时间序列模型概述
- 格式:docx
- 大小:220.58 KB
- 文档页数:20
时间序列模型讲义时间序列模型讲义一、概念介绍时间序列模型是一种用于分析和预测时间上变化的数据模型。
它是一种建立在时间序列数据上的数学模型,旨在揭示时间序列中的隐藏规律和趋势,并利用这些规律和趋势进行预测和决策。
二、时间序列的特征时间序列数据具有以下几个主要特征:1. 时间相关性:时间序列数据中的观测值在时间上是相关的,前一个时刻的观测值往往会影响后续时刻的观测值。
2. 趋势性:时间序列数据往往具有明显的趋势性,即观测值随时间呈现出递增或递减的趋势。
3. 季节性:时间序列数据中可以存在固定的周期性变化,比如月份、季节、一周等周期性变化。
4. 周期性:时间序列数据中可能存在非固定的周期性变化,比如经济周期、股票市场周期等。
三、时间序列模型的构建过程时间序列模型的构建过程主要包括以下几个步骤:1. 数据探索和预处理:对时间序列数据进行可视化和探索,查看数据的分布、趋势和周期性等特征,并进行缺失值处理、异常值处理等预处理操作。
2. 模型选择:选择适合数据特征的时间序列模型,常用的模型包括移动平均模型(MA模型)、自回归模型(AR模型)和自回归移动平均模型(ARMA模型)等。
3. 参数估计:利用已选定的时间序列模型,对模型中的参数进行估计,通常采用极大似然估计或最小二乘估计等方法。
4. 模型诊断:对估计得到的时间序列模型进行诊断,检验模型是否满足统计假设,例如模型的残差序列是否具有零均值和白噪声等特征。
5. 模型评价和预测:通过对模型在历史数据上的拟合程度进行评价,选择最优的模型,并利用该模型对未来的数据进行预测和决策。
四、常见的时间序列模型1. 移动平均模型(MA模型):该模型假设当前观测值是过去几个时刻的观测值的加权平均,其中权重是模型的参数。
该模型适用于没有明显趋势和季节性的时间序列。
2. 自回归模型(AR模型):该模型假设当前观测值是过去几个时刻的观测值的线性组合,其中系数是模型的参数。
该模型适用于具有明显的趋势性的时间序列。
时间序列分析模型概述时间序列分析是一种统计方法,用于研究时间序列数据中的模式、趋势和周期性。
它基于时间序列数据的特点,通过建立数学模型来预测未来的数值。
时间序列数据是按照时间顺序排列的一系列观测值,它们通常用于描述一种随时间变化的现象。
例如,股票价格、气温、销售数据等都是时间序列数据。
时间序列分析的目标是通过对已知的观测值进行分析,找出数据中的规律,并利用这些规律来预测未来的数值。
时间序列分析模型通常可以分为两类:基于统计方法的模型和基于机器学习的模型。
基于统计方法的时间序列模型包括AR(自回归模型)、MA (移动平均模型)、ARMA(自回归移动平均模型)和ARIMA(差分自回归移动平均模型)等。
这些模型基于不同的假设和理论,通过寻找数据中的自相关和移动平均性质,来建立模型并进行预测。
它们常常需要对数据进行平稳性检验和参数估计。
基于机器学习的时间序列模型包括神经网络模型、支持向量机模型和深度学习模型等。
这些模型不同于统计方法,它们通过学习时间序列数据中的特征和模式来建立预测模型。
这些模型通常需要大量的数据进行训练,并且需要对模型进行调参。
除了上述模型,时间序列分析还可以包括季节性调整模型、外生变量模型等。
季节性调整模型是用于处理具有明显季节性的时间序列数据,它通过分解数据中的趋势和季节成分,来消除季节性的影响,从而提高预测的准确性。
外生变量模型是将其他影响因素(例如经济指标、政策变化等)引入时间序列模型中,以更全面地考虑影响因素对数据的影响。
时间序列分析模型在经济学、金融学、气象学等领域有着广泛的应用。
例如,在金融领域,时间序列分析模型可以用于预测股票价格和汇率等,帮助投资者做出更准确的投资决策。
在气象学领域,时间序列分析模型可以用于预测天气变化,从而为农业生产和灾害预防提供支持。
总之,时间序列分析是一种重要的数据分析方法,用于处理时间序列数据并进行预测。
它采用统计方法和机器学习方法来建立模型,并通过对数据的分析来找出数据中的规律和趋势。
ARIMa--时间序列模型⼀、概述 在⽣产和科学研究中,对某⼀个或者⼀组变量 x(t)x(t) 进⾏观察测量,将在⼀系列时刻 t1,t2,⋯,tnt1,t2,⋯,tn 所得到的离散数字组成的序列集合,称之为时间序列。
时间序列分析是根据系统观察得到的时间序列数据,通过曲线拟合和参数估计来建⽴数学模型的理论和⽅法。
时间序列分析常⽤于国民宏观经济控制、市场潜⼒预测、⽓象预测、农作物害⾍灾害预报等各个⽅⾯。
