蓝宝石分子晶向解析
- 格式:doc
- 大小:502.00 KB
- 文档页数:9
1.晶向的本质是蓝宝石分子结构的问题:上图为分子结构图,主要写了蓝宝石单晶六方晶系。
2. 蓝宝石晶向成像原理。
蓝宝石在这种分子结构的情况下,会有不同方向的分子层面,对X射线会有反射作用,从而产生晶向。
详细见下图:分子层形成了C面分子层形成了M面分子层形成了A面分子层形成了R面分子层形成了N面3.晶向值形成的原因:X射线在经过分子层后,会产生折射和反射。
在特定的某个角度入射会让反射的X光呈现平行状态(如下图),接收器接受的X射线强度比较大,该角度称为晶向值。
但由于各个面的分子层间隙不同,所以产生的晶向值也不同。
标准晶向值如下:C面:20°50′A面:18°55′M面:34°06′R面:26°16′N面:21°43′入射角,也叫做晶向值。
分子层间隙,各晶向分子层间隙不同,晶向值也不同。
4.分子晶向图在下图中可以直观的看出蓝宝石分子晶向。
5.蓝宝石分子结构,对其物理性能的影响。
a.光学性能:C轴均有晶光性,其他轴具有负光性。
(所以一般衬底行业都用C向晶片。
)b.硬度:A向硬度明显高于C向,具体表现在耐磨,耐刮,硬度高。
(我们磨A向砂轮需要特制的,或者明显降低研磨效率。
A向晶片大多用于作为窗口材料,如手表镜片)c.切割时M面易开裂:C面为平面,最好切。
A面为Z型锯齿状面,比较好切。
M面为阶梯锯齿状,不好切,容易切裂。
切割示意图如下:C向切割,平面,比较好切,不容易切裂A向切割,锯齿面,比较好切,不容易切裂M向切割,阶梯状锯齿面,不好切,很容易切裂6.晶向对其其他性能的影响。
未知,有其他的客户反馈,以OF面为底面2寸晶棒在R9点钟方向的晶棒不容易裂片,也有其他客户反馈,以OF面为底面4寸晶棒在R3点钟方向的晶棒不容易裂片。
个人觉得,因为蓝宝石的结构的对称性,R3和R9并没有太大的区别,只是分子有些不同,具体应该考虑使用的方面,通过实验确定。
两个N面的夹角线,无晶向。
晶体材料蓝宝⽯(Al2O3)蓝宝⽯(Sapphire,⼜称⽩宝⽯,分⼦式为Al2O3)单晶是⼀种优秀的多功能材料。
它耐⾼温,导热好,硬度⾼,透红外,化学稳定性好。
⼴泛⽤于⼯业、国防和科研的多个领域(如耐⾼温红外窗⼝等)。
同时它也是⼀种⽤途⼴泛的单晶基⽚材料,是当前蓝、紫、⽩光发光⼆极管(LED)和蓝光激光器(LD)⼯业的⾸选基⽚(需⾸先在蓝宝⽯基⽚上外延氮化镓薄膜),也是重要的超导薄膜基⽚。
除了可制作Y-系,La-系等⾼温超导薄膜外,还可⽤于⽣长新型实⽤MgB2(⼆硼化镁)超导薄膜(通常单晶基⽚在MgB2 薄膜的制作过程中会受到化学腐蚀)。
主要性能参数晶系六⽅晶系晶胞常数 a=4.748Å c=12.97Å密度 3.98(g/cm3)熔点 2040℃莫⽒硬度 9热膨胀系数 7.5 (x10-6/ oC)介电常数 ~ 9.4 @300K at A axis ~ 11.58@ 300K at C axis晶向公差 ±0.5°常规尺⼨及公差 10×3,10×5,10×10,15×15,20×15,20×20,常规厚度及公差 0.5mm,1.0mm抛光单⾯或双⾯表⾯粗糙度 Ra<5Å(5×5µm)包装 100级洁净袋,1000级超净室相关产品供应氟化锂(LiF)Ho:YAGEr:YAGNd:YAGYb:YAG磷酸钛氧钾(KTP)氟化镁晶体 MgF2⾼纯硅靶材 Si氟化钙靶材 CaF2晶体锗单晶 Ge硫化锌颗粒 ZnS硅颗粒 Si硅晶体 Si锑化铟单晶 InSb氧化镁晶体 MgO氧化铝(蓝宝⽯)晶体氟化钙粒zl 01.18。
蓝宝石晶体微提拉旋转泡生法制备蓝宝石晶体及LED衬底材料研究报告(2010-11-01 11:26:30)转载标签:美国蓝宝石晶体热交换器碳化硅十年陈股香股票分类:潜龙出水钬斺敌股池微提拉旋转泡生法制备蓝宝石晶体及LED衬底材料研究报告一、行业背景:未来高亮度照明LED的市场将非常广阔LED是发光二极管的简称(Light-Emitting-Diode),是由化合物半导体材料制成的发光器件。
其发光的基本原理是利用LED内原天职离两真个电子和空*,在外加正向电压后相互结合时将电能转化成光能,能量以光的形式开释出来。
LED是一种节能环保、寿命长和多用途的环保光源,其能耗仅为白炽灯的10%,荧光灯的50%。
LED作为一种照明光源的普及将能能够明显降低电力消耗,减少二氧化碳排放。
中国事世界上光电子技术研究发展速度最快的国家之一,随着中国"国家半导体照明工程"的启动实施,目前中国的一些研究机构和企业大大加快了产业化的步伐,美国、欧洲和日本等发达国家都积极支持LED产业的发展,出台产业支持政策。
从"十一五"计划开始,我国政府将把半导体照明工程作为一个重大工程进行推动。
国内企业大多数从事LED下游的封装和应用,所需芯片、关键设备和技术大部分得从境外进口。
