高中物理天体运动知识
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
高三天体运动知识点天体运动是宇宙中各类物体的运动规律,涵盖了天文学的基础知识。
作为高中生,了解天体运动的基本概念、规律和相关知识点是我们必不可少的一部分。
下面,我将为大家介绍几个高三天体运动的重要知识点。
知识点一:地球的自转和公转地球的自转是指地球以自己的轴为中心,在24小时内完成一次旋转。
这一自转运动使得地球表面上的天空看起来像是星星和太阳在我们头顶上运动。
地球自转的方向是由地球的北极指向南极,自西向东。
地球的公转是指地球绕太阳运动,公转周期为365.25天(即一年)。
这一运动决定了四季的变化,使地球上各个地区不同时间经历着不同的气候和天气变化。
知识点二:日地距离和地球的椭圆轨道地球与太阳之间的距离并非固定不变,而是处于一定的变化之中。
地球与太阳的距离最近时约为1.47亿公里,最远时约为1.52亿公里。
这种距离的变化称为地球的近地点和远地点。
地球绕太阳的轨道并非完全是一个圆形,而是近似于一个椭圆。
离心率是衡量椭圆轨道离圆的程度,地球的离心率约为0.017。
这一椭圆轨道使得地球在公转过程中距离太阳有所变化。
知识点三:地球的倾斜轴和地球两极地球的自转轴与公转平面倾斜约23.5度,这一倾斜角度被称为倾斜轴。
地球的倾斜轴是导致地球上季节变化的重要原因之一。
地球上的两个极点分别是北极和南极。
北极位于地球的北端,南极位于地球的南端。
由于地球自转轴倾斜,使得地球上不同区域的太阳照射角度和时间发生改变,从而形成了不同地区的气候特点和季节变化。
知识点四:日食和月食当月球处于地球和太阳之间,太阳的光线被月球遮挡,地球的观测者就会看到太阳被阴影遮蔽的现象,这就是日食。
日食分为全食、偏食和环食。
当月球进入地球和太阳之间,地球的阴影遮住了月球,使得月球暗淡或者完全消失,这就是月食。
月食分为全食、半影食和偏食。
知识点五:星座和星系星座是指人们观测到的天空上一组遥远星星的集合。
我们通常将天空划分成12个星座,其中每个星座都有其特定的名称和象征。
高中物理天体运动公式总结1. 天体运动基础知识在我们仰望星空的时候,天体的运动其实并不神秘,只要掌握了几个基本的公式,大家就能明白宇宙中那些美丽的运动规律啦。
1.1 行星运动首先,行星绕太阳运动的轨道是椭圆的,太阳在一个焦点上。
这个基本事实是由开普勒提出的哦。
开普勒定律中有个非常重要的公式:( T^2 / R^3 = text{常数} ),其中( T ) 是行星的公转周期,( R ) 是行星与太阳的平均距离。
简单来说,这就是“公转周期的平方与轨道半径的立方成正比”。
1.2 引力定律再说说牛顿的引力定律,这可是基础中的基础!牛顿告诉我们,两个天体之间的引力可以用公式表示:( F = G frac{m_1 cdot m_2}{r^2} )。
其中,( G ) 是引力常数,( m_1 ) 和( m_2 ) 是两个天体的质量,( r ) 是它们之间的距离。
这个公式告诉我们,距离越远,引力越小;质量越大,引力越大。
2. 运动公式的实际应用了解了这些基本公式后,我们就可以运用这些理论来解决实际问题啦。
2.1 计算天体轨道如果我们知道了一个行星的公转周期 ( T ) 和距离 ( R ),我们可以利用开普勒定律来计算其他行星的运动情况。
例如,如果你想知道火星的轨道特性,只需要知道火星的周期和它离太阳的平均距离就行了,计算出来的结果非常可靠。
2.2 星体的速度天体的速度也是一个很有意思的话题!使用公式 ( v = sqrt{G frac{M}{r}} ),你可以计算天体在其轨道上的线速度。
其中 ( M ) 是天体的质量,( r ) 是天体到天体的距离。
这个公式说明了,天体离中心越近,速度越快。