ARIMA模型,全称为⾃回归积分滑动平均模型(Autoregressive Integrated Moving Average Model),是由博克思(Box)和詹⾦斯(Jenkins)于20世纪70年代初提出的⼀种时间序列预测⽅法。
ARIMA模型是指在将⾮平稳时间序列转化为平稳时间序列过程中,将因变量仅对它的滞后值以及随机误差项的现值和滞后值进⾏回归所建⽴的模型。
注意:时间序列模型适⽤于做短期预测,即统计序列过去的变化模式还未发⽣根本性变化。
⼆、原理 ARIMA(p,d,q) 称为差分⾃回归移动平均模型,根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、⾃回归过程(AR)、⾃回归移动平均过程(ARMA)和⾃回归滑动平均混合过程(ARIMA)。
AR是⾃回归,p为⾃回归项;MA为移动平均,q为移动平均项数,d为时间序列变为平稳时间序列时所做的差分次数。
三、时间序列建模步骤 1.数据的准备,准备带观测系统的时间序列数据 2.数据可视化,观测是否为平稳时间序列,若是⾮平稳时间序列,则需要进⾏d阶差分运算,将其化为平稳时间序列 3.得到平稳时间序列后,要对其分别求得⾃相关系数ACF,偏⾃相关系数PACF,通过对⾃相关图和偏⾃相关图的分析,得到最佳的阶层P,阶数q 4.由以上得到d,p,q,得到ARIMA模型,然后对模型进⾏模型检验四、典例解析 1.数据的准备 这⾥我们已经备好了数据,截图如下。
时间序列的加法模型和乘法模型时间序列分析,是个听起来挺学术但其实挺接地气的东西。
你可别看它名字长,实际上,它就是帮我们看懂时间变化的数据,简简单单,像个天气预报一样,告诉我们未来的变化趋势。
今天呢,我就来跟你聊聊时间序列的加法模型和乘法模型,让你一听就懂,绝对不枯燥。
1. 时间序列模型概述1.1 什么是时间序列?时间序列,其实就是把时间当作横轴,把数据当作纵轴,画出来的图。
比如你每天记的天气温度,或者每个月的收入,这些数据依时间的不同而有所变化,咱们就叫它时间序列。
就像咱们的生活一样,变化多端、起伏不定。
1.2 为什么要用时间序列模型?那咱们用时间序列模型干嘛呢?简单说,就是为了预测未来。
你今天的气温、明天的股市、下个月的销售额,咱们都可以用这些模型来推测一下,这样你就不会像瞎子摸象,心里有个谱儿。
就像古人讲的“未雨绸缪”,早做准备总是好的。
2. 加法模型与乘法模型2.1 加法模型是什么?加法模型呢,简单来说,就是把时间序列分解成几个部分:趋势、季节性、和随机波动。
就像做菜时,先把所有的原料准备好,接着按步骤往锅里放。
这些部分加起来,就得出了最后的数据。
举个例子,你每天的销售额可以分为基本的趋势、季节性波动(比如节假日),还有一些偶发的随机情况(比如突发的促销活动)。
这些因素加在一起,就形成了你日常的销售数据。
2.2 乘法模型又是什么?乘法模型呢,是把这些因素当成乘数来计算。
它跟加法模型的区别就在于,季节性因素不是加在总数上,而是乘上去的。
就好像你买了个折扣商品,不是直接加了折扣,而是用折扣乘以原价来算。
举个例子,假如你有一个产品的基本销量是100个,每逢节假日销量可能会翻倍,那么节假日对销量的影响就是乘法的效果。
通过这种方式,乘法模型能更好地捕捉数据的波动性,适合那些变化更剧烈的情况。
3. 实际应用3.1 加法模型的应用加法模型比较适合数据变化幅度不大的情况。
比如说,某个小商店的日常营业额,受节假日影响相对平稳,它的变化可以用加法模型来预测。
时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。
该模型基于时间序列数据,即经济变量在一段时间内的观测值。
时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。
其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。
自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。
该模型以过去的观测值和随机项为输入,预测当前观测值。
ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。
自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。
该模型通过引入一个条件异方差项,模拟经济变量中的波动性。
ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。
