高聚物的分子运动
- 格式:ppt
- 大小:592.00 KB
- 文档页数:93
高分子物理——聚合物的转变与松弛不仅具有运动单元的多样性,而且具有运动方式的多样性。
1(1)大尺寸运动单元:分子链。
(2)小尺寸运动单元:链段、链节、支链、侧基等。
2例如:振动、转动、平动、取向等。
1在一定的温度和外力作用下,高分子链的构象从一种平衡态通过分子热运动过渡到另一种与外界相适应的平衡态所需要的时间。
2高聚物分子运动时,由于运动单元所受到内摩擦阻力一般是很大的,这个过程常常是缓慢完成的,因此这个过程叫做“松弛过程”,也叫做“速度过程”。
3运动单元运动时,均需要克服各自的内摩擦阻力;也就是说,分子运动需要一定的时间,不可能瞬间完成,即依赖时间。
4凡与时间有依赖关系的性质,叫做“松弛性质”。
5(1)回缩曲线(2)回缩关系式可以通过后续的蠕变回复,推导如下关系式:Δx(t)=Δxτ-t/ e0式中,Δx是外力除去后t时刻塑料丝增加的长度值(与塑料丝拉伸前的长度相比),Δx是外力除去前塑料丝增加的长度值。
0(3)讨论由上可得:t =τ时,Δx(t)=Δx/e,也就是说,Δx(t)变化到等于Δx的1/e00倍时所需要的时间,叫做松弛时间τ。
τ越小,则Δx(t)越小,故变化(回缩)得快,即松弛过程快和运动快。
τ越大,则Δx(t)越小,故变化(回缩)得慢,即松弛过程慢和运动慢。
综上所述,τ是用来描述松弛过程快慢的物理量。
6(1)低分子物的松弛时间低分子物也具有松弛时间,只不过很短,τ=10--910~10S,即一般认为是瞬时的。
(2)高分子物的松弛时间高分子物具有松弛时间,τ比较大,且是多分散性的。
1(1)定性分析温度升高,则分子热运动能增大并且聚合物内的空隙(自由体积)增大,松弛过程加快,故松弛时间缩短。
也就是说,松弛时间τ与温度T是有一定关系的。
(2)定量分析根据Arrehnius公式,可得:τ=τexp(ΔE/RT) 0式中,ΔE为运动单元的活化能,可通过?τ-1/T直线的斜率求出。
一、高分子链的近程结构构造:分子链中原子的种类和排列,包括取代基和端基的种类,结构单元的排列顺序,支链的类型和长度等。
构型:某一原子的取代基在空间的排列。
构像:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列。
按高分子链化学组成不同可将高聚物分为:碳链高分子(优良的可塑性,主链不易水解)、杂链高分子(有极性,易于水解醇解或酸解)、元素高分子(有特殊性质)、其它高分子(较高的热稳定性)。
键接结构是指结构单元在高分子链中的连接方式。
这种由结构单元间的连接方式不同所产生的异构体称为顺序异构。
变换高聚物(或奇异高聚物):结构单元和单体不相似的高聚物。
旋光异构体:对于不对称C原子构成的化合物,它能构成互为镜影的两种异构体,表现出不同的旋光性。
等规度:高聚物中含有全同立构和间同立构的总百分数。
几何异构体:双键上的基团在双键两侧的排列方式存在顺式和反式两种构型,这种异构体称为几何异构体。
构型的测定方法:X射线衍射,核磁共振,红外光谱法。
支化:线形分子链上延伸出或短或长的分支结构。
支化度:以支化点密度或两相邻支化点之间的链平均分子量来表示支化的程度。
交联:通过化学反应把高分子链用共价键相连接起来,产生网状体型结构。
交联点密度:交联的结构单元占总结构单元的比例,即每一结构单元的交联概率。
共聚物:两种以上单体单元所组成的高聚物。
序列:同类单体直接相连的嵌段。
热塑性弹性体:又称热塑性橡胶,是一类常温下显示橡胶弹性,高温下又能塑化成型的合成材料,是一类兼有橡胶和热塑性塑料特性的强韧性高聚物。
