第3章 电解合成
- 格式:ppt
- 大小:1.66 MB
- 文档页数:56
材料合成与制备期末复习题第零章绪论1.材料合成:材料合成是指促使原子或分子构成材料的化学或物理过程;2.材料制备:材料制备是指研究如何控制原子与分子使其构成有用的材料,但材料制备还包括在更为宏观的尺度上控制材料的结构,使其具备所需的性能和使用效能。
3.材料合成与制备的最终目标是:制造高性能、高质量的新材料以满足各种构件、物品或仪器等物件的日益发展的需求。
4.材料合成与制备的发展方向:材料的高性能化、复合化、功能化、低维化、低成本化、绿色化;5.影响热力学过程自发进行方向的因素:(1)能量因素;(2)系统的混乱度因素; 6.隔离系统总是自发的向着熵值增加的方向进行。
7.论述反应速率的影响因素:(1)浓度对反应速率的影响:对于可逆反应,增加反应物浓度可以使平衡向产物方向移动,因此,提高反应物浓度是提高产率的一个办法,但如果反应物成本很高,将反应物之一在生成后立即分离出去或转移到另一相中去,也是提高反应产率的一个很好的办法。
对于有气相的反应,如果反应前后气体物质的反应计量数不等,则增加压力会有利于反应向气体计量数小的方向进行。
另外,对于多个反应同时进行的反应,则应按主反应的情况来控制反应物的配比;(2)温度对反应速率的影响:对于一个可逆反应,正反应吸热,则逆反应就放热;如果正反应放热,则逆反应就吸热,升高温度有利于反应向吸热方向进行,不利于放热反应;对于放热反应,用冷水浴或冰浴使其降温的办法有利于反应的进行,但影响反应速率。
实际生产中,要综合考虑单位实际内的产量和转化率同时进行;(3)溶剂等对反应速率的影响:溶剂在反应中的作用:一是提供反应的场所,二是发生溶剂化效应。
溶剂最重要的物理效应即溶剂化作用,化学效应主要有溶剂分子的催化作用和容积分子作为反应物或产物参与了化学反应。
若溶剂分子与反应物生成不稳定的溶剂化物,可使反应的活化能降低,加快反应速率;若生成稳定的溶剂化物,则使反应活化能升高,降低反应速率;若生成物与溶剂分子生成溶剂化物,不论它是否稳定,都会使反应速率加快。
精品文档第3章镍电极材料镍电极的研究和应用有着悠久的历史。
早在1887年,Desmazures、Dun和Hasslacher就讨论了氧化镍作为正极活性物质在碱性电池中应用的可能性。
广泛使用的Cd/Ni、H2/Ni、Zn/Ni、Fe/Ni电池,以及近年来为消除镉污染而迅速发展起来的新型金属氢化物镍(MH-Ni)电池,都以镍电极作为正极。
特别是金属氢化物镍电池目前仍具有很高的商业价值,因此,对高容量、高活性镍正极物质的研制具有重要现实意义。
对氧化镍正极核心组分Ni(OH)2的研究,包括氧化镍电极的发展历史、Ni(OH)2及NiOOH各种结构之间的电化学转化过程、Ni(OH)2的制备方法以及氧化镍电极添加剂等,大大促进了镍系列碱性蓄电池的发展。
3.1镍电极的发展Ⅱ传统氢氧化镍电极充放电循环在β-Ni(OH)2和β-NiOOH之间进行。
在βⅢβ循环中活性物体积变化较小,并且β-NiOOH的电导率比β-Ni(OH)2的高5个数量级。
充电时由于生成β-NiOOH而使电导率逐渐增加,所以,不存在导电问题,但放电时充电态物质可被逐渐增多的、导电性差的放电态物质隔离,因而影响了Ⅱ放电效率。
通过控制电极组成和使用多种添加剂如Co和Zn,可使βⅢβ循环顺利进行。
另外,可以采取相应的预防措施来保证电极活性物质的导电性,限制电极膨胀。
近年来,电极制造工艺不断得到改进,氢氧化镍电极经历了袋式电极、穿孔金属管、烧结镍板、塑料黏结式、泡沫镍及纤维式镍电极等阶段。
烧结镍板电极技术的发明和应用在镍电极发展史上具有重要的作用和意义,但这种结构的镍电极生产工艺复杂,成本较高。
以质量轻、孔隙率高的泡沫镍做基体的泡沫镍涂膏式镍电极比容量高,适宜做MH-Ni 电池的正极。
镍纤维、镀镍钢纤维、镀镍石墨纤维基体因其孔径微小(约50μm)而更受青睐。
此类基体孔隙率高达95%,具有高比容量和高活性,强度好,质量轻等优点。