季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。
这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。
在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。
识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。
模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。
时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。
它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。
时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。
它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。
本文将进一步探讨时间序列计量经济学模型的相关概念和应用。
在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。
时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。
时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。
它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。
时间序列分析模型可以分为统计模型和机器学习模型两类。
一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。
常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。
-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。
它将序列的当前值作为过去值的线性组合来预测未来值。
ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。
-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。
ARIMA(p,d,q)模型中,d表示差分的次数。
-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。
SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。
2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。
常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。
-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。
-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。
二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。
时间序列模型时间序列模型是一种用于预测时间序列数据的统计模型。
这种模型可以帮助我们了解数据中的趋势、季节性和周期性,并基于这些信息做出未来的预测。
时间序列模型的核心思想是将过去的观察结果作为未来预测的基础。
通过对已有数据的分析和建模,我们可以确定模型的参数和时间序列的性质,从而进行准确的预测。
有许多不同的时间序列模型可以使用,其中最常用的是自回归移动平均模型(ARMA)和自回归集成移动平均模型(ARIMA)。
这些模型假设未来的数值是过去的线性组合,并通过对数据进行差分来观察数据的趋势。
另一个流行的时间序列模型是季节性自回归集成移动平均模型(SARIMA),它在ARIMA模型的基础上增加了季节性组分。
这种模型特别适用于季节性数据,可以更好地捕捉季节性的规律。
除了上述模型之外,还有各种其他的时间序列模型,例如指数平滑模型、灰度预测模型和波动性模型等。
这些模型在数据的不同方面和性质上有不同的适用性。
