SPSS时间序列分析总结
- 格式:ppt
- 大小:1.86 MB
- 文档页数:70
SPSS时间序列:频谱分析⼀、频谱分析(分析-预测-频谱分析)“频谱图”过程⽤于标识时间序列中的周期⾏为。
它不需要分析⼀个时间点与下⼀个时间点之间的变异,只要按不同频率的周期性成分分析整体序列的变异。
平滑序列在低频率具有更强的周期性成分;⽽随机变异(“⽩噪声”)将成分强度分布到所有频率。
不能使⽤该过程分析包含缺失数据的序列。
1、⽰例。
建造新住房的⽐率是⼀个国家/地区经济的重要晴⾬表。
有关住房的数据开始时通常会表现出⼀个较强的季节性成分。
但在估计当前数字时,分析⼈员需要注意数据中是否呈现了较长的周期。
2、统计量。
正弦和余弦变换、周期图值和每个频率或周期成分的谱密度估计。
在选择双变量分析时:交叉周期图的实部和虚部、余谱密度、正交谱、增益、平⽅⼀致和每个频率或周期成分的相位谱。
3、图。
对于单变量和双变量分析:周期图和频谱密度。
对于双变量分析:平⽅⼀致性、正交谱、交叉振幅、余谱密度、相位谱和增益。
4、数据。
变量应为数值型。
5、假设。
变量不应包含任何内嵌的缺失数据。
要分析的时间序列应该是平稳的,任何⾮零均值应该从序列中删除。
平稳. 要⽤ARIMA 模型进⾏拟合的时间序列所必须满⾜的条件。
纯的MA 序列是平稳的,但AR 和ARMA 序列可能不是。
平稳序列的均值和⽅差不随时间改变。
⼆、频谱图(分析-预测-频谱分析)1、选择其中⼀个“频谱窗⼝”选项来选择如何平滑周期图,以便获得谱密度估计值。
可⽤的平滑选项有“Tukey-Hamming”、“Tukey”、“Parzen”、“Bartlett”、“Daniell(单元)”和“⽆”。
1.1、Tukey-Hamming. 权重为Wk = .54Dp(2 pi fk) + .23Dp (2 pi fk + pi/p) + .23Dp (2pi fk - pi/p),k = 0, ..., p,其中p 是⼀半跨度的整数部分,Dp 是阶数p 的Dirichlet 内核。
1.2、Tukey. 权重为Wk = 0.5Dp(2 pi fk) + 0.25Dp (2 pi fk + pi/p) + 0.25Dp(2 pi fk -pi/p),k = 0, ..., p,其中p 是⼀半跨度的整数部分,Dp 是阶数p 的Dirichlet 内核。
第十四章SPSS 的时间序列分析14.9 季节调整法一、时间序列的趋势分解:长期趋势(Trend ): 现象在较长时期内持续发展变化的一种趋向或状态由影响时间序列的基本因素作用形成是时间序列中最基本的构成要素可分为上升趋势、下降趋势、水平趋势或分为:线性趋势和非线性趋势。
周期变动(Periodicity) :这种因素的影响使现象呈现出以若干年为一周期、涨落相间、扩张与紧缩、波峰与波谷相交替的波动。
不同于长期趋势T 表现为单一方向的持续变动,P 表现为波浪式的涨落交替的变动。
季节变动(Seasonal Fluctuation ) :是一种使现象以一定时期(如一年、一月、一周等)为一周期呈现较有规律的上升、下降交替运动的影响因素通常表现为现象在一年内随着自然季节的更替而发生的较有规律的增减变化,有旺季和淡季之分是一种周期性的变化周期长度小于一年形成原因:有自然因素,也有人为因素不规则变动(Irregular Variations) :包括随机变动和突然变动。
随机变动――现象受到各种偶然因素影响而呈现出方向不定、时起时伏、时大时小的变动。
突然变动――战争、自然灾害或其它社会因素等意外事件引起的变动。
影响作用无法相互抵消,影响幅度很大。
一般只讨论有随机波动而不含突然异常变动的情况。
二、时间序列的分解模型Y= T×S×P×I 在加法模型中各种影响因素是相互独立的,均为与Y 同计量单位的绝对量。
季节变动和循环变动的数值在各自的周期时间范围内总和为零;不规则变动的数值从长时间来看,其总和也应为零。
加法模型中,各因素的分解是根据减法进行(如:Y。
时间序列季节性分析spss表1 为某公司连续144个⽉的⽉度销售量记录,变量为sales。
