦形式结合平面向量的数量积算出.22.(1)22163x y +=;(2)详见解析.【要点分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程. (2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.【答案详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()222124260k x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以ꞏ0AM AN =,即()()()()121222110x x y y --+--=,根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x k m ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=, 因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -,由ꞏ0AM AN =得:()()()()111122110x x y y --+---=,得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍). 此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP ==, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny +=.将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||23DQ AP ==.[方法三]:建立曲线系A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k ?-.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=. 由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =. 若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=. 令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =. 又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny +=,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.23.(1)12;(2)221:13627x y C +=,22:12C y x =.【要点分析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)[方法四]由(1)可得出1C 的方程为2222143x yc c+=,联立曲线1C 与2C 的方程,求出点M的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【答案详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,。
专题07平面解析几何(选择题、填空题)1.【2020年高考全国Ⅰ卷文数】已知圆 x 2 y 26x 0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A .1B .2D .4C .3【答案】B 【解析】圆 x2y 2 6x 0化为(x 3)2 y 29,所以圆心C 坐标为C (3,0),半径为3,设 P (1,2),当过点 P 的直线和直线CP 垂直时,圆心到过点 P 的直线的距离最大,所求的弦长最短,此时|CP | (3 1) ( 2) 2 22 2根据弦长公式得最小值为2 9 |CP |22 9 8 2 .故选:B .【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.2.【2020年高考全国Ⅲ卷文数】在平面内,A ,B 是两个定点,C 是动点,若 AC BC =1,则点 C 的轨迹为A .圆B .椭圆C .抛物线D .直线【答案】A 【解析】设AB 2a a 0 ,以 AB 中点为坐标原点建立如图所示的平面直角坐标系,,设则: A a ,0 ,B a ,0C x , y,可得: AC x a , y ,BC x a , y ,从而: AC BC x a x a y 2,结合题意可得: x a xa y 21,整理可得: x y a2 2 21,即点 C 的轨迹是以 AB 中点为圆心, a 1为半径的圆.2故选:A .【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.3.【2020年高考全国Ⅲ卷文数】点(0, 1)到直线 y k x 1 距离的最大值为A .1【答案】BB . 2C . 3D .2【解析】由 y k (x 1)可知直线过定点 P ( 1,0),设 A (0, 1),当直线 y k (x 1)与 AP 垂直时,点 A 到直线 y k (x 1)距离最大,即为| AP | 2 .故选:B .【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.4.【2020年高考全国Ⅱ卷文数】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线 2x −y −3=0的距离为5B . 2 55C . 