时间序列模型的应用非常广泛,可以用于经济预测、股票价格预测、天气预测等领域。
它可以帮助我们研究和理解时间序列数据中的规律,并根据过去的观测结果做出未来的预测。
然而,时间序列模型也存在一些不足之处。
首先,它假设未来的数值是过去的线性组合,而无法捕捉非线性的规律。
其次,时间序列模型在数据中存在异常值或离群值时表现不佳。
此外,时间序列模型无法处理缺失值,而且对于长期预测的准确性可能会受到影响。
综上所述,时间序列模型是一种重要的统计模型,可以用于预测时间序列数据。
它能够帮助我们了解数据中的趋势、季节性和周期性,并根据这些信息做出未来的预测。
然而,我们在使用时间序列模型时需要注意其假设和限制,并结合实际情况进行分析和解释。
时间序列模型是一种用于分析和预测时间序列数据的统计模型。
它可以帮助我们识别和理解数据中隐含的模式和趋势,并以此为基础进行未来的预测。
时间序列模型广泛应用于各个领域,如经济学、金融学、交通规划、气象预测等。
时间序列模型概述时间序列模型是一种用于预测时间序列数据的统计模型。
时间序列数据是一系列按照时间顺序排列的数据点。
例如,股票价格、气温、销售额都是时间序列数据。
时间序列模型能够分析数据中的趋势、周期性和季节性,提供对未来的预测。
时间序列模型的建立是基于以下几个假设:1. 时序依赖:时间序列数据中的每个数据点都依赖于之前的数据点。
这意味着前一时刻的数据对当前时刻的数据有影响。
2. 稳定性:时间序列数据的统计特性在时间上保持不变。
这意味着数据的平均值和方差不会随时间而变化。
3. 随机性:时间序列数据中的噪声是随机的,即不受任何规律的干扰。
为了建立时间序列模型,我们需要对数据进行预处理和分析。
首先,我们需要对数据进行平稳性检验,确保数据的均值和方差在时间上保持不变。
如果数据不稳定,我们可以采用一些技术,如差分操作,将其转化为稳定的形式。
接下来,我们需要对时间序列数据进行分解,找出其中的趋势、周期性和季节性。
常用的分解方法有加法分解和乘法分解。
加法分解将时间序列数据分解为趋势、季节性和误差项的和,乘法分解将时间序列数据分解为趋势、季节性和误差项的乘积。
在分解的基础上,我们可以选择适合的时间序列模型进行建模和预测。
常见的时间序列模型有:1. 自回归移动平均模型(ARMA):基于时间序列数据的自回归和移动平均过程。
ARMA模型适用于没有趋势和季节性的时间序列数据。
2. 自回归积分移动平均模型(ARIMA):在ARMA模型的基础上,增加了对时间序列数据的差分操作。
ARIMA模型适用于具有趋势但没有季节性的时间序列数据。
3. 季节性自回归积分移动平均模型(SARIMA):在ARIMA 模型的基础上,增加了对时间序列数据的季节性差分操作。
SARIMA模型适用于具有趋势和季节性的时间序列数据。
4. 季节性分解模型(STL):将时间序列数据进行分解,然后对趋势、季节性和残差进行建模。
STL模型适用于具有明显季节性的时间序列数据。
时间序列模型概述时间序列模型是一种用于对时间序列数据进行建模和预测的统计模型。
时间序列数据是指按照时间顺序记录的一系列观测值,比如股票价格、气温、销售量等。
时间序列模型的目标是通过分析过去的观测值来预测未来的观测值。
这种模型通常基于以下两个假设:1. 时间序列的未来值是过去值的函数;2. 时间序列的未来值受到随机误差的影响。
常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)、季节性自回归移动平均模型(SARIMA)和指数平滑模型等。
ARMA模型是将时间序列的过去值和滞后误差作为解释变量,使用线性回归方法来预测未来值。
它是基于两个基本组件:自回归(AR)和移动平均(MA)。
AR部分建模了时间序列的过去值与当前值之间的关系,MA部分建模了观测误差的相关性。
ARIMA模型是在ARMA模型的基础上引入了差分操作,用于处理非平稳时间序列。
差分操作可以将非平稳时间序列转化为平稳时间序列,从而使得模型更可靠。
SARIMA模型是ARIMA模型的扩展,用于处理季节性时间序列。
它在ARIMA模型的基础上引入了季节差分,以及季节AR和MA项,以更好地拟合和预测季节性变化。
指数平滑模型是一类基于加权平均的模型,根据时间序列数据的特点赋予不同权重,进行预测。
常见的指数平滑模型包括简单指数平滑(SES)、双指数平滑和三指数平滑。
时间序列模型需要通过对历史数据的拟合来估计模型参数,并通过模型参数进行未来观测值的预测。
评估时间序列模型通常使用误差度量指标,比如均方误差(MSE)和平均绝对误差(MAE)。