手机背光源的普及推动全球LED产业快速发展;从2008年起,笔记本电脑屏幕和电视屏幕采用LED逐渐普及,是全球LED产业新的发展动力;未来高亮度照明LED的市场非常广阔其中景观照明是最大的细分市场,背光源和显示屏次之。
通过发光方式的转变,LED将电能直接转化为光能,能量转化效率大大高于白炽灯和荧光灯。
中国绿色照明工程促进项目办公室的专项调查显示,我国照明用电每年在3000亿度以上,如由LED取代,可节省1/3的照明用电,相当于总投资规模超过2000亿元的三峡工程的全年发电量。
LED作为一种照明光源的普及将能能够明显降低电力消耗,减少二氧化碳排放。
1、晶向的本质就是蓝宝石分子结构的问题:上图为分子结构图,主要写了蓝宝石单晶六方晶系。
2、蓝宝石晶向成像原理。
蓝宝石在这种分子结构的情况下,会有不同方向的分子层面,对X射线会有反射作用,从而产生晶向。
详细见下图:分子层形成了C面分子层形成了M面分子层形成了A面分子层形成了R面分子层形成了N面3、晶向值形成的原因:X射线在经过分子层后,会产生折射与反射。
在特定的某个角度入射会让反射的X光呈现平行状态(如下图),接收器接受的X射线强度比较大,该角度称为晶向值。
但由于各个面的分子层间隙不同,所以产生的晶向值也不同。
标准晶向值如下:C面:20°50′A面:18°55′M面:34°06′R面:26°16′N面:21°43′入射角,也叫做晶向值。
分子层间隙,各晶向分子层间隙不同,晶向值也不同。
4、分子晶向图在下图中可以直观的瞧出蓝宝石分子晶向。
5、蓝宝石分子结构,对其物理性能的影响。
a、光学性能:C轴均有晶光性,其她轴具有负光性。
(所以一般衬底行业都用C向晶片。
)b、硬度:A向硬度明显高于C向,具体表现在耐磨,耐刮,硬度高。
(我们磨A向砂轮需要特制的,或者明显降低研磨效率。
A向晶片大多用于作为窗口材料,如手表镜片)c、切割时M面易开裂:C面为平面,最好切。
A面为Z型锯齿状面,比较好切。
M面为阶梯锯齿状,不好切,容易切裂。
切割示意图如下:C向切割,平面,比较好切,不容易切裂A向切割,锯齿面,比较好切,不容易切裂M向切割,阶梯状锯齿面,不好切,很容易切裂6、晶向对其其她性能的影响。
未知,有其她的客户反馈,以OF面为底面2寸晶棒在R9点钟方向的晶棒不容易裂片,也有其她客户反馈,以OF面为底面4寸晶棒在R3点钟方向的晶棒不容易裂片。
个人觉得,因为蓝宝石的结构的对称性,R3与R9并没有太大的区别,只就是分子有些不同,具体应该考虑使用的方面,通过实验确定。
两个N面的夹角线,无晶向。
蓝宝石介绍蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。
目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料.2、蓝宝石晶体的生长方法常用的有两种:1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。
于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。
晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭.2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskimethod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇.蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶体加工而成.广大外延片厂家使用的蓝宝石基片分为三种:1:C-Plane蓝宝石基板这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定.2:R-Plane或M-Plane蓝宝石基板主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效率提高。
蓝宝石晶体结构
蓝宝石(Sapphire)是一种迷人的宝石,它的化学式为Al2O3(氧化铝)。
蓝宝石属于晶体结构为六方晶系(Hexagonal System)的矿物,其晶胞参数为a=b=4.756 Å(埃),c=12.998 Å,空间群为P63mc。
蓝宝石的晶体结构是由氧化铝(Al2O3)分子组成的三维晶体结构,由一个六角形的氧原子环和铝原子组成。
在晶格中,每个氧原子有6个相邻的铝原子,每个铝原子也有6个相邻的氧原子,形成了非常稳定的结构。
蓝宝石的颜色多样性,这是由于其中的某些阴离子(阳离子)被其他元素替换进去,其颜色由于颜色中心(Color Center)的形成而出现,导致一些电子被激发到一个高能级中,这就导致了替代物质时特殊的强吸收和反射。
总之,蓝宝石的晶体结构非常坚硬和稳定,这使得它在Jewellry和科技领域都有很多用途。