试⽤专家模型、ARIMA模型和季节性分解模型分析此数据。
选定样本期间为1978年9⽉⾄1990年5⽉。
按时间顺序分别设为1⾄141。
⼀、画出趋势图,粗略判断⼀下数据的变动特点。
具体操作为:依次单击菜单“Analyz e→Forecasting→Sequence Chart”,打开“Sequence Chart”对话框,在打开的对话框中将sales选⼊“Variables”列表框,时间变量date选⼊“Time Axis Labels”,单击“OK”按钮,则⽣成如图2 所⽰的sales序列。
图1 “Sequence Chart”对话框从趋势图可以明显看出,时间序列的特点为:呈线性趋势、有季节性变动,但季节波动随着趋势增加⽽加⼤。
⼆、模型的估计(⼀)、季节性分解模型根据时间序列特点,我们选择带线性趋势的季节性乘法模型作为预测模型。
1、定义⽇期具体操作为:依次单击菜单“Data→Define Date”,打开“Define Date”对话框,在“Cases Are”列表框选择“Years,months”的⽇期格式,在对话框的右侧定义数据的起始年份、⽉份。
定义完毕后,单击“OK”按钮,在数据集中⽣成⽇期变量。
图3 “Define Date”对话框2、季节分解具体操作为:“Analyze→Forecasting→Seasonal Decomposition”打开“Seasonal Decomposition”对话框,将待分析的序列变量名选⼊“Variable”列表框。
在“Model Type”选择组中选择“Multiplicative”模型;在“Moving Average Weight”选择组中选择“Endpoints weighted by 0.5”。
单击“OK”按钮,执⾏季节分解操作。
图4 “Seasonal Decomposition”对话框3、画出序列图①原始序列和校正了季节因⼦作⽤的序列图图5为sales 序列和校正了季节因⼦作⽤的序列图。
SPSS作业关于时间序列分析时间序列分析是一种统计方法,用于研究随时间变化的数据,并从中提取出隐藏在数据背后的模式和趋势。
这种分析方法在经济学、金融学、天气预报、市场调研等领域经常被应用。
SPSS(Statistical Package for the Social Sciences)是一款广泛使用的统计分析软件,它提供了丰富的时间序列分析工具,可以用来处理和分析时间序列数据。
时间序列数据是根据时间顺序排列的一系列观测值,例如每天的股票价格、每月的销售额、每年的气温等等。
通过对这些时间序列数据进行分析,我们可以得到数据的趋势、季节性、周期性等信息,以及对未来数据的预测。
在SPSS中进行时间序列分析的第一步是导入数据。
通常,数据以文本文件的形式存在,我们需要将其导入到SPSS中进行后续操作。
导入数据完成后,我们可以开始对数据进行初步的探索和观察。
SPSS提供了一系列的统计工具,可以用于时间序列数据的分析。
其中最常用的是时间序列图,它可以帮助我们观察数据的趋势和季节性。
通过绘制时间序列图,我们可以更直观地了解数据的波动情况,找出可能的异常值和离群点。
除了时间序列图,SPSS还提供了许多其他的分析工具,如自相关函数、偏自相关函数、移动平均等。
自相关函数可以帮助我们研究数据之间的相关性,了解数据的滞后效应;偏自相关函数则可以帮助我们确定时间序列模型的阶数;移动平均则可以用于平滑时间序列数据,减少数据的随机波动。
时间序列分析的一个重要应用是预测。
通过对过去数据的分析,我们可以建立时间序列模型,并用此模型来预测未来的数据。
SPSS提供了各种预测模型,如ARIMA模型、指数平滑模型等。
通过选择合适的模型和参数,SPSS可以帮助我们进行准确的预测,并提供相应的置信区间和预测误差。
除了基本的时间序列分析工具,SPSS还提供了其他高级功能,如自回归条件异方差模型(ARCH)、广义自回归条件异方差模型(GARCH)等。