3 55D . 4 55A .5【答案】B【解析】由于圆上的点 2,1 在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,a设圆心的坐标为 a ,a ,则圆的半径为,圆的标准方程为 x a y a 2 a2. 2由题意可得 2 a 1 a 2 a2,2可得a26a 5 0,解得 a 1或a 5,所以圆心的坐标为 1,1 或 5,5 ,的距离均为d 1 2 1 1 3 2 5;5圆心到直线5的距离均为d 2 2 5 5 32 55圆心到直线5圆心到直线2x y 3 0的距离均为d 252 5;5所以,圆心到直线2x y 3 0的距离为 2 5 .5故选:B .【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.5.【2020年高考全国Ⅲ卷文数】设 O 为坐标原点,直线 x =2与抛物线 C : y 2若 OD ⊥OE ,则 C 的焦点坐标为2px p 0交于 D ,E 两点,A .( 14,0)【答案】BB .( 12,0)C .(1,0)D .(2,0)【解析】因为直线 x 2与抛物线 y22px (p 0)交于 E ,D 两点,且OD OE ,根据抛物线的对称性可以确定 DOx EOx ,所以D 2,2 ,4代入抛物线方程4 4p ,求得 p 1,所以其焦点坐标为(1 ,0),2故选:B .【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.y 126.【2020年高考全国Ⅰ卷文数】设 F 1,F 2是双曲线C : x 2O的两个焦点,为坐标原点,点 P 在C 上3且|OP | 2,则△PF 1F 2的面积为A . 72B .3C . 52D .2【答案】B【解析】由已知,不妨设 F 1( 2,0),F 2(2,0),则 a 1,c 2,因为|OP | 1 1 | F 1F 2 |,2所以点 P 在以 F 1F 2为直径的圆上,即 F 1F 2P 是以 P 为直角顶点的直角三角形,故| PF 1 | | PF 2 | | F 1F 2 |2 2 2,即| PF 1 | | PF 2 | 16,又| PF 1 | | PF 2 | 2a 2,2 2所以4 | PF 1 | | PF 2 | 2 | PF 1 |2 | PF 2 |2 2 | PF 1 || PF 2 | 16 2 | PF 1 || PF 2 |,解得| PF 1 || PF 2 | 6,所以S △F 1F 2P 1 | PF 1 || PF 2 | 32故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.7.【2020年高考全国Ⅱ卷文数】设 O 为坐标原点,直线 x =a 与双曲线 C : x 22 b 2y 2 =l(a >0,b >0)的两条渐近a线分别交于 D ,E 两点.若△ODE 的面积为 8,则 C 的焦距的最小值为A .4 B .8 C .16 D .32【答案】B【解析】 C : x a 22 by 22 1(a 0,b 0), 双曲线的渐近线方程是 y b x ,a直线 x a 与双曲线C : xa22 by 2 1(a 0,b 0)的两条渐近线分别交于 D , E 两点2不妨设 D 为在第一象限, E 在第四象限,x ax a联立 b ,解得 ,y x y ba 故 D (a ,b ),x a联立 x ab ,解得y b ,y xa 故 E (a ,b ),| ED | 2b ,ODE 面积为:S △ODE 1 a 2b ab 8,2双曲线C : x 22 by 2 1(a 0,b 0),2a其焦距为2c 2 a 2 b 2 2 2ab 2 16 8,当且仅当a b 2 2取等号,C 的焦距的最小值:8.故选:B .【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.8.【2020年高考天津】设双曲线C 的方程为 x22 by 2 1(a 0,b 0),过抛物线2y24x 的焦点和点(0,b )a的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A . x 2y2y 12C . x2y41B . x221D . x y 12 2444【答案】Dx y 1,即直线的斜率为 b ,【解析】由题可知,抛物线的焦点为 1,0 ,所以直线的方程为lb 又双曲线的渐近线的方程为 y b x ,所以 b b , b b 1,因为a 0,b 0,解得a 1,b 1.a a a故选: D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.9.【2020年高考北京】已知半径为 1的圆经过点(3,4),则其圆心到原点的距离的最小值为A . 4B . 5D . 7C . 6【答案】A【解析】设圆心C x , y ,则 x 3 2 y 4 2 1,化简得 x 3 2 y 4 2 1,所以圆心C 的轨迹是以M (3,4)为圆心,1为半径的圆,|OC | 1 |OM | 3 42 5,所以|OC | 5 1 4,所以2当且仅当C在线段OM上时取得等号,故选:A.【点睛】本题考查了圆的标准方程,属于基础题.10.【2020年高考北京】设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ l于Q,则线段FQ的垂直平分线A.经过点OB.经过点 PD.垂直于直线OPC.平行于直线OP【答案】B因为线段FQ的垂直平分线上的点到F,Q的距离相等,又点P在抛物线上,根据定义可知,PQ PF,所以线段FQ的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.11.