蓝宝石晶体介绍1、蓝宝石晶体介绍' N- Q* y+ R5 P* C 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。
目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料.4 C% ?) j9 V0 |. W2 B% y5 w2 [0 H1 f' f9 h. z7 s2、蓝宝石晶体的生长方法常用的有两种:2 c: c7 }" N: x0 H3 ~ 1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。
于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。
晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 2 p/ f1 ?8 x5 J0 {9 T3 @' k2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskime thod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇.. J+ K6 Y% m$ ~0 m0 f4 c5 v, k. h- U2 O: ` c ; h- h6 w# N0 U+ l, N2 h5 J6 E# l' G7 k蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶体加工而成# h5 `% W5 a! _1 I7 a( H[淘股吧]C7 _7 b( @+ f( C7 W n 广大外延片厂家使用的蓝宝石基片分为三种:, p, O, N* ^2 K# N2 M - O5 I2 h S2 q2 h6 ?: x1:C-Plane蓝宝石基板5 c, H( p6 J0 @3 T这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定.3 i) D2 I) m6 C) [" e0 m9 N, D) D5 a 2:R-Plane或M-Plane蓝宝石基板3 q0 P8 l! W7 U$ ~2 B1 ~2 s 主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效率提高。
国家标准《蓝宝石单晶晶向测定方法》(征求意见稿)编制说明一、工作简况1、项目简况近几年来LED 照明产业获得了快速的发展,但是相关材料和器件的相关标准几乎是空白,有关LED 衬底材料蓝宝石晶体方面的国际标准没有检索到,国内在1992 年针对硅外延的蓝宝石晶体衬底制定了国家标准GB/T 13843-1992 《蓝宝石单晶抛光衬底片》,但是相关的方法标准很少,不能满足LED 衬底材料的测试要求。
为了规范和促进我国LED 照明产业和蓝宝石晶体衬底材料的发展,必须尽快制定相关标准。
晶向是蓝宝石单晶抛光片不可缺少的技术要求,本标准规定了蓝宝石单晶晶向的X 射线衍射测试方法,适用于测定蓝宝石单晶材料大致平行于低指数晶面的表面取向。
2、任务来源及计划要求根据《国家标准委关于下达《半导体照明术语》等48 项国家标准制修订项目计划的通知》(国标委综合[2013]30 号)的要求,国家标准《蓝宝石单晶晶向方法》由中国科学院上海光学精密机械研究所负责牵头制定,计划编号为20130021-T-469,该项国家标准要求于2013年完成。
3、项目申报单位简况中国科学院上海光学精密机械研究所是我国建立最早、规模最大的激光专业研究所,成立于1964 年,现已发展成为以探索现代光学重大基础及应用基础前沿研究、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。
中科院上海光机所从上世纪70 年代开始蓝宝石晶体生长和性能研究,2001 年 4 英寸蓝宝石晶体研制获得上海科学技术进步奖一等奖,2003 大尺寸优质蓝宝石晶体研制年获得国家科技进步二等奖。
2011 年上海光机所和相关单位合作采用自主研发的泡生法生长工艺技术已经研制成功35kg的高质量蓝宝石晶体,晶体质量满足LED基片的要求。
目前已经研制出75kg 单晶生长炉的样机, 正在自主开发更大尺寸蓝宝石晶体生长炉和蓝宝石晶体。
中科院上海光机所是全国人工晶体标准委员会委员单位和全国半导体照明设备和材料标准工作组成员单位,如附件 1 所示。
蓝宝石基本知识1、蓝宝石介绍蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。
目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料.2、蓝宝石晶体的生长方法常用的有两种:1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。