最初采用阴极浸渍法向泡沫镍基板中填充活性物质,现在使用较多的是将Ni(OH)2以泥浆形式与基板混合,称为“悬浮浸渍技术”。
第1章溶胶-凝胶法(Sol-gel method)⏹胶体:分散相粒径很小的胶体体系,分散相质量忽略不计,分子间作用力主要为短程作用力.⏹溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在1~100nm之间。
⏹凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体,凝胶中分散相的含量很低,一般在1%~3%之间。
⏹溶胶-凝胶法:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
⏹水解度:是水和金属醇盐的物质的量之比。
⏹老化时间:从凝胶开始到凝胶干燥前的时间称为老化时间⏹利用溶胶凝胶法制备陶瓷粉体材料所具有的优点?1.工艺简单,无需昂贵设备;2.对于多组元系统,该法可以大大增加化学均匀性;3.易于控制,凝胶微观结构可调控;4.掺杂范围广,化学计量准确,易于改性;5产物纯度高,烧结温度低.第二章水热与溶剂热合成⏹水热法(Hydrothermal Synthesis),是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。
⏹溶剂热法(Solvothermal Synthesis):将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。
⏹原为结晶:当选用常温常压下不可溶的固体粉末、凝胶或沉淀为前驱物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转变为结晶态。
化学“电解池”基础知识详解一、电解池的基本概念:1、电解池的主要应用用于工业制纯度高的金属,是将电能转化为化学能的一个装置(构成:外加电源,电解质溶液,阴阳电极)。
使电流通过电解质溶液或熔融电解质而在阴,阳两极引起还原氧化反应的过程。
2、通过电流使电解质溶液发生电解反应的装置。
电解池的主要部件:电源(直流电)、电解质溶液(含有可以导电的离子)、电极(插入电解质溶液中,导电并发生氧化还原反应)。
3、电解池的反应原理:在电解池中,电流通过电解质溶液时,正离子向阴极移动,负离子向阳极移动,从而形成电流。
在电极上,发生氧化还原反应,电子通过导线从电源流向电解池。
二、电解定义:1、电解是使电流通过电解质溶液(或者是熔融的电解质)而在阴、阳两极引起还原氧化反应的过程。
2、电解过程中的能量转化(装置特点)阴极一定不参与反应不一定是惰性电极;阳极不一定参与反应也不一定是惰性电极。
三、反应条件:1、连接直流电源2、阴阳电极:与电源负极相连为阴极;与电源正极相连为阳极。
3、两极处于电解质溶液或熔融电解质中。
4、两电极形成闭合回路。
四、电极反应:1、电极反应与电源的正极相连的电极称为阳极。
2、物质在阳极上失去电子,发生氧化反应。
3、阳极反应式:简记为阳氧;与电源的负极相连的电极成为阴极。
物质在阴极上得到电子,发生还原反应。
4、阴极反应式:简记为阴还(阴还)。
五、分析电解过程的思维程序:1、⾸先判断阴、阳极,分析阳极材料是惰性电极还是活泼电极。
2、再分析电解质⾸溶液的组成,找全离⾸并分阴、阳两组(不要忘记⾸溶液中的H+和OH-)。
3、然后排出阴、阳两极的放电顺序:①、阴极:阳离⾸放电顺序Ag+→Fe3+→Cu2+→H+(酸)→Fe2+→Zn2+→H+(⾸)→Al3+→Mg2+→Na+→Ca2+→K+。
②、阳极:活泼电极>S2->I->Br->Cl->OH->含氧酸根离⾸。
4、分析电极反应,判断电极产物,写出电极反应式,要注意遵循原⾸守恒和电荷守恒。
第三章 水、电解质紊乱(3-1)第一节 水、钠代谢紊乱 一、 正常的水、钠代谢 (一) 体液的容量和分布【体液】 体内的水和溶解在其中的电解质、低分子有机化合物以及蛋白质等组成。
细胞外液血浆 5%ECF 组织间液 15% 细胞内液ICF体液总量的分布受年龄、性别、胖瘦影响。