SPSS时间序列一点总结(一)SPSS中"Time Series"包括4个时间序列分析子菜单:1.Exponential Smoothing指数平滑2.Autoregression自回归3.ARIMA自回归综合移动平均4.Seasonal Decomposition季节分散法(一)Exponential Smoothing指数平滑中的Model有四种:Simple、Holt、Winters、Custom. Simple法是在移动平均法基础上发展而来的一次指数平滑法,它假定所研究的时间序列数据集无趋势和季节变化.Simple法基本过程:1.首先定义变量、输入数据,至少要有一个变量,点出Data菜单中的Define Dates对话框,定义时间序列的周期.Define Dates可用来建立时间序列的周期性.共有20种可用来定义时间日期的变量.2.指定需要进行指数平滑处理的变量.从左侧变量名列表中选中需要进行指数平滑处理的变量,单击右面一个右箭头按钮,使变量名移到Variables框中.如果变量为多个,则计算完一个后,再输入另一个变量.3."Parameters"参数设定,选定指数平滑中的参数,误差修正权数 a(General(Alpha))的取值在默认状态下为0.1,其取值大小依赖于已知时间序列的性质,通常都使用在0.1至0.3之间的数值并产生一个依赖于大量的过去观测资料的预测.接近于1的值较少用,它将给出更加依赖于新近观察资料的预测.当a=1时,预测值等于最新的观测值.单击Grid Search选项,如不加改动,可让程序自动计算a从0.1到1的10个指数平滑结果,并将误差平方和最小的平滑结果暂时存放在数据库中,当然,在这里可重新设置a的开始值,以后每次的增加值及终止值.在本程序中,确定Initial Values初始值栏中的选择有两种方式,选择Automatic项,初始值用自动方式生成,程序自动取时间序列的总平均值为初始值:选择Custom项,可手工输入初始值及趋势值.单击"Save",最后单击"OK"并执行.Holt双参数线性指数平滑法适用于有线性趋势及无季节变化的时间序列的趋势.它可以用不同的参数对原时间序列的趋势进行平滑,具有很大的灵活性.在此法中要用到两个参数a、g(从0到1之间取值)和三个方程(略).Holt法基本过程1、首先按定义变量、输入数据,至少要有一个变量,在Data菜单的Define Dates设置; 指定需要Holt指数平滑法处理的变量.从左侧变量名列表中选中需要进行指数平滑处理的变量,如果变量为多个,则计算完一个后,再输入另一个变量.选定Holt选项.设置Parameters即指数平滑中的参数,参数a、g的取值在默认状态下都为0.1,它们都在0到1之间取值.其取值大小依赖于已知时间序列的性质,通常使用0.1至0.3之间的数值,并产生一个依赖于大量的过去观测资料的预测.接近于1的值较少用,它将给出更加依赖于新近观测资料的预测.不使用默认值,可通过单击Grid Search选项来自定义,如不加改动,可让程序自动计算a从0.1到1每次增加0.1、g从0.1到1每次增加0.2的10个指数平滑结果,并将误差平方和最小的平滑结果暂时存放在数据库中.当然,可以重新设置a、g的初始值、以后每次的增加值及终止值.在本程序中,确定初始值的选中有两种方式,选中Automatic项,初始值用自动方式生成,程序自动取时间序列的总平均值为初始值St并自动给出趋势值bt.选中Custom项,可手工输入初始值及趋势值.Winters线性和季节性指数平滑法适用于数据的变化含有季节性因素的时间序列的预测.选定指数平滑中的参数"Patameters",参数a、b、g的取值在默认状态下都为0.1,它们都在0到1之间取值,但都不包括0和1.采用Winters法的关键是如何确定a、b、g的值,以使均方差达到最小.最佳方法是反复试验法.如不使用默认值,除直接修改a、b、g的值外,还可通过单击Grid Search来自定义.可让程序自动计算a从0.1到1每次增加0.1,b、g从0.1到1每次增加0.2的10个指数平滑结果,并将误差平方和最小的平滑结果暂时存放在数据库中,SPSS在商务管理中的应用,当然,在这里可重新设置a、b、g的开始只,以后每次的增加值及终止值.在本程序中,确定初始值的选择有两种方式,选择Automatic,初始值用自动方式生成,程序自动取时间序列的总平均值为初始值St并自动给出趋势值bt;选择Custom,可手工输入初始值及趋势值.。