3. 天体运动中的特殊现象在天体运动中,还有一些特别的现象值得一提,它们有时让我们感到惊奇和震撼。
3.1 行星逆行比如说行星逆行现象,这可真是天文界的奇妙现象。
在某些时候,一些行星看起来好像在自己的轨道上倒退了。
这其实是因为地球和这些行星之间的相对运动造成的,虽然有点拗口,但你可以把它想象成交通堵塞的时候你看别人车子倒退的感觉。
高一物理天体运动知识点总结一、天体运动的基本概念天体运动是指天体在空间中的运动过程,包括行星、卫星、恒星等天体的运动。
天体运动是宇宙中的基本现象之一,研究天体运动可以揭示宇宙的本质和规律。
二、天体运动的基本规律1. 开普勒定律开普勒定律是描述行星运动的基本规律,包括开普勒第一定律(行星绕太阳运动的轨道是一个椭圆)、开普勒第二定律(行星在轨道上的面积速率是恒定的)和开普勒第三定律(行星公转周期的平方与轨道长轴的立方成正比)。
2. 轨道运动天体在宇宙中的运动基本上都是绕着某个中心进行的,这个中心可以是恒星、行星或其他天体。
天体绕中心运动的轨道有椭圆、圆、抛物线和双曲线四种类型。
3. 万有引力定律万有引力定律是描述天体之间相互作用的基本规律,它表明任何两个物体之间都存在引力,且引力的大小与两个物体的质量成正比,与它们之间的距离的平方成反比。
万有引力定律是描述天体运动的重要依据。
三、天体运动的影响因素1. 天体的质量天体的质量决定了其对其他天体的引力大小,质量越大,引力越大。
2. 天体之间的距离天体之间的距离越近,它们之间的引力就越大,反之亦然。
3. 初始速度天体在开始运动时的初始速度也会影响其轨道形状,初始速度越大,轨道越开放,初始速度越小,轨道越封闭。
四、天体运动的应用1. 行星轨道计算利用开普勒定律和万有引力定律,可以计算行星的轨道形状、周期等参数,从而更好地了解行星的运动规律。
2. 卫星发射与轨道设计在卫星发射过程中,需要根据地球的引力和速度等因素,确定卫星的发射角度和速度,以使卫星进入预期的轨道。
3. 天文观测与导航系统天体运动的知识可以帮助天文学家进行天文观测,研究宇宙的演化和变化。
此外,天体运动的规律也是导航系统中的重要基础,如全球定位系统(GPS)就是基于卫星运动的原理来实现位置定位的。
五、天体运动的未解之谜尽管我们对天体运动有了深入的研究,但仍有一些未解之谜。
例如,黑洞的运动规律、宇宙的扩张速度等问题,仍需要进一步的研究和探索。
物理高一必修二天体知识点物理高一必修二天体知识点主要包括有关天体的基本概念、行星运动和引力定律等内容。
以下将对这些知识点进行详细介绍。
一、基本概念1. 天体:指存在于宇宙中的各种天体,如恒星、行星、卫星等。
2. 星系:由大量星体组成的天体系统,如银河系、仙女座星系等。
3. 宇宙:包括了所有存在的空间、时间和能量。
宇宙是无限的。
二、行星运动1. 行星运动:行星绕太阳运动的轨迹被称为椭圆轨道。
这种运动被称为行星公转。
2. 椭圆轨道:椭圆轨道由近日点和远日点组成。
近日点是离太阳最近的点,远日点是离太阳最远的点。
3. 开普勒三定律:开普勒通过实验和观察总结出了行星运动的三个定律:- 第一定律:行星运动轨道为椭圆,太阳位于椭圆的一个焦点上。
- 第二定律:相同时间内,行星在椭圆轨道上扫过的面积相等。
- 第三定律:行星公转周期的平方与平均距离的立方成正比。
三、引力定律1. 引力:物体之间的吸引力称为引力。
引力是一种万有力,适用于所有物体之间的相互作用。
2. 引力定律:牛顿通过实验得出了引力定律,即任何两个物体之间的引力与它们质量的乘积成正比,与它们距离的平方成反比。
3. 地球上的重力:地球对物体的吸引力即为重力,重力的大小取决于物体的质量和离地球的距离。
四、天体的性质1. 恒星:恒星是由巨大的氢气球体中心核聚变产生的能量而发光的天体。