于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。
晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭.2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskimethod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(S eedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇.蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶体加工而成广大外延片厂家使用的蓝宝石基片分为三种:1:C-Plane蓝宝石基板这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定.2:R-Plane或M-Plane蓝宝石基板主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效率提高。
蓝宝石晶体介绍1、蓝宝石晶体介绍' N- Q* y+ R5 P* C 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。
目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料.4 C% ?) j9 V0 |. W2 B% y5 w2 [0 H1 f' f9 h. z7 s2、蓝宝石晶体的生长方法常用的有两种:2 c: c7 }" N: x0 H3 ~ 1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。
于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。
晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 2 p/ f1 ?8 x5 J0 {9 T3 @' k2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskime thod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇.. J+ K6 Y% m$ ~0 m0 f4 c5 v, k. h- U2 O: ` c ; h- h6 w# N0 U+ l, N2 h5 J6 E# l' G7 k蓝宝石基片的原材料是晶棒,晶棒由蓝宝石晶体加工而成# h5 `% W5 a! _1 I7 a( H[淘股吧]C7 _7 b( @+ f( C7 W n 广大外延片厂家使用的蓝宝石基片分为三种:, p, O, N* ^2 K# N2 M - O5 I2 h S2 q2 h6 ?: x1:C-Plane蓝宝石基板5 c, H( p6 J0 @3 T这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定.3 i) D2 I) m6 C) [" e0 m9 N, D) D5 a 2:R-Plane或M-Plane蓝宝石基板3 q0 P8 l! W7 U$ ~2 B1 ~2 s 主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效率提高。
蓝宝石晶体(2011-08-30 12:12:50)标签:杂谈蓝宝石(Sapphire,国内又称白宝石,分子式为Al2O3)单晶X射线衍射结构属六方晶系,硬度莫氏9级,是一种优秀的多功能材料,具有一系列独特的理化性能,良好的电绝缘性、热导性及化学稳定性,介电常数小,介质损耗低,特别是它在0.18μm~5.5μm波段具有良好的透过率。
蓝宝石因其在化学、电学、机械、光学、表面特性、热力学及耐久性等方面所具有的优越特性,其在高性能光学系统和零件时得到广泛采用。
蓝宝石晶体更是红外军用装置、、卫星空间技术、探测和高功率强激光等的首选窗口材料。
另一方面由于蓝宝石晶格结构,其是目前GaN基LED衬底中使用最为广泛的材料。
六方晶系通常采用4个弥勒指数,即(hkil)来表示晶向和晶面,有一个6次对称轴或者6次倒转轴,该轴是晶体的直立结晶轴C轴,另外三个水平结晶轴正端互成120度夹角。
蓝宝石晶体的特征结构导致蓝宝石晶体生长工艺变成了一种艺术。
在蓝宝石特征结构中已经被证实存在的主要有以下滑移系(以易发生的可能次序排列):(0001) <11-20>;(0001) <10-10>;{10-10} <11-20>;{11-20} <10-10>;{10-10} <01-12>;{11-21} <10-10>;{22-43} <10-10>;以上的几个滑移特性决定了蓝宝石在其建立的温场中进行晶体生长时需要采用不同的晶体生长方向。