时间序列模型在很多领域都有广泛的应用,比如经济学、金融学、气象学、销售预测等。
它可以帮助我们理解时间序列数据的动态特征,提供未来预测和决策支持。
然而,在实际应用中,时间序列模型也面临一些挑战,比如数据缺失、异常值和非线性关系等。
因此,选择适合的时间序列模型需要综合考虑数据的特性和模型的假设。
时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。
时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。
本文将介绍几种常见的时间序列分析模型。
1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。
它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。
该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。
2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。
自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。
3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。
自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。
4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。
时间序列模型的介绍时间序列模型是一种用于分析和预测时间序列数据的统计模型。
时间序列数据是按时间顺序收集的观测数据,通常具有一定的趋势、季节性和随机性。
时间序列模型的目标是通过对过去的数据进行分析,揭示数据背后的规律性,从而对未来的数据进行预测。
时间序列模型可以分为线性模型和非线性模型。
线性模型假设时间序列数据是由线性组合的成分构成的,常见的线性模型有自回归移动平均模型(ARMA)、自回归模型(AR)和移动平均模型(MA)等。
非线性模型则放宽了对数据的线性假设,常见的非线性模型有非线性自回归模型(NAR)和非线性移动平均模型(NMA)等。
在时间序列模型中,常用的预测方法包括平滑法、回归法和分解法。
平滑法通过对时间序列数据进行平均、加权或移动平均等处理,来消除数据中的随机波动,得到趋势和季节性成分。
回归法则是通过建立时间序列数据与其他影响因素的关系模型,来预测未来的数据。
分解法则将时间序列数据分解为趋势、季节性和随机成分,分别进行建模和预测。
时间序列模型的应用非常广泛。
在经济领域,时间序列模型可以用于宏观经济指标的预测,如国内生产总值(GDP)、通货膨胀率和失业率等。
在金融领域,时间序列模型可以用于股票价格的预测和风险管理,如股票市场的指数预测和波动率的估计。
在气象领域,时间序列模型可以用于天气预报和气候变化研究,如温度、降雨量和风速等的预测。
在交通领域,时间序列模型可以用于交通流量的预测和拥堵状况的评估,如道路交通量和公共交通客流量等的预测。
然而,时间序列模型也存在一些限制和挑战。
首先,时间序列数据通常具有一定的噪声和不确定性,模型需要能够对这些随机波动进行合理的建模和处理。
其次,时间序列数据可能存在非线性关系和非平稳性,传统的线性模型可能无法很好地捕捉到数据的特征。
此外,时间序列数据的长度和频率也会对模型的预测能力产生影响,较短的数据序列和较低的采样频率可能导致预测结果的不准确性。
为了克服这些挑战,研究人员不断提出新的时间序列模型和方法。
数据分析中的时间序列模型时间序列模型是数据分析中一种重要的统计方法,它用于揭示数据随时间变化的模式和趋势。
时间序列模型可以应用于多个领域,例如经济学、气象学、市场营销等等。
本文将介绍时间序列模型的基本概念、常见的方法和应用案例。
一、时间序列模型的基本概念时间序列是按照时间顺序排列的一系列数据,它可以是离散的或连续的。
时间序列模型的目标是对时间序列数据进行建模和预测。
在实际应用中,时间序列通常具有趋势(Trend)、季节性(Seasonality)和周期性(Cyclical)等组成部分。
1. 趋势:指时间序列数据在长期内表现出的整体上升或下降的趋势,可以是线性或非线性的。
2. 季节性:指时间序列数据在特定时间段内重复出现的规律,比如每年夏季的销售额通常会高于其他季节。
3. 周期性:指时间序列数据在较长时间内出现的波动,可能是由于经济周期或其他周期性因素引起。