【2020年高考浙江】已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y 3 4 x2图象上的点,则|OP|=222B . 4 105A .C . 7D . 10【答案】D【解析】因为| PA | | PB | 2 4,所以点 P 在以 A ,B 为焦点,实轴长为2,焦距为4的双曲线的右支4 1 3,即双曲线的右支方程为 x 2 y 1 x 0,而点 P 还在2c 2,a 1可得, b 2 c 2 a上,由23函数 y 3 4 x 的图象上,所以,2132 y 3 4 x 2 x 13 27 ,即 OP 10.由 x,解得 y 3 1 x 0 223 3244 y故选:D.【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.12.【2020年新高考全国Ⅰ卷】已知曲线C :mx ny 1.2 2A .若 m >n >0,则 C 是椭圆,其焦点在 y 轴上B .若 m =n >0,则C 是圆,其半径为 nmC .若 mn <0,则 C 是双曲线,其渐近线方程为 y x nD .若 m =0,n >0,则 C 是两条直线【答案】ACDx 2y2 1可化为 1 11【解析】对于 A ,若m n 0,则mx ,ny 2 2mn因为m n 0,所以 m 1 1n,y即曲线C 表示焦点在轴上的椭圆,故 A 正确;对于 B ,若m n 0,则mx2ny21可化为 x 2 y21,n此时曲线C 表示圆心在原点,半径为n 的圆,故 B 不正确;nx 1可化为 1 11,对于 C ,若mn 0,则mx ny 2 22y2m n此时曲线C 表示双曲线,m由mx ny2 20可得 y x ,故 C 正确;n对于 D ,若m 0,n 0,则mx 2 ny 2 1可化为y 2 1,nn ,此时曲线C 表示平行于轴的两条直线,故 D 正确;xyn 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.13.【2019年高考浙江卷】渐近线方程为 x ±y =0的双曲线的离心率是2A .B .1D .22C . 2【答案】C【解析】因为双曲线的渐近线方程为 x y 0,所以a b ,则c a 2 b22a ,所以双曲线的离心率e c 2 .故选 C.a【名师点睛】本题根据双曲线的渐近线方程可求得 a b ,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.14.【2019年高考全国Ⅰ卷文数】双曲线 C : x a22 by 2 1(a 0,b 0)的一条渐近线的倾斜角为 130°,则 C2的离心率为A .2sin40°B .2cos40°11C .D .sin50cos50【答案】D【解析】由已知可得 b tan130 , b tan50 ,a a1 b 250 sin 50 cos2 250501 e c 1 tan 50 1 sin 22, a a cos 2cos 250 cos50故选 D .【名师点睛】对于双曲线: x2y 21 b 22 1 a 0 , b 0 ,有e c ;a 2 ba a 2对于椭圆 x2y 22 1 a b 0 ,有e c 1 b ,防止记混.a 2 ba a 15.【2019年高考全国Ⅰ卷文数】已知椭圆 C 的焦点为 F 1( 1,0),F 2(1,0),过 F 的直线与 C 交于 A ,B 两2点.若| AF 2 | 2| F 2B |,| AB | | BF 1 |,则 C 的方程为A . x2B . x 2 y 12y 12232C . x 2y 12D . x 2y 124354【答案】B【解析】法一:如图,由已知可设 F 2B n ,则 AF 2 2n , BF 1 AB 3n ,由椭圆的定义有2a BF 1 BF 2 4n , AF 1 2a AF 2 2n .中,由余弦定理推论得cos F 1AB 4n 29n 29n 21.在△AF 1B2 2n 3n33.2在△AF 1F 2中,由余弦定理得4n 24n 22 2n 2n 1 4,解得n 323 1 2 , 所求椭圆方程为 x 2a 4n 2 3 , a 3 , b a c 2 22 y 1,故选 B .232法二:由已知可设 F 2B n ,则 AF 2 2n , BF 1 AB 3n ,由椭圆的定义有2a BF 1 BF 2 4n , AF 1 2a AF 2 2n .4n4 2 2n 2 cos AF 2F 14n2 2在△AF 1F 2和△BF 1F 2中,由余弦定理得,n 2 4 2 n 2 cos BF 2F 1 9n 2又 AF 2F 1 , BF 2F 1互补, cos AF 2F 1 cos BF 2F 1 0,两式消去cos AF 2F 1,cos BF 2F 1,得3. 2a 4n 2 3 , a 3 , ba c2 23 1 2 , 所求椭圆3n 6 11n2 2,解得n22方程为 x 2y 1,故选 B .232【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.x 2 y 1的一个焦点,则 p =216.【2019年高考全国Ⅱ卷文数】若抛物线 y 2=2px (p >0)的焦点是椭圆3p pA .2B .3D .8C .4【答案】D2px (p 0)的焦点( p ,0)是椭圆 x y 23p221的一个焦点,所以3p p ( p )2【解析】因为抛物线 y ,2p 2解得 p 8,故选 D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于 p 的方程,从而解出 p ,或者利用检验排除的方法,如 p 2时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除 A ,同样可排除 B ,C ,从而得到选 D .17.