用SPSS软件做时间序列分析用SPSS软件做时间序列分析,有某公司2002年一季度到2010年二季度的34个税后利润数据,要求预测出该公司2010年三季度和四季度的税后利润。
要求:1.画出序列趋势图2.绘制出自相关图和偏自相关图3.确定参数和模型4.给出预测值观测值序列图2税后盈利自相关图序列:税后盈利滞后自相关标准误差aBox-Ljung 统计量值df Sig.b1 .306 .164 3.482 1 .0622 .198 .162 4.987 2 .0833 .185 .159 6.340 3 .0964 .542 .157 18.342 4 .0015 .084 .154 18.641 5 .0026 .067 .151 18.836 6 .0047 .094 .149 19.239 7 .0078 .458 .146 29.093 8 .0009 .041 .143 29.176 9 .00110 .016 .140 29.189 10 .00111 .012 .137 29.197 11 .00212 .236 .134 32.308 12 .00113 -.092 .131 32.806 13 .00214 -.094 .128 33.345 14 .00315 -.079 .125 33.745 15 .00416 .106 .121 34.510 16 .005a. 假定的基础过程是独立性(白噪音)。
b. 基于渐近卡方近似。
偏自相关序列:税后盈利滞后偏自相关标准误差1 .306 .1712 .115 .1713 .107 .1714 .503 .1715 -.279 .1716 -.010 .1717 .046 .1718 .268 .1719 -.130 .17110 -.054 .17111 -.053 .17112 -.081 .17113 -.040 .17114 -.051 .17115 -.027 .17116 -.062 .1713、确定参数和模型时间序列建模程序模型描述模型类型模型 ID 税后利润模型_1 ARIMA(0,1,0)(0,1,0) 模型摘要模型统计量模型预测变量数模型拟合统计量Ljung-Box Q(18)离群值数平稳的 R 方统计量DF Sig.税后利润-模型_1 0 5.502E-17 17.688 18 .476 04、给出预测值2010年第三季度 139621.02万元2010年第四季度170144.55万元剔除季节成分后,平滑处理及剔除循环波动因素的序列图SEASON、MOD_6、MUL、EQU、4 中税后利润的季节性调整序列自相关图序列:SEASON、MOD_6、MUL、EQU、4 中税后利润的季节性调整序列滞后自相关标准误差aBox-Ljung 统计量值df Sig.b1 .728 .164 19.633 1 .0002 .450 .162 27.383 2 .0003 .310 .159 31.169 3 .0004 .207 .157 32.911 4 .0005 .219 .154 34.941 5 .0006 .241 .151 37.484 6 .0007 .243 .149 40.168 7 .0008 .226 .146 42.571 8 .0009 .183 .143 44.213 9 .00010 .162 .140 45.551 10 .00011 .093 .137 46.012 11 .00012 .006 .134 46.015 12 .00013 -.047 .131 46.145 13 .00014 -.021 .128 46.172 14 .00015 -.022 .125 46.204 15 .00016 -.036 .121 46.294 16 .000a. 假定的基础过程是独立性(白噪音)。