恒星通过核融合反应将氢转变为氦,并释放大量能量。
2. 卫星:绕行行星或恒星的天体称为卫星。
例如,地球的卫星是月球。
3. 小行星:太阳系中绕太阳运行,没有清理出来的一些天体,它们的体积较小,不具备行星特征。
它们主要存在于小行星带中。
总结:物理高一必修二天体知识点主要包括天体的基本概念、行星运动和引力定律等内容。
掌握这些知识对于理解宇宙的奥秘和天体运动有着重要的意义。
通过学习天体知识,我们可以更好地理解地球的运动、星体的特性以及宇宙的起源和演化。
高中物理天体知识点在高中物理中,天体知识是一个重要且有趣的部分。
它不仅能帮助我们理解宇宙的奥秘,还在考试中占据着一定的比重。
下面,咱们就来详细聊聊高中物理中的天体知识点。
首先,咱们得了解万有引力定律。
这可是天体知识的核心基石。
万有引力定律指出,任何两个质点都存在通过其连心线方向上的相互吸引的力,该引力大小与它们质量的乘积成正比、与它们距离的平方成反比,公式表示为:F = G (m1 m2) / r²,其中 F 是两个物体之间的引力,G 是万有引力常量,m1 和 m2 分别是两个物体的质量,r 是两个物体质心的距离。
基于万有引力定律,我们可以推导出很多重要的天体运动公式和结论。
比如,对于绕中心天体做匀速圆周运动的天体,其向心力由万有引力提供。
假设中心天体质量为 M,环绕天体质量为 m,环绕天体的轨道半径为 r,线速度为 v,角速度为ω,周期为 T ,则有:向心力 F 向= m v²/ r ,又因为 F 向= F 引,所以可得 v =√(GM / r) 。
角速度ω = v / r =√(GM / r³) 。
周期 T =2πr / v =2π√(r³/ GM) 。
知道了这些公式,我们就能解决很多关于天体运动的问题啦。
再来看看天体的轨道。
天体的轨道通常可以分为椭圆、圆形等。
在高中阶段,我们重点研究的是圆形轨道。
对于圆形轨道,天体的速度大小是恒定的,但方向不断变化。
而且,轨道半径越大,天体的线速度越小,角速度越小,周期越大。
还有一个重要的概念是同步卫星。
同步卫星是指其绕地球运行的周期与地球自转周期相同的卫星。
同步卫星的轨道高度是固定的,大约在距离地面 36000 千米的高空。
它的特点是始终位于地球赤道上空的某一点,相对地球静止。
在研究天体问题时,我们常常要用到黄金代换公式。
在地球表面,物体受到的重力近似等于地球对物体的万有引力,即 mg = G M m /R²,可得 GM = gR²,其中 g 是地球表面的重力加速度,R 是地球的半径。
高三天体问题知识点天体问题是物理学中的一个重要研究领域,涉及到天体运动、引力、行星轨道等内容。
在高三物理学习中,我们需要掌握一些关键的天体问题知识点。
本文将从天体运动、行星轨道和引力三个方面来介绍高三物理学习中的天体问题知识点。
一、天体运动知识点1. 行星公转:行星在太阳周围做椭圆形轨道运动,公转周期是由行星质量和距离太阳的半长轴决定的。
根据开普勒第二定律,行星在椭圆轨道上的相等时间内扫过的面积是相等的。
2. 地球自转:地球自西向东自转,自转周期为24小时。
地球自转导致了地球的日晷现象,即昼夜交替的现象。
3. 星空的运动:由于地球自转和公转,星空中的星星看起来会有运动。
恒星的视运动通常分为南北视运动和东西视运动。
二、行星轨道知识点1. 椭圆轨道:行星绕太阳运动的轨道通常是一个椭圆。
椭圆有两个焦点,太阳位于其中一个焦点上。
椭圆的长轴和短轴决定了椭圆的形状和大小。
2. 圆形轨道:圆形轨道是一种特殊的椭圆轨道,它的长轴和短轴相等,即椭圆的离心率为零。
地球绕太阳的轨道就是一个接近圆形的椭圆轨道。
3. 开普勒定律:开普勒定律是描述行星运动的经验规律。
包括开普勒第一定律(椭圆轨道定律)、开普勒第二定律(面积定律)和开普勒第三定律(调和定律)。