【2019年高考全国Ⅱ卷文数】设 F 为双曲线 C : x 22 b 22 1(a >0,b >0)的右焦点,O 为坐标原点,y a以 OF 为直径的圆与圆x 2+y 2=a 2交于 P ,Q 两点.若|PQ |=|OF |,则 C 的离心率为A . 2B . 3D . 5C .2【答案】Ax【解析】设 PQ 与轴交于点A ,由对称性可知 PQ x 轴,又 PQ |OF | c , | PA | c , PA 为以OF 为直径的圆的半径,2∴|OA | c ,c c ,,P 2 22a 上, c2c a ,即 c 22 ca 2 2.2又 P 点在圆 x 2y222 a 2, e2442e 2,故选 A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出 P 点坐标,代入圆的方程得到 c 与 a 的关系,可求双曲线的离心率.18.【2019年高考全国Ⅲ卷文数】已知 F 是双曲线 C : x2y 1的一个焦点,点 P 在 C 上,O 为坐标原245点,若 OP = OF ,则△OPF 的面积为3252A .C .B .D .7292【答案】B,则 x 0 y 1①.22【解析】设点 P x 0, y045又 OP OF 4 5 3, x 02y 0 9②.225,即 y 0 5,由①②得 y 0293S △OPF 1 OF y 0 1 3 5 5,2223故选 B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设P x 0, y 0 ,由OP = OF ,再结合双曲线方程可解出19.【2019年高考北京卷文数】已知双曲线A . 6y 0,利用三角形面积公式可求出结果.x 22 y 21(a >0)的离心率是 5,则 a =a B .41C .2D .2【答案】D【解析】∵双曲线的离心率e c 5,c a21,a2 1 5,解得a 1a ∴,2a故选 D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中 a ,b ,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.20.【 2019年高考天津卷文数】已知抛物线 y 24x 的焦点为 F ,准线为 l .若 l 与双曲线x 22 by 2 1(a 0,b 0)的两条渐近线分别交于点 A 和点 B ,且|AB | 4|OF |(O 为原点),则双曲2a线的离心率为A . 2B . 3D . 5C .2【答案】D 【解析】抛物线 y24x 的准线l 的方程为 x 1,双曲线的渐近线方程为 y b x ,a则有 A ( 1, b ),B ( 1, b ),a a ∴ AB 2b 2b, a 4,b 2a ,a∴e c a b2 25 .aa故选 D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出 AB 的长度.解答时,只需把 AB 4 OF 用a ,b ,c 表示出来,即可根据双曲线离心率的定义求得离心率.21.【2018年高考全国Ⅰ卷文数】已知椭圆C : xa22y 2 1的一个焦点为(2,0),则C 的离心率为41A .312B .2D . 2 23C .2【答案】Cb c【解析】由题可得c 2,因为b 4,所以a 8,即a 2 2,2 2 2 222,故选 C .所以椭圆C 的离心率e22 2【名师点睛】本题主要考查椭圆的方程及离心率,考查考生的运算求解能力,考查的数学核心素养是数学运算.在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中a ,b ,c 的关系求得结果.22.【2018年高考全国Ⅱ卷文数】已知 F 1,F 2是椭圆C 的两个焦点, P 是C 上的一点,若 PF 1 PF 2,且PF 2F 1 60 ,则C 的离心率为3A .1B .2 3D . 3 123 1C .2【答案】D【解析】在△F 1PF 2中, F 1PF 2 90设 PF 2 m ,, PF 2F 1 60 ,则2c F 1F 2 2m , PF 1 3m ,又由椭圆定义可知2a PF 1 PF 2 ( 3 1)m ,则e c 2c2m 3 1,故选 D .a2a ( 3 1)m【名师点睛】本题主要考查椭圆的定义和简单的几何性质,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.结合有关平面几何的知识以及椭圆的定义、性质加以灵活分析,关键是寻找椭圆中 a ,c 满足的关系式.椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.23.【2018年高考全国Ⅱ卷文数】双曲线 x a22 by 2 1(a 0,b 0)的离心率为 3,则其渐近线方程为2A . y 2xB . y 3xC . y 2 xD . y 3 x22【答案】A【解析】因为 e c 3,所以 b22c 2 a 2b 2,因为渐近线方程为 e 2 1 3 1 2,所以 aaa a 2y b x ,所以渐近线方程为 y 2x ,故选 A .a【名师点睛】本题主要考查双曲线的简单几何性质,考查考生的运算求解能力,考查的数学核心素养是数学运算.