水力压裂效果评价技术讲解
- 格式:ppt
- 大小:3.38 MB
- 文档页数:176
水力压裂技术在采矿工程中的应用与效果分析水力压裂技术是一种通过注入高压水剂以及固体颗粒,将岩石破碎并形成裂缝的技术。
它主要用于提高油气和水资源的开采效果,优化采矿工程。
本文将对水力压裂技术在采矿工程中的应用以及效果进行分析。
首先,水力压裂技术在油气开采中的应用是十分广泛的。
通过将高压水剂注入油气储层,可有效地把岩石破碎,并形成裂缝网络。
这些裂缝能够提供更大的储层表面积,从而增加开采区域的有效渗透面积。
此外,水力压裂技术还能改善储层连通性,提高油气的采集效率。
通过合理的施工设计和操作方式,可以实现裂缝的指向性扩展,进一步提高采收率。
其次,水力压裂技术在水资源开采中也发挥了重要作用。
在富水储层中,水力压裂技术能够有效地提高开采率和注水率,实现更加稳定的水资源供应。
通过水力压裂,可增加储层渗透率,加大水井的产能。
此外,水力压裂技术还可应用于地下水资源的开采,提高井水量,满足农田灌溉、城市供水等需求。
水力压裂技术在采矿工程中的应用效果也是显著的。
首先,它能够大幅度提高采收率。
通过水力压裂,可以将原本无法开采的储层有效开发,并提高采取比。
这不仅能够增加产量,还能够提高采矿效益。
其次,水力压裂技术能够增加开采井的产能,提高油气或水的产量。
这对于地下资源开采公司来说,将是一项重要的利润增长点。
此外,水力压裂技术还能够改善储层的物理性质,提高油气或水的流动性,进一步提高开采效果。
然而,水力压裂技术在应用过程中也存在一些问题。
首先,水力压裂施工成本较高,涉及到固体颗粒和高压水剂的注入,需要专业的设备和技术人员,这增加了成本投入。
其次,施工过程对环境的影响较大,可能导致水资源的浪费、地下水表面化、地震等现象。
因此,在应用水力压裂技术时,需要制定相应的环保措施,以减少环境影响。
综上所述,水力压裂技术在采矿工程中的应用与效果是非常显著的。
它能够提高油气储层的采收率,增加水资源的开采量,改善采矿工程效果。
然而,在应用过程中也需要注意环境保护和成本控制等问题。
水力压裂常用裂缝监测技术评价赵玉婷夏富国董传瑞郭显赋张颖超宋宪实(中国石化东北油气分公司有效储层改造技术项目攻关团队吉林·长春130062)摘要压裂监测的主要目的是通过采集压裂施工过程中的一些参数资料来分析地下压裂的施工进展情况和所压开裂缝的几何参数。
本文重点阐述了常用裂缝监测技术评价和测井解释结果,取得了良好的应用效果。
关键词水力压裂常用裂缝监测技术评价中图分类号:TE357.1文献标识码:A0前言水力压裂裂缝的产状直接影响着压裂改造效果。
目前,压裂改造成为低渗透储层开发的重要手段,人工裂缝对油田开发过程中井网的布置、开发中后期含水的控制等非常重要。
因此,采取准确的裂缝监测手段认识裂缝扩展规律,是非常必要的。
1常用裂缝监测技术评价1.1地面微地震监测地面微地震采用震源定位方法,通过多个观察点接收的信号来定位微地震事件,具有原理简单,费用低的特点,该技术可获取水力压裂裂缝的走向和长度,具有实施简单、处理速度快、费用低等优势;同时受地面监测条件、井底条件及周围环境影响较多,特别是对于埋藏大于3000m井深的低渗透储层,监测的有效信号就愈少。
地面微地震监测可以满足一般直斜井裂缝监测的需要,但对微地震压裂井的监测要注意选井选台,尽量减小地面噪声对其影响;在水平井多级分段压裂中应用较少。
1.2井下微地震监测井下微地震裂缝监测通过采集微震信号并对其进行处理和解释,获得裂缝的参数信息从而实现压裂过程实时监测,可用来管理压裂过程和压裂后分析。
井下微地震监测技术是通过放置在压裂井邻井井下的一系列检波器串接收压裂微地震震源信号,然后将接收到的信号进行资料处理,反推出震源的空间位置,这个震源位置就代表了裂缝的位置。
同时也可以获得裂缝方位、裂缝深度、裂缝的延伸范围、裂缝的高度、裂缝发生时序等。
该技术在东北油气分公司应用3井次,分别是SW33-6HF、ZW2-10-1和YQ25-2HF井。
1.3微破裂影像监测微破裂四维向量扫描影像裂缝监测技术是通过在近地表远离井场噪音源布置12套数据采集站系统形成采集仪器阵列,共同接收地下油储层液体流动压力引起的岩石微破裂所产生全体体波——纵波(P波)和横波(S波);利用多波三分量数据进行矢量叠加、振幅反演计算、四维相关可视化裂缝形态解释技术,在时间域上分析裂缝的演变过程。