三、引力知识点1. 引力的概念:引力是物质之间相互吸引的作用力,是宇宙中最普遍的力之一。
地球表面上的物体受到的重力大小与其质量成正比。
2. 引力定律:牛顿引力定律是描述引力作用的定律,它表明物体间的引力大小与它们的质量成正比,与它们的距离的平方成反比。
3. 太阳引力和行星运动:太阳对行星的引力决定了行星的运动轨迹和速度。
根据万有引力定律,太阳和行星之间的引力与它们的质量和距离有关。
通过对以上天体问题的知识点进行了解,我们能够更好地理解宇宙中的天体运动规律,进一步认识到人类在宇宙中的微小和脆弱。
天体问题是物理学习中的一部分,也是我们对宇宙的探索和理解的重要组成部分。
希望本文对高三物理学习中的天体问题知识点的了解有所帮助,并能够激发对宇宙的好奇与探索的热情。
高中物理天体运动知识点总结一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g(从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。
高中物理天体运动知识点在高中物理的学习中,天体运动是一个重要且有趣的部分。
它不仅帮助我们理解宇宙中天体的运行规律,还为我们打开了探索未知世界的大门。
接下来,让我们一起深入了解天体运动的相关知识点。
一、开普勒定律开普勒定律是描述天体运动的基本规律,包括三条重要内容:1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
这意味着行星的轨道不是完美的圆形,而是椭圆形,且太阳并非位于中心,而是在焦点之一的位置。
2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
简单来说,就是行星在靠近太阳时运动速度较快,远离太阳时运动速度较慢,但单位时间内扫过的面积相同。
3、开普勒第三定律(周期定律):所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值都相等。
用公式表示为:$\frac{a^3}{T^2} = k$,其中$a$是轨道半长轴,$T$是公转周期,$k$是一个对所有行星都相同的常量,但对于不同的恒星系统,$k$值不同。
二、万有引力定律万有引力定律是由牛顿发现的,它指出:任何两个物体之间都存在相互吸引的力,其大小与这两个物体的质量乘积成正比,与它们之间距离的平方成反比。
公式为:$F = G\frac{m_1m_2}{r^2}$,其中$F$是两个物体之间的引力,$G$是引力常量,约为$667×10^{-11} N·m^2/kg^2$,$m_1$和$m_2$分别是两个物体的质量,$r$是两个物体质心之间的距离。
万有引力定律是天体运动的核心定律,它解释了天体之间的相互作用和运动规律。
例如,地球围绕太阳公转就是因为受到太阳对地球的万有引力作用。
三、天体质量和密度的计算1、利用万有引力定律计算天体质量对于绕中心天体做匀速圆周运动的天体,可根据万有引力提供向心力来计算中心天体的质量。
假设一个天体$m$绕中心天体$M$做匀速圆周运动,轨道半径为$r$,周期为$T$,则有:$G\frac{Mm}{r^2} =m\frac{4\pi^2}{T^2}r$,解得中心天体质量$M =\frac{4\pi^2r^3}{GT^2}$。
高中物理天体运动公式大全1. 万有引力定律公式。
- F = G(Mm)/(r^2)- 其中F是两个物体间的万有引力,G = 6.67×10^-11N· m^2/kg^2(引力常量),M和m分别是两个物体的质量,r是两个物体质心之间的距离。
2. 天体做圆周运动的基本公式(以中心天体质量为M,环绕天体质量为m,轨道半径为r)- 向心力公式。