要建立蓝宝石晶体生长的温场首先需要了解蓝宝石晶体的物化性能。
蓝宝石晶体对红外波段的高透过是其特色,也正是这一特色决定了要建立适合生长蓝宝石晶体的温场更确切的说是建立适合蓝宝石晶体生长的生长界面,将必然存在不可避免的问题。
如何选择蓝宝石晶体生长方向?以上足以说明。
1.2 蓝宝石晶体成分与一般性质蓝宝石晶体是纯净氧化铝最基本的单晶形态。
化学成分是三氧化二铝(A12O3),晶型为α- A12O3,分子量为101.9612,在20℃时的密度为3.98克/毫升。
蓝宝石的化学性能非常稳定,一般不溶于水和酸、碱腐蚀,只有在高温下(300℃以上)可被氢氟酸(HF)、磷酸(H3PO4)和熔化的氢氧化钾(KOH)所腐蚀。
蓝宝石的硬度很高,仅次于金刚石。
它具有很好的透光性、热传导性和电气绝缘性,力学性能也很好。
蓝宝石的熔点为2050℃,沸点为3500℃,最高工作温度约1900℃。
1.3蓝宝石的晶体结构蓝宝石晶体(α- A12O3)是一种简单配位型氧化物晶体,属六方晶系,其晶格常数为:a=b=0.4785nm,c=1.2991nm,α=β=90°,γ= 120°[6] ,蓝宝石C面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小(与GaN之间失配率小于4%)蓝宝石晶体不同取向面的图形如下:2图1:蓝宝石晶体结构侧面图[7]图2:蓝宝石晶体切面图[8]图3:A12O3的分子结构图[7]图4:蓝宝石晶体结构上视图[7]3图5:蓝宝石结晶面示意图[8]在蓝宝石的应用上,有三个方向面是较为重要的。
即C面——(0001)面,r面——(1-102)和a面——(10-10),图5表示出了蓝宝石晶体结构的表示法及重要的方向。
下表表示蓝宝石晶体的一些物理性质:表1 氧化铝(Al2O3)特性表分子式Al2O3密度 3.95-4.1 g/cm3晶体结构六方晶格晶格常数 a =4.758Å , c =12.991Å单位晶胞中的分子数 2莫氏硬度9 (仅次于钻石:10)熔点2050 ℃沸点3500 ℃热膨胀系数 5.8×10-6 /K比热0.418 W.s/g/k热导率25.12 W/m/k (@ 100℃)折射率no =1.768 ne =1.760dn/dt 13x10 -6 /K(@633nm)透光特性T≈80% (0.3~5μm)介电常数11.5(∥c), 9.3(⊥c)1.4 蓝宝石晶体的重要性质1.4.1 蓝宝石的热学性质1.4.1.1蓝宝石的热膨胀系数蓝宝石的热膨胀性能具有各向异性的特点,其热膨胀系数随温度的变化如下: 4图6:蓝宝石晶体热膨胀系数与温度之间的关系[9]从图中可以看出,无论平行于C方向还是垂直于C方向,它的热膨胀系数都不太大,相差也较小。
1.晶向的本质是蓝宝石分子结构的问题:
上图为分子结构图,主要写了蓝宝石单晶六方晶系。
2. 蓝宝石晶向成像原理。
蓝宝石在这种分子结构的情况下,会有不同方向的分子层面,对X射线会有反射作用,从而产生晶向。
详细见下图:
分子层形成
了C面
分子层形成
了M面
分子层形成
了A面
分子层形成
了R面
分子层形成
了N面
3.晶向值形成的原因:
X射线在经过分子层后,会产生折射和反射。
在特定的某个角度入射会让反射的X光呈现平行状态(如下图),接收器接受的X射线强度比较大,该角度称为晶向值。
但由于各个面的分子层间隙不同,所以产生的晶向值也不同。
标准晶向值如下:
C面:20°50′
A面:18°55′
M面:34°06′
R面:26°16′
N面:21°43′
入射角,也叫做
晶向值。
分子层间隙,各
晶向分子层间
隙不同,晶向值
也不同。
4.分子晶向图
在下图中可以直观的看出蓝宝石分子晶向。
5.蓝宝石分子结构,对其物理性能的影响。
a.光学性能:C轴均有晶光性,其他轴具有负光性。
(所以一般衬底行业都用C向晶片。
)
b.硬度:A向硬度明显高于C向,具体表现在耐磨,耐刮,硬度高。
(我们磨A向砂轮需要特制的,或者明显降低研磨效率。
A向晶片大多用于作为窗口材料,如手表镜片)
c.切割时M面易开裂:C面为平面,最好切。
A面为Z型锯齿状面,比较好切。
M面为阶梯锯齿状,不好切,容易切裂。
切割示意图如下:
C向切割,平面,比较好切,不容易切裂
A向切割,锯齿面,比较好切,不容易切裂
M向切割,阶梯状
锯齿面,不好切,
很容易切裂
6.晶向对其其他性能的影响。
未知,有其他的客户反馈,以OF面为底面2寸晶棒在R9点钟方向的晶棒不容易裂片,也有其他客户反馈,以OF面为底面4寸晶棒在R3点钟方向的晶棒不容易裂片。
个人觉得,因为蓝宝石的结构的对称性,R3和R9并没有太大的区别,只是分子有些不同,具体应该考虑使用的方面,通过实验确定。
两个N面的夹角线,无晶向。