天然气井的水力压裂技术及其效果分析一、概述天然气井水力压裂技术是通过人工将大量压力水注入井下,以控制良好条件下的压力释放和裂缝扩张,从而提高天然气采集效率。
目前,天然气行业井数逐年增加,天然气井的水力压裂技术在采气过程中起着举足轻重的作用。
本文将介绍天然气井水力压裂技术及其效果分析。
二、天然气井水力压裂技术的原理水力压裂技术是指通过泵注的压力,将液体(建议使用水)注入井底,通过一定的压力控制,裂缝从井底向井壁扩张,达到破碎地层、增大岩石孔隙度的目的,进而释放岩石中的天然气,增加采气效率。
随着现代技术的发展,现如今的地质勘探已经采用了尖端的压裂技术,并开展了相应的研发活动,以适应不断变化的天然气井采掘需求。
三、天然气井水力压裂技术的优点1. 提高天然气采集效率:压裂可以使天然气沉淀体积变大,从而提高采集效率。
2. 增加天然气储备:通过压裂技术,能够发挥天然气储藏潜力,为能源储备提供技术支持,从而为国家经济的快速发展提供稳固基础。
3. 节约能源成本:采气过程中,不同的采气方式所造成的成本差异不容忽视。
而水力压裂技术采气效率高、节约成本而成为行业热门。
四、天然气井水力压裂技术的劣势1. 压制达不到预期效果:尽管现代压裂技术已经发展多年,但压制成果仍然无法完全预测,无法保证达到预期效果。
2. 环境影响:水力压裂技术会释放很多有害物质,这些物质可能对周围环境造成不利影响。
3. 停机时间:压裂过程会停机2-3天,造成资源浪费和采气效率低下。
五、天然气井水力压裂技术的应用水力压裂技术广泛应用于提高天然气采集效率,如美国等国家已经广泛使用。
此外,中国也在积极探索水力压裂技术的应用。
六、天然气井水力压裂技术的效果分析水力压裂技术的效果取决于几个因素,其中最为关键的是压力和研究区域的地质情况。
研究显示,水力压裂技术可以显著提高天然气探采可能性,但其成果仍有不确定性。
七、结论天然气井水力压裂技术作为一种被广泛应用于能源行业的技术,兼具优点和劣势。
第四章 水力压裂技术水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中, 在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,在井底附近地层 产生裂缝。
继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在 支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝,使井达到 增产增注的目的。
水力压裂增产增注的原理主要是降低了井底附近地层中流体的渗流阻力和改变了流体的渗流状态,使原来的径向流动改变为油层流向裂缝近似性的单向流动和裂缝与井筒间的单向流 动,消除了径向节流损失,大大降低了能量消耗。
因而油气井产量或注水井注入量就会大幅 度提高。
第一节 造缝机理在水力压裂中,了解裂缝形成条件、裂缝的形态和方位等,对有效地发挥压裂在增产、 增注中的作用都是很重要的。
在区块整体压裂改造和单井压裂设计中,了解裂缝的方位对确 定合理的井网方向和裂缝几何参数尤为重要,这是因为有利的裂缝方位和几何参数不仅可以 提高开采速度,而且还可以提高最终采收率。
造缝条件及裂缝的形态、方位等与井底附近地层的地应力及其分布、岩石的力学性质、压 裂液的渗滤性质及注入方式有密切关系。
图4一l 是压裂施工过程中井底压力随时间的变化曲 线。
P F 是地层破裂压力,P E 是裂缝延伸压力,P S 是地层压力。
图4一l 压裂过程井底压力变化曲线a — 致密岩石;b —微缝高渗岩石 在致密地层内,当井底压力达到破裂压力P F 后,地层发生破裂(图4—1中的a 点),然后在较低的延伸压力P E 下,裂缝向前延伸。
对高渗或微裂缝发育地层,压裂过程中无明 显的破裂显示,破裂压力与延伸压力相近(图4—1中的b 点)。
一、油井应力状况一般情况下,地层中的岩石处于压应力状态,作用在地下岩石某单元体上的应力为垂向 主应力σZ 和水平主应力σH (σH 又可分为两个相互垂直的主应力σx ,σY )。