(1)焦点在 x 轴上的双曲线的标准方程为 x a22 by 2 1(a 0,b 0),焦点坐标为(±c ,0),实轴长为 2a ,2虚轴长为 2b ,渐近线方程为 y b x ;a(2)焦点在 y 轴上的双曲线的标准方程为 2 bx 2 1(a 0,b 0),焦点坐标为(0,±c ),实轴长为 2a ,y 22a虚轴长为 2b ,渐近线方程为 y a x .b24.【2018年高考全国Ⅲ卷文数】直线 x y 2 0分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆(x 2)2 y 2 2上,则△ABP 面积的取值范围是B . 4,8 A . 2,6C . 2,3 2 2 2,3 2D .【答案】A【解析】直线 x y 2 0分别与轴,轴交于 A ,B 两点, A 2,0 ,B 0, 2 ,则 AB 2 2 .x y 点 P 在圆(x 2)2 y22上, 圆心为(2,0),则圆心到直线的距离d 1 2 0 2 2 2 .22,3 2,则S △ABP 1 AB d 2 2d 2 2,6 .故点 P 到直线 x y 2 0的距离d 2的范围为2故答案为 A.【名师点睛】本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题 .先求出 A ,B 两点坐标得到 AB ,再计算圆心到直线的距离,得到点 P 到直线距离的范围,由面积公式计算即可.25.【2018年高考全国Ⅲ卷文数】已知双曲线C : x 22 by2 21(a 0,b 0)的离心率为 2,则点(4,0)到Ca的渐近线的距离为A . 2B .2C . 3 22D .2 2【答案】D【解析】 e c 1 (b )2, b 1,所以双曲线C 的渐近线方程为 x y 0,所以点(4,0)2aaa4到渐近线的距离d2 2,故选 D .1 1【名师点睛】本题主要考查双曲线的性质、点到直线的距离公式,考查考生的运算求解能力、化归与转化能力、逻辑思维能力,考查的数学核心素养是逻辑推理、数学运算、直观想象.熟记结论:若双曲线 x a22 by 2 1(a 0,b 0)是等轴双曲线,则 a =b ,离心率 e = 2,渐近线方程为2y =±x ,且两条渐近线互相垂直.26.【2018年高考浙江卷】双曲线 x2y21的焦点坐标是3A .(− 2,0),( 2,0)B .(−2,0),(2,0)C .(0,− 2 ),(0, 2 )D .(0,−2),(0,2)【答案】B 【解析】设 x22 1的焦点坐标为( c ,0),因为c 2 a 2 b 23 1 4,c 2, y3所以焦点坐标为( 2,0),故选 B .【名师点睛】本题主要考查双曲线基本量之间的关系,考查考生的运算求解能力,考查的数学核心素养是数学运算.解答本题时,先根据所给的双曲线方程确定焦点所在的坐标轴,然后根据基本量之间的关系进行运算.27.【2018年高考天津卷文数】已知双曲线 x a22 by 2 1(a 0, b 0)的离心率为2,过右焦点且垂直于轴2x的直线与双曲线交于 A ,B 两点.设 A ,B 到双曲线同一条渐近线的距离分别为d1和d 2,且d 1 d 2 6,则双曲线的方程为A . x 2y 12B . x 2y 123993C . x 2y 12D .x 2 y 12412124【答案】A【解析】设双曲线的右焦点坐标为 F (c ,0)(c 0),则 x A x B c ,由 c 2a 2 by 2 1可得 ya ,2b 2不妨设 A (c , b), B (c , b2 2),a a 双曲线的一条渐近线方程为bx ay 0,据此可得d 1 |bc b 2| bc b 2,d 2 |bc b| bc b2 2,cb2a 2b 2ca 2则d 1 d 2 2bc 2b 6,则b 3,b29,c21 a 92 2,据此可得a23,则双曲线的方程为 x 2 y 1.2双曲线的离心率e c 1 b aa 239故选 A .【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据 a ,b ,c ,e 及渐近线之间的关系,求出 a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为 x a22 by 2 0 ,2再由条件求出λ的值即可.解答本题时,由题意首先求得 A ,B 的坐标,然后利用点到直线距离公式求得b 的值,之后求解 a 的值即可确定双曲线方程.28.【2020年高考全国Ⅲ卷文数】设双曲线 C : x a22 by 2 1 (a >0,b >0)的一条渐近线为 y = 2 x ,则 C 的离心2率为_________.【答案】3【解析】由双曲线方程 xa 22 by2 1可得其焦点在轴上,2x因为其一条渐近线为y 2x,b a 2,e ac 1 ba2 3 .2所以故答案为:3【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.29.【2020年高考天津】已知直线x 3y 8 0和圆 x2 y2 r2(r 0)相交于A,B两点.若| AB| 6,则r的值为_________.【答案】58【解析】因为圆心 0,0 到直线x 3y 8 0的距离d 4,1 3由| AB | 2 r d 2可得6 2 r2 42,解得r = 5.2故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.30.【2020年高考北京】已知双曲线C : x2 y 1,则C的右焦点的坐标为_________;C的焦点到其渐263近线的距离是_________.【答案】 3,0 ;3【解析】在双曲线C中,a 6,b 3,则c a22 3,则双曲线C的右焦点坐标为 3,0 ,b双曲线C的渐近线方程为y2 x,即x 2y 0,23所以,双曲线C的焦点到其渐近线的距离为 3 .1 22故答案为: 3,0 ; 3 .