- 根据万有引力提供向心力F = F_向- G(Mm)/(r^2)=mfrac{v^2}{r}(可用于求线速度v=√(frac{GM){r}})- G(Mm)/(r^2) = mω^2r(可用于求角速度ω=√(frac{GM){r^3}})- G(Mm)/(r^2)=m((2π)/(T))^2r(可用于求周期T = 2π√((r^3))/(GM))- G(Mm)/(r^2)=ma(a=(GM)/(r^2),这里的a是向心加速度)3. 黄金代换公式。
- 在地球表面附近(r = R,R为地球半径),mg = G(Mm)/(R^2),可得GM = gR^2。
这个公式可以将GM用gR^2替换,方便计算。
4. 第一宇宙速度公式(近地卫星速度)- 方法一:根据G(Mm)/(R^2) = mfrac{v^2}{R},且mg = G(Mm)/(R^2),可得v=√(frac{GM){R}}=√(gR)(R为地球半径,g为地球表面重力加速度),v≈7.9km/s。
- 第一宇宙速度是卫星绕地球做匀速圆周运动的最大环绕速度,也是卫星发射的最小速度。
5. 第二宇宙速度公式(脱离速度)- v_2=√(frac{2GM){R}},v_2≈11.2km/s,当卫星的发射速度大于等于v_2时,卫星将脱离地球的引力束缚,成为绕太阳运动的人造行星。
6. 第三宇宙速度公式(逃逸速度)- v_3=√((2GM_日))/(r_{地日) + v_地^2}(其中M_日是太阳质量,r_地日是日地距离,v_地是地球绕太阳的公转速度),v_3≈16.7km/s,当卫星的发射速度大于等于v_3时,卫星将脱离太阳的引力束缚,飞出太阳系。
“万有引力定律”习题归类例析.一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由mg=G 得 .(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.)[例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为设初始平抛小球的初速度为v,则水平位移为x=vt.有○1当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有②在星球表面上物体的重力近似等于万有引力,有mg=G ③联立以上三个方程解得而天体的体积为,由密度公式得天体的密度为。
2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为[例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)()A.地球绕太阳运行的周期T和地球中心离太阳中心的距离rB.月球绕地球运行的周期T和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T和轨道半径r[解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D项正确.二、人造地球卫星的运动参量与轨道半径的关系问题根据人造卫星的动力学关系可得由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为()A.B.C.D.[解析]由可得卫星的运动周期与轨道半径的立方的平方根成正比,由可得轨道半径,然后再由得线速度。