二、常见的时间序列模型方法时间序列模型包括很多不同的方法和算法,下面介绍几种常见的方法。
1. 移动平均模型(Moving Average,MA):MA模型基于数据的移动平均值,用于捕捉数据的平稳性和周期性。
它通常表示为MA(q),其中q表示模型中的滞后阶数。
2. 自回归模型(Autoregressive,AR):AR模型假设当前的观测值可以由过去若干观测值的线性组合表示,用于描述趋势和周期性。
它通常表示为AR(p),其中p表示模型中的滞后阶数。
3. 自回归移动平均模型(Autoregressive Moving Average,ARMA):ARMA模型结合了AR和MA模型,用于同时考虑趋势和周期性。
它通常表示为ARMA(p, q),其中p和q分别表示AR和MA模型中的滞后阶数。
4. 季节性自回归移动平均模型(Seasonal Autoregressive Moving Average,SARMA):SARMA模型用于处理具有明显季节性的时间序列数据,它在ARMA模型的基础上添加了季节性因素。
时间分析方法概述1. 时间序列模型时间序列模型是预测未来数据点的一种方法。
常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)和季节性自回归积分移动平均模型(SARIMA)等。
ARMA模型是基于时间序列数据的自相关关系和移动平均关系进行建模的。
它的核心思想是将时间序列数据表示为过去若干期数据的线性组合,并利用自相关函数(ACF)和偏自相关函数(PACF)来确定模型的阶数。
ARIMA模型是在ARMA模型基础上加入差分操作,用来处理非平稳时间序列数据。
通过对原始数据进行一阶或多阶差分操作,可以使得数据变为平稳的,并建立ARMA模型进行预测。
SARIMA模型是ARIMA模型的季节性扩展。
它考虑到了季节性因素对时间序列的影响,并对季节性进行建模和预测。
2. 平稳性检验平稳性是指时间序列数据的均值、方差和自相关函数在时间上保持不变的特性。
平稳性检验可以用来确定时间序列数据是否具有平稳性。
常用的平稳性检验方法包括单位根检验和ADF检验。
单位根检验通过检验序列是否具有单位根(即根是否接近于1)来判断平稳性。
ADF检验是基于单位根检验的一种扩展方法,它通过比较单位根检验的统计量和临界值来判断序列是否具有平稳性。
3. 自相关性和偏自相关性分析自相关性和偏自相关性分析是用来确定时间序列数据中的相关性结构。
自相关性表示时间序列数据与自身在不同时间点的相关性,而偏自相关性则表示在控制其他变量的情况下,时间序列数据与自身在不同时间点的相关性。
自相关函数(ACF)和偏自相关函数(PACF)是用来衡量自相关性和偏自相关性的指标。
ACF表示在不同滞后期内,时间序列数据与过去的相关程度;PACF则表示在剔除其他相关性后,时间序列数据与过去的相关程度。
通过ACF和PACF的分析,可以确定时间序列模型的阶数。
4. 滑动平均法滑动平均法是一种简单的时间序列分析方法,用于平滑时间序列数据并提取趋势信息。
Wold 分解定理:任何协方差平稳过程x t ,都可以被表示为x t - - d t = u t + 1 u t -1+ 2 u t -2 + … + =其中 表示x t 的期望。
d t 表示x t 的线性确定性成分,如周期性成分、时间t 的多项式和指数形式等,可以直接用x t 的滞后值预测。
= 1,∑∞=02j j ψ< ∞。
u t 为白噪声过程。
u t 表示用x t 的滞后项预测x t时的误差。
u t = x t - E(x t x t -1, x t -2 , …)∑∞=-0j jt j u ψ称为x t 的线性非确定性成分。
当d t = 0时,称x t 为纯线性非确定性过程。
Wold 分解定理由Wold 在1938年提出。
Wold 分解定理只要求过程2阶平稳即可。
从原理上讲,要得到过程的Wold 分解,就必须知道无限个j 参数,这对于一个有限样本来说是不可能的。
实际中可以对j 做另一种假定,即可以把(L )看作是2个有限特征多项式的比, (L ) =∑∞=0j jj Lψ=)()(L L ΦΘ=p p q q L L L L L L φφφθθθ++++++++...1 (1221221)注意,无论原序列中含有何种确定性成分,在前面介绍的模型种类中,还是后面介绍的自相关函数、偏自相关函数中都假设在原序列中已经剔除了所有确定性成分,是一个纯的随机过程(过程中不含有任何确定性成分)。