【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.31.【2020年高考浙江】已知直线 y kx b (k 0)与圆 x 2 y 2 1和圆(x 4)2 y 2 1均相切,则k _______,b =_______.3; 2 3【答案】33|b | 1|4k b |1,【解析】由题意,C 1,C 2到直线的距离等于半径,即1,k 12 2k22所以|b | 4k b ,所以k 0(舍)或者b 2k ,解得k 3 ,b 2 3 .333 ; 2 33故答案为:3【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.32.【2020年高考江苏】在平面直角坐标系 xOy 中,若双曲线 x 22 y 1(a 0)的一条渐近线方程为 y 5 x ,2a 52则该双曲线的离心率是▲.3【答案】2【解析】双曲线 x a22 y 1,故 b 5 .由于双曲线的一条渐近线方程为 y 25 x ,即52b 5 a 2,所以c a b 2 c 4 5 3,所以双曲线的离心率为 a 3222.a32故答案为:【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.33.【2020年新高考全国Ⅰ卷】斜率为 3的直线过抛物线 C :y AB =________.2=4x 的焦点,且与 C 交于 A ,B 两点,则163【答案】【解析】∵抛物线的方程为 y24x ,∴抛物线的焦点 F 坐标为 F (1,0),又∵直线 AB 过焦点 F 且斜率为 3,∴直线 AB 的方程为: y 3(x 1)代入抛物线方程消去 y 并化简得3x 2 10x 3 0,解法一:解得 x 1 1,x 2 33| x 1 x 2 | 1 3 |3 1 | 16所以| AB | 1 k233解法二: 100 36 64 0设 A (x 1, y 1),B (x 2, y 2),则 x 1 x 2 103,过 A ,B 分别作准线 x 1的垂线,设垂足分别为C ,D 如图所示.| AB | | AF | | BF | | AC | | BD | x 1 1 x 2 1 x 1 x 2+2=16316故答案为:3【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.3,0),A ,B 是圆 C : x (y 1) 36上的两2234.【2020年高考江苏】在平面直角坐标系 xOy 中,已知 P (22个动点,满足 PA PB ,则△PAB 面积的最大值是【答案】10 5▲.【解析】Q PA PB PC AB3 1 14 4设圆心C 到直线 AB 距离为d ,则|AB |=2 36 d 2,| PC | 所以 S V PAB 1 2 36 d(d 1) (36 d (0 d 6) y 2(d 1)( 2d 当0 d 4时,y 0;当4 d 6时,故答案为:10 5)(d 1)2 222令 y (36 d 2)(d 1)22d 36) 0 d 4(负值舍去)y y 0,因此当 d 4时,取最大值,即S PAB 取最大值为10 5,【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.35.【2019年高考北京卷文数】设抛物线 y =4x 的焦点为 F ,准线为 l .则以 F 为圆心,且与 l 相切的圆的2方程为__________.【答案】(x 1) y 42 2【解析】抛物线 y =4x 中,2p =4,p =2,2焦点 F (1,0),准线 l 的方程为 x =−1,以 F 为圆心,且与 l 相切的圆的方程为(x −1)+y =22,即为(x 1)22y24 .2【名师点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.36.【2019年高考全国Ⅲ卷文数】设 F 1,F 2为椭圆 C : x2y21的两个焦点,M 为 C 上一点且在第一象限.若+36 20△MF 1F 2为等腰三角形,则 M 的坐标为___________.【答案】 3, 15【解析】由已知可得a236 ,b 2 20 , c 2 a 2b 2 16 ,c 4,MF 1 F 1F 2 2c 8,∴ MF 2 4.1 F 1F2 y 0 4y 0,△MF 1F 2设点M 的坐标为 x 0 , y x0, y 0 00 ,则S 02又 S △MF 1F 2 1 4 8 2 4 15 , 4y 0 4 15,解得 y 0 15,222215 1,解得 x 0 3( x 0 3舍去),20 x 236\ M 的坐标为 3, 15.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出 MF 1、MF2,设出M 的坐标,结合三角形面积可求出M 的坐标.y237.【2019年高考江苏卷】在平面直角坐标系 xOy 中,若双曲线 x 2 2 1(b 0)经过点(3,4),则该双b曲线的渐近线方程是▲.【答案】 y 2x4【解析】由已知得3221,解得b 2或b 2,b2因为b 0,所以b 2 .因为 a 1,所以双曲线的渐近线方程为 y 2x .【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的 a ,b 密切相关,事实上,标准方程中化 1为 0,即得渐近线方程.438.【2019年高考江苏卷】在平面直角坐标系 xOy 中,P 是曲线 y x (x 0)上的一个动点,则点 P 到x直线 x +y =0的距离的最小值是【答案】4▲.【解析】当直线 x +y =0平移到与曲线 y x 4相切位置时,切点 Q 即为点 P ,此时到直线 x +y =0的距x离最小.