新生儿、男性、瘦者体液总量多。
(二)体液的电解质成分 【电解质(Electrolyte )】:以离子状态溶于体液中的各种无机盐或有机物。
Na +1、ICF 和ECF ,电解质成分差异大;2、血浆和组织间液,电解质构成和数量大致相等,但蛋白质含量差异大;3、各部分体液,阳离子与阴离子数的总和相等,保持电中性。
(二) 体液的渗透压——等渗 【 渗透压】:取决于溶质的分子或离子的数目,主要是电解质。
血浆渗透压280~ 310mmol/L ,在此范围内称等渗。
细胞内液与细胞外液渗透压基本相等。
正常时:血管内外、细胞内外的渗透压是相等的。
失衡时→再平衡:低渗溶液中的水向高渗溶液流动。
(四) 水的生理功能和水平衡 1、水的生理功能①促进物质代谢 ②调节体温 ③润滑 ④其他 2、水平衡1)细胞内外水的运动水自由通过 ,蛋白质、Na +、K +、Ca2+等不能自由通过。
2)血管内外水的运动蛋白质等大分子物质受限,水和电解质自由交换。
3)体内外水的运动摄入=排出水促进物质代谢、调节体温、润滑作用、使肌肉坚实柔韧。
(五)电解质的生理功能和钠平衡电解质的生理功能·维持体液的渗透平衡和酸碱平衡·维持静息电位·参与细胞动作电位的形成·参与新陈代谢和生理功能活动钠平衡钠主要由肾脏排出,具有“多吃多排,少吃少排,不吃不排”的特点。
(六)体液容量及渗透压的调节水、钠变化→细胞外液容量及渗透压变化→神经-内分泌系统调节1. 渴感——饮水增加2.水的移动调节渗透压渗透压感受器通过细胞皱缩的变化而兴奋。
3.激素调节——抗利尿激素ADH、醛固酮、心房肽ANP总结:体液渗透压的调节细胞内液向外转移 ADH↑细胞外液高渗渗透压感受器兴奋渴感醛固酮↓总结:体液容量的调节醛固酮↑血容量减少 ADH↑渴感优先恢复血容量ANP↓细胞外液低渗抑制ADH分泌及渴感的作用不明显正常的水钠代谢及调节功能维持着正常的细胞外液渗透压和容量。
微项目改进手机电池中的离子导体材料——有机合成在新型材料研发中的应用必备知识·素养奠基一、锂离子电池的工作原理1.电极材料2。
原理(1)放电(2)充电二、手机新型电池中离子导体的结构1。
离子导体中有机溶剂的结构特点(1)作为溶剂应具备溶解并传导锂离子的性能。
(2)酯基的存在能很好地提高有机溶剂对锂盐的溶解性,醚键的存在对锂离子的传导具有很好的效果。
(3)有机溶剂应该性能稳定且为固态,具有交联结构的高分子满足这一要求。
2。
离子导体材料我国科学家提出以二缩三乙二醇二丙烯酸酯与丙烯酸丁酯的共聚物做有机溶剂基体,通过与锂盐复合形成聚合物离子导体材料。
三、合成离子导体材料中有机溶剂的单体1.合成反应中一些反应原理R—C≡N+H2O RCOOH(R为H或烃基)CH2CH—CH3CH2CH—CHO+R—OH RO—CH2—CH2—OH(R为H或烃基)CH3—CH CH2+CO+H2CH3—CH2—CH2—(或)R—CHO+CH3—CHO R—CH CH-CHO(R为H或烃基)2。
合成二缩三乙二醇的方法+H2O锂-铜空气燃料电池容量高、成本低,具有广阔的发展前景。
该电池通过一种复杂的铜腐蚀“现象”产生电力,其中放电过程为2Li+Cu2O+H2O2Cu+2Li++2OH-。
(1)放电时,正极的电极反应式是什么?提示:Cu2O+H2O+2e-2OH—+2Cu。
(2)放电时,锂离子透过固体电解质向哪极移动?提示:阳离子向正极移动,则Li+透过固体电解质向Cu极移动。
(3)整个反应过程中,空气的作用是什么?提示:通空气时,铜电极被腐蚀,表面产生Cu2O,所以空气中的O2起到氧化剂的作用。
关键能力·素养形成项目活动1:设计手机新型电池中离子导体材料的结构2020年5月31日下午4时53分,我国在酒泉卫星发射中心使用长征二号丁运载火箭,成功将高分九号02星、和德四号卫星送入预定轨道,发射取得圆满成功。
此次长二丁火箭遥测系统上采用的一组锂离子蓄电池,替换了原先的一组锌银电池,在满足总体对电池的体积和重量的要求下,同时满足了电性能要求的方案。