所以正确答案为C项.三、地球同步卫星问题卫星在轨道上绕地球运行时,其运行周期(绕地球一圈的时间)与地球的自转周期相同,这种卫星轨道叫地球同步轨道,其卫星轨道严格处于地球赤道平面内,运行方向自西向东,运动周期为23小时56分(一般近似认为周期为24小时),由得人造地球同步卫星的轨道半径,所以人造同步卫星离地面的高度为,利用可得它运行的线速度为3.07 km/s.总之,不同的人造地球同步卫星的轨道、线速度、角速度、周期和加速度等均是相同的.不一定相同的是卫星的质量和卫星所受的万有引力.人造地球同步卫星相对地面来说是静止的,总是位于赤道的正上空,其轨道叫地球静止轨道.通信卫星、广播卫星、气象卫星、预警卫星等采用这样的轨道极为有利一颗静止卫星可以覆盖地球大约40%的面积,若在此轨道上均匀分布3颗卫星,即可实现全球通信或预警.为了卫星之间不互相千扰,大约30左右才能放置1棵,这样地球的同步卫星只能有120颗.可见,空间位置也是一种资源。
[例4]关于“亚洲一号”地球同步通讯卫星,下述说法正确的是()A.已知它的质量是1.24 t,若将它的质量增为2.84 t,其同步轨道半径变为原来的2倍B.它的运行速度为7.9 km/sC.它可以绕过北京的正上方,所以我国能利用其进行电视转播D.它距地面的高度约为地球半径的5倍,所以卫星的向心加速度约为其下方地面上物体的重力加速度的[解析]同步卫星的轨道半径是一定的,与其质量的大小无关.所以A项错误.因为在地面附近绕地球做匀速圆周运动的卫星的速度近似等于7.9 km/ s,而卫星的线速度随轨道半径的增大而减小,所以同步卫星的线速度一定小于7.9 km/s,实际计算表明它的线速度只有3.07 km/s。
所以B项错误.因同步卫星的轨道在赤道的正上方,北京在赤道以北,所以同步轨道不可能过北京的正上方.所以C 项错误.同步卫星的向心加速度,物体在地面上的重力加速度,依题意,所以。
D选项正确。
四、求天体的第一宇宙速度问题人造地球卫星的线速度可用求得可得线速度与轨道的平方根成反比,当r=R 时,线速度为最大值,最大值为7.9 km/s. (实际上人造卫星的轨道半径总是大于地球的半径,所以线速度总是小于7.9 km/s)这个线速度是地球人造卫星的最大线速度,也叫第一宇宙速度.发射人造卫星时,卫星发射的越高,克服地球的引力做功越大,发射越困难,所以人造地球卫星发射时,一般都发射到离地很近的轨道上,发射人造卫星的最小发射速度为7. 9 km/ s.在其他的星体上发射人造卫星时,第一宇宙速度也可以用类似的方法计算,即,式中的M、R、g 分别表示某星体的质量、半径、星球表面的重力加速度.[例5]若取地球的第一宇宙速度为8 km/s,某行星的质量是地球质量的6倍,半径是地球的1.5倍,这顺行星的第一宇宙速度约为()A. 2 km/sB. 4 km/sC. 16 km/sD. 32 km/s[解析]由得8 m/s,某行星的第一宇宙速度为16 m/s五、人造卫星的变轨问题发射人造卫星要克服地球的引力做功,发射的越高,克服地球的引力做功越多,发射越困难.所以在发射同步卫星时先让它进入一个较低的近地轨道(停泊轨道)A,然后通过点火加速,使之做离心运动,进入一个椭圆轨道(转移轨道)B,当卫星到达椭圆轨道的远地点时,再次通过点火加速使其做离心运动,进人同步轨道C。
[例6]如图所示,轨道A与轨道B相切于P点,轨道B与轨道C相切于Q点,以下说法正确的是()A.卫星在轨道B上由P向Q运动的过程中速率越来越小B.卫星在轨道C上经过Q点的速率大于在轨道A上经过P点的速率C.卫星在轨道B上经过P时的向心加速度与在轨道A上经过P点的向心加速度是相等的D.卫星在轨道B上经过Q点时受到地球的引力小于经过P点的时受到地球的引力[解析]卫星在轨道B上由P到Q的过程中,远离地心,克服地球的引力做功,所以要做减速运动,所以速率是逐渐减小的,A项正确.卫星在A、C轨道上运行时,轨道半径不同,根据可知轨道半径越大,线速度小,所以有,所以B项错误.卫星在A、B两轨道上经过P点时,离地心的距离相等,受地球的引力相等,所以加速度是相等的,C项正确、卫星在轨道B上经过Q点比经过P点时离地心的距离要远些,受地球的引力要小些,所以D项正确.