如果一个序列如上式,x t = + d t + u t + 1 u t -1+ 2 u t -2 + … +则所有研究都是在y t = x t - - d t 的基础上进行。
例如前面给出的各类模型中都不含有均值项、时间趋势项就是这个道理。
2.3 自相关函数以上介绍了随机过程的几种模型。
实际中单凭对时间序列的观察很难确定其属于哪一种模型,而自相关函数和偏自相关函数是分析随机过程和识别模型的有力工具。
1. 自相关函数定义在给出自相关函数定义之前先介绍自协方差函数概念。
由第一节知随机过程{x t }中的每一个元素x t ,t = 1, 2, … 都是随机变量。
对于平稳的随机过程,其期望为常数,用 表示,即E(x t ) = , t = 1, 2, … (2.25)随机过程的取值将以为中心上下变动。
平稳随机过程的方差也是一个常量Var(x t) = E [(x t- E(x t))2] = E [(x t- )2] = x2, t= 1, 2, … (2.26) x2用来度量随机过程取值对其均值的离散程度。
相隔k期的两个随机变量x t与x t - k的协方差即滞后k期的自协方差,定义为k= Cov (x t, x t - k) = E[(x t- ) (x t - k- ) ] (2.27)自协方差序列k, k= 0, 1, …, K,称为随机过程 {x t} 的自协方差函数。
当k = 0 时0 = Var (x t) = x2自相关系数定义k =)()(),(kttkttxVarxarVxxCov--(2.28)因为对于一个平稳过程有Var (x t) = Var (x t - k) = x2 (2.29)所以(2.28)可以改写为k =2),(xkttxxCovσ-=2xkσγ= 0γγk(2.30)当k = 0 时,有0 = 1。
以滞后期k为变量的自相关系数列k, k= 0, 1, …, K (2.31)称为自相关函数。
因为k = - k即Cov (x t - k, x t ) = Cov (x t, x t + k ),自相关函数是零对称的,所以实际研究中只给出自相关函数的正半部分即可。
2.自回归过程的自相关函数(1) 平稳AR(1)过程的自相关函数AR(1) 过程如下x t = x t-1 + u t , 1用x t- k同乘上式两侧x t x t- k= x t-1 x t- k + u t x t- k两侧同取期望,k = 1 k -1其中E(x t- k u t) = 0(u t与其t - k期及以前各项都不相关)。
两侧同除0 得,k = 1 k -1 = 1 1 k -2= … = 1k因为o = 1。
所以有k = 1k , (k 0)对于平稳序列有。
所以当1为正时,自相关函数按指数衰减至零(过阻尼情形),当1为负时,自相关函数正负交错地指数衰减至零。
见图2.6。
因为对于经济时间序列,1一般为正,所以第一种情形常见。
指数衰减至零的表现形式说明随着时间间隔的加长,变量之间的关系变得越来越弱。
-0.8-0.6-0.4-0.20.00.20.40.60.82468101214-0.8-0.6-0.4-0.20.00.20.40.60.824681012140 (经济问题中常见)0 (经济问题中少见)图2.6 AR(1) 过程的自相关函数(2)AR(p ) 过程的自相关函数 用x t - k , (k 同乘平稳的 p 阶自回归过程 x t =1 x t -1+2x t -2 +…+p x t - p+ u t (2.32)的两侧,得x t - k x t = 1 x t - k x t -1 + 2x t - k x t -2 + … +px t - k x t - p + x t - k u t (2.33)对上式两侧分别求期望得k=1 k -1+2 k -2+ … +p k - p, k 0 (2.34)上式中对于 k 0,有E(x t - k u t ) = 0。
因为当 k 0时,x t - k 发生在u t 之前,所以 x t - k 与 u t 不相关。
用 0分别除(2.34)式的两侧得k=1 k -1+2k -2+ … +p k -p, k 0 (2.35)令 (L ) = (1 - 1L - 2L 2 - … -pL p )其中L 为k 的滞后算子,则上式可表达为(L )k= 0因 (L ) 可因式分解为,(L ) =∏=pi i L G 1)-(1,则(2.35)式的通解(证明见附录)是k= A 1 G 1k+ A 2 G 2k + … + A p G p k. (2.36)其中A i , i = 1, … p 为待定常数。