由 y 1 42 1,得 x 2(x 2舍), y 3 2,即切点Q ( 2,3 2),x2 3 2则切点 Q 到直线 x +y =0的距离为 4,1 12 2故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.39.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,m )r,半径长是 .若直线2x y 3 0与圆 C 相切于点 A ( 2, 1),则mr=___________, =___________.【答案】 2, 5【解析】由题意可知k AC 1 AC : y 1 1 (x 2),把(0,m )代入直线 AC 的方程得m 2,22此时r | AC | 4 1 5 .【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线 AC 的斜率,进一步得到其方程,将(0,m )代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.40.【2019年高考浙江卷】已知椭圆 x 2y 1的左焦点为 F ,点 P 在椭圆上且在轴的上方,若线段 PF2x95的中点在以原点O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是___________.【答案】 15【解析】方法 1:如图,设 F 1为椭圆右焦点.由题意可知|OF |=|OM |= c= 2,由中位线定理可得 PF 1 2|OM | 4,设 P (x , y ),可得(x 2)y2 216,与方程 x 2y 1联立,可解得 x 3,x 2212(舍),9521515 P3 ,21x 又点 P 在椭圆上且在轴的上方,求得 ,所以k PF15 . 222方法 2:(焦半径公式应用)由题意可知|OF |=|OM |= c= 2,32由中位线定理可得PF1 2|OM | 4,即a ex p 4 x p ,1515,所以P 3 ,21从而可求得 k PF 15 .222【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁. 41.【2018年高考全国I卷文数】直线y x 1与圆x y2 22y 3 0交于A,B两点,则AB ________.【答案】2 2y 1 2 4,所以圆的圆心为0, 1,且半径是2,【解析】根据题意,圆的方程可化为 x20 1 1根据点到直线的距离公式可以求得d 1 2 2,12结合圆中的特殊三角形,可知AB 2 4 2 2 2,故答案为2 2 .【名师点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形,即半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形,利用勾股定理求得弦长.42.【2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】x y 2x 02 2【解析】设圆的方程为 x2 y2 Dx Ey F 0,圆经过三点(0,0),(1,1),(2,0),F 0 D 2则 1 1 D E F 0,解得 E 0,则圆的方程为 x2 y22x 0.F 04 0 2D F 0【名师点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.43.【2018年高考浙江卷】已知点 P (0,1),椭圆 x2+y =m (m >1)上两点 A ,B 满足 AP 2PB ,则当24m =___________时,点 B 横坐标的绝对值最大.【答案】5【解析】设 A (x 1, y 1), B (x 2, y 2),x 1 2x 2,1 y 1 2(y 2 1),由 AP 2PB 得所以 y 1 2y 2 3,x 12x 22因为 A , B 在椭圆上,所以 4 y 12m , 4 y 22 m ,4x 22(2y 2 3)2 m ,所以4所以 x 22(y 2 3)m 2,424与 x 22m 对应相减得 y 3 m 1 (m y 22, x 22210m 9) 4,2444当且仅当m 5时取最大值.【名师点睛】解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.44.【2018年高考北京卷文数】若双曲线 x a22 y 1(a 0)的离心率为25,则a ________________.24【答案】4【解析】在双曲线中c a2b 2a 2 4,且e ac 5,2a 2 4 5,即a 2 16,2所以a因为a 0,所以a 4.数学运算.在求解有关离心率的问题时,一般不直接求出 c 和 a 的值,而是根据题目给出的条件,建立关于参数 c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.45.【2018年高考北京卷文数】已知直线 l 过点(1,0)且垂直于轴,若 l 被抛物线 y 4ax 截得的线段2长为 4,则抛物线的焦点坐标为_________.【答案】 1,0 【解析】由题意可得,点 P 1,2 在抛物线上,将 P 1,2 代入 y 2 4ax 中,解得a 1, y 4x ,由2抛物线方程可得:2p 4, p 2, p 1, 焦点坐标为 1,0 .2【名师点睛】此题考查抛物线的相关知识,属于易得分题,关键在于能够结合抛物线的对称性质,得到抛物线上点的坐标,再者熟练准确记忆抛物线的焦点坐标公式也是保证本题能够得分的关键.根据题干描述画出相应图形,分析可得抛物线经过点 1,2 ,将点 1,2 坐标代入可求参数的值,进而可求焦点坐a标.x 22 by 22 1(a 0,b 0)的右焦点F (c ,0)46.【2018年高考江苏卷】在平面直角坐标系 xOy 中,若双曲线a到一条渐近线的距离为 3 c ,则其离心率的值是________________.2【答案】2bc 0bcc【解析】因为双曲线的焦点 F (c ,0)到渐近线 y b x ,即bx ay 0的距离为a b2 2b ,a所以b3 c ,2因此a 2c 2b 2c23 c 2 1 c 2,a 1 c ,e 2.442。