六、人造天体的交会对接问题交会对接指两个航天器(宇宙飞船、航天飞机等)在太空轨道会合并连接成一个整体.它是实现太空装配、回收、补给、维修、航天员交换等过程的先决条件.空间交会对接技术包括两部分相互衔接的空间操作,即空间交会和空间对接.所谓交会是指两个或两个以上的航天器在轨道上按预定位置和时间相会,而对接则为两个航天器相会后在结构上连成一个整体.[例7]关于航天飞机与空间站对接问题,下列说法正确的是()A.先让航天飞机与空间站在同一轨道上,然后让航天飞机加速,即可实现对接B.先让航天飞机与空间站在同一轨道上,然后让航天飞机减速,即可实现对接C.先让航天飞机进入较低的轨道,然后再对其进行加速,即可实现对接D.先让航天飞机进入较高的轨道,然后再对其进行加速,即可实现对接[解析]航天飞机在轨道运行时,若突然对其加速时,地球对飞机的万有引力不足以提供航天飞机绕地球做圆周运动的向心力,航天飞机就会做离心运动,所以选项A、B、D不可能实现对接。
正确答案为C项。
七、双星问题两棵质量可以相比的恒星相互绕着旋转的现象,叫做双星.双星中两棵子星相互绕着旋转看作匀速圆周运动的向心力由两恒星间的万有引力提供.由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,因两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,线速度与两子星的轨道半径成正比.[例8]两棵靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是()A.它们做圆周运动的角速度之比与其质量成反比B.它们做圆周运动的线速度之比与其质量成反比C.它们做圆周运动的半径与其质量成正比D.它们做圆周运动的半径与其质量成反比[解析]两子星绕连线上的某点做圆周运动的周期相等,角速度也相等.由得线速度与两子星圆周运动的半径是成正比的.因为两子星圆周运动的向心力由两子星间的万有引力提供,向心力大小相等,由可知,所以它们的轨道半径与它们的质量是成反比的.而线速度又与轨道半径成正比,所以线速度与它们的质量也是成反比的.正确答案为B、D选项.八、地面上物体随地球自转做圆周运动问题因地球自转,地球赤道上的物体也会随着一起绕地轴做圆周运动,这时物体受地球对物体的万有引力和地面的支持力作用,物体做圆周运动的向心力是由这两个力的合力提供,受力分析如图所示.实际上,物体受到的万有引力产生了两个效果,一个效果是维持物体做圆周运动,另一个效果是对地面产生了压力的作用,所以可以将万有引力分解为两个分力:一个分力就是物体做圆周运动的向心力,另一个分力就是重力,如图所示.这个重力与地面对物体的支持力是一对平衡力.在赤道上时这些力在一条直线上.在赤道上的物体随地球自转做圆周运动时,由万有引力定律和牛顿第二定律可得其动力学关系为,式中R、M、、T分别为地球的半径、质量、自转角速度以及自转周期。
当赤道上的物体“飘”起来时,必须有地面对物体的支持力等于零,即N=0,这时物体做圆周运动的向心力完全由地球对物体的万有引力提供.由此可得赤道上的物体“飘”起来的条件是:由地球对物体的万有引力提供向心力。
以上的分析对其它的自转的天体也是适用的。
[例9]地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上的物体“飘”起来,则地球转动的角速度应为原来的( )A. B. C. D.[解析]设地球原来自转的角速度为,用F表示地球对赤道上的物体的万有引力, N表示地面对物体的支持力,由牛顿第二定律得①而物体受到的支持力与物体的重力是一对平衡力,所以有②当当赤道上的物体“飘”起来时,只有万有引力提供向心力,设此时地球转动的角速度为,有③联立①、②、③三式可得,所以正确答案为B项。