这里 G i -1, i = 1, 2, …, p 是特征方程 (L ) = (1 -1L -2L 2 - … -pL p ) = 0的根。
为保证随机过程的平稳性,要求 | G i | 1, i = 1, 2, …, p 。
这会遇到如下两种情形。
① 当G i 为实数时,(2.36) 式中的A i G i k将随着k 的增加而几何衰减至零,称为指数衰减(过阻尼情形)。
② 当G i 和G j 表示一对共轭复根时,设G i = a + bi , G j = a – bi , 22b a += R ,则G i , G j 的极座标形式是G i = R (Cos + i Sin ),G j = R (Cos - i Sin )。
若AR(p ) 过程平稳,则 G i <1,所以必有R <1。
那么随着k 的增加,G i k = R k (Cosk + i Sink ),G j k = R k(Cosk - i Sink ),自相关函数(2.36)式中的相应项G i k , G j k将按正弦振荡形式衰减(欠阻尼情形)。
实际中的平稳自回归过程的自相关函数常是由指数衰减和正弦衰减两部分混合而成。
③ 从(2.36)式可以看出,当特征方程的根取值远离单位圆时,k 不必很大,自相关函数就会衰减至零。
④ 有一个实数根接近1时,自相关函数将衰减的很慢,近似于线性衰减。
当有两个以上的根取值接近1时,自相关函数同样会衰减的很慢。
-0.8-0.6-0.4-0.20.00.20.40.60.82468101214-0.8-0.6-0.4-0.20.00.20.40.60.82468101214a. 两个特征根为实根b. 两个特征根为共轭复根图2.6 AR(2) 过程的自相关函数3. 移动平均过程的自相关函数 (1) MA(1) 过程的自相关函数。
对于MA(1)过程x t = u t + 1 u t -1 有k = E(x t x t - k ) = E [(u t + 1 u t -1) (u t - k + 1 u t -k -1)] 当k = 0时,0 = E(x t x t ) = E [(u t + 1 u t -1) (u t + 1 u t -1)]= E (u t 2+ 1 u t u t -1 + 1 u t u t -1 + 12u t -12) = (1 + 12) 2当k = 1时1 = E(x t x t - 1) = E [(u t + 1 u t -1) (u t – 1 + 1 u t –2 )] = E (u t u t -1 + 1 u t -12+ 1 u t u t -2 + 12u t -1 u t -2) = 1E (u t -1) 2=12当 k 1 时,k = E [(u t + 1 u t -1) (u t – k + 1 u t – k -1)] = 0 综合以上三种情形,MA(1)过程自相关函数为k = 0γγk= 2111θθ+ , k = 10 , k 1,见图2.7。
-0.8-0.6-0.4-0.20.00.20.40.60.82468101214-0.8-0.6-0.4-0.20.00.20.40.60.8246810121411图2.7 MA(1)过程的自相关函数可见MA(1) 过程的自相关函数具有截尾特征。
当k 1时,k= 0。
(2) MA(q ) 过程的自相关函数 MA(q ) 过程的自相关函数是k =222212211...1...q qk q k k k θθθθθθθθθθ++++++++-++, k = 1, 2, …, q ,0 k q , 当k q 时,k = 0,说明 k , k = 0, 1, … 具有截尾特征。
(注意:模型移动平均项的符号以及这里 k的符号正好与Box-Jenkins 书中的符号相反,这样表示的好处是保持与计算机输出结果一致。
)4. ARMA (1, 1) 过程的自相关函数ARMA (1, 1) 过程的自相关函数k 从 1开始指数衰减。
1的大小取决于 1和 1, 1的符号取决于 ( 1 - 1 )。
若 1 > 0,指数衰减是平滑的,或正或负。
若 1 < 0,相关函数为正负交替式指数衰减。
对于ARMA (p , q ) 过程,p , q 2时,自相关函数是指数衰减或正弦衰减的。
5. 相关图(correlogram )对于一个有限时间序列(x 1, x 2, …, x T )用样本平均数x = T1∑=Tt tx1估计总体均值 ,用样本方差s 2=21)(1∑=-Tt tx xT估计总体方差x 2。