2013年全国各地高考文科数学试题分类
平面解析几何及详解答案
一、选择题
1 .(2013年高考重庆卷(文))设P是圆22
-++=上的动点,Q是直线
x y
(3)(1)4
x=-上的动点,则PQ的最小值为()3
A.6 B.4 C.3 D.2
【答案】B
2 .(2013年高考江西卷(文))如图.已知l1⊥l2,圆心在l1上、半径为1m的
圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤x≤1,单位:s)的函数y=f(t)的图像大致为
【答案】B
3 .(2013年高考天津卷(文))已知过点P(2,2) 的直线与圆225
-相
+=
x y
(1)
切, 且与直线10ax y -+=垂直, 则a = ( )
A .12
-
B .1
C .2
D .12
【答案】C
4 .(2013年高考陕西卷(文))已知点M (a ,b )在圆221:O x y +=外, 则直线ax
+ by = 1与圆O 的位置关系是 ( )
A .相切
B .相交
C .相离
D .不确定
【答案】B
5 .(2013年高考广东卷(文))垂直于直线1y x =+且与圆221x y +=相切于第一
象限的直线方程是 ( )
A .20x y +-=
B .10x y ++=
C .10x y +-=
D .20x y ++=
【答案】A 二、填空题
6 .(2013年高考湖北卷(文))已知圆
O
:
225
x y +=,直线
l :cos sin 1x y θθ+=(π
02
θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则
k =________.
【答案】4
7 .(2013年高考四川卷(文))在平面直角坐标系内,到点
(1,2)A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是__________
【答案】(2,4)
8 .(2013年高考江西卷(文))若圆C 经过坐标原点和点(4,0),且与直线
y=1相切,则圆C 的方程是_________. 【答案】22325
(2)()2
4
x y -++=
9 .(2013年高考湖北卷(文))在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均
为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =. (Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是__________;
(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点
多边形对应的71N =,18L =, 则S =__________(用数值作答).
【答案】(Ⅰ)3, 1, 6 (Ⅱ)79
10.(2013年高考浙江卷(文))直线y=2x+3被圆x 2+y 2-6x-8y=0所截得的弦
长等于__________.
【答案】4511.(2013年高考山东卷(文))过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最
短的弦长为__________ 【答案】22三、解答题
12.(2013年高考四川卷(文))
已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于
,M N 两点.
(Ⅰ)求k 的取值范围; (Ⅱ)设(,)Q m n 是线段MN 上的点,且222
211
||||||OQ OM ON =+
.
请将n 表示为m 的函数.
【答案】解:(Ⅰ)将x k y =代入22(4)4x y +-=得 则 0128)1(22=+-+x k x k ,(*)由
012)1(4)8(22>⨯+--=∆k k 得 32>k .
所以k 的取值范围是),3()3,(+∞--∞Y
(Ⅱ)因为M 、N 在直线l 上,可设点M 、N 的坐标分别为),(11kx x ,),(22kx x ,则
2
1
22
)1(x k OM +=,2222)1(x k ON +=,又22222)1(m k n m OQ +=+=,
由
2
2
2
112ON
OM
OQ
+
=
得,
2
2221222)1(1
)1(1)1(2x k x k m k ++
+=+,
所以2
2
2121221222122)(1
12x x x x x x x x m -+=+= 由(*)知 2
2118k
k x x +=+,2
21112
k x x +=
,
所以 3
536
22-=
k m , 因为点Q 在直线l 上,所以m
n k =,代入3
536
2
2-=
k m 可得363522=-m n , 由3
5362
2-=
k m 及32>k 得 302
<<m ,即 )3,0()0,3(Y -∈m . 依题意,点Q 在圆C 内,则0>n ,所以 5
180
15533622+=+=
m m n ,
于是,n 与m 的函数关系为 5
180
152+=
m n ()3,
0()0,3(Y -
∈m )。