互穿网络高聚物:由两种不同单体各自聚合形成的网络互相贯穿。
半互穿网络高聚物:一线性高聚物在另一高聚物网络形成时均匀分散在其中,宏观上成为一整体者。
二、高分子链的远程结构链段:高分子链中作协同运动的一段链,是高分子链中的独立运动单元。
内旋转:高分子链中C-C单键绕键轴旋转。
柔顺性:高分子链能够改变其构象的性质。
高聚物的分子运动与热转变
1 高聚物的分子运动与热转变
高聚物是一类稳定的高分子化合物,它们具有坚硬的结构,耐热、耐磨耐老化的特点。
高聚物的分子大小比较大,分子内部可以存在内聚力与外聚力和重力,使得高聚物的分子在压力作用下有一定的运动变化,这就是高聚物的分子运动。
高聚物的分子运动是由于高聚物分子内部的内聚力和外聚力的
作用,使得高聚物分子在压力作用下形成小范围的运动。
由于高聚物分子的内聚力较强,当外聚力发生变化时,它的分子也会发生一定程度的变化。
这种分子运动的程度主要取决于它分子内部的内聚力和外聚力的大小。
当高聚物分子受到热能的作用时,它的分子会发生热转变。
这种热转变是指高聚物分子由低温状态经过加热,结构的稳定性发生变化,造成分子内部的内聚力和外聚力减小,分子内部运动加快,受到热转变的影响,使高聚物分子发生变化。
热转变对高聚物的影响是显而易见的,由于分子内部的内聚力和外聚力的变化,使得高聚物分子发生变形,这会影响到它的性质,使得它的热稳定性发生变化,同时也会影响到它的结构和物理性质,使其变得更加脆性和软化。
所以,高聚物的分子运动与热转变的程度是非常重要的,它确实影响到高聚物的性能和使用寿命,因此,高聚物的分子运动与热转变一定要做好控制,只有科学控制才能使得高聚物保持长久稳定。
高分子材料高聚物的分子运动与力学状态引言高分子材料是一种由连续的重复单元构成的聚合物材料。
在材料科学领域,研究高分子材料的分子运动和力学状态对理解材料性质和行为至关重要。
了解高聚物的分子运动和力学状态有助于优化材料设计、改进材料性能,并应用于各种领域,如生物医学、电子器件、纳米技术等。
高聚物的分子运动高聚物的分子运动主要包括乌尔布雷希特运动和扭曲运动。
乌尔布雷希特运动是高聚物链的摆动和旋转运动,其中链段在某一时刻的位置可以被视为围绕平均位置进行振动。
扭曲运动是高分子链的连续扭转运动,由旋转键和左旋键之间的相互作用引起。
高分子材料的分子运动主要受到温度和外部应力的影响。
温度的升高会增加高聚物链的摆动和旋转运动的速率,从而增加整体材料的流动性。
外部应力会导致高聚物链的拉伸和扭转,改变材料的形状和力学性能。
高聚物的力学状态高聚物材料的力学状态可以分为固态、流动态和弹性态。
在固态中,高聚物链之间的空隙较小,链的摆动和旋转受限制,材料呈现刚性和坚固的性质。
在流动态中,高聚物链的摆动和旋转增加,材料呈现流动性,可以被塑性加工和注射成型。
在弹性态中,高分子链在受到外部应力后,发生可逆形变,材料在去除应力后可以恢复原状。
高聚物材料的力学状态可以通过物理测试和分析方法来确定,例如拉伸试验、硬度测量和动态力学分析。
拉伸试验可以测量材料的强度、延展性和断裂性能,硬度测量可以评估材料的硬度和刚度,动态力学分析可以研究材料的粘弹性和弹性恢复能力。
高聚物材料的应用高聚物材料由于其丰富的性质和可调控性,在各种领域中有广泛的应用。
以下是一些常见的应用领域:1.生物医学领域:高聚物材料可以用于制造人工器官、药物传输系统和医疗设备,具有良好的生物相容性和可降解性。
2.电子器件领域:高聚物材料可以用作电子器件的绝缘层、封装材料和柔性电子材料,具有优异的电气性能和机械可塑性。
3.纳米技术领域:高聚物材料可以用于纳米级分子组装和纳米颗粒制备,用于制备纳米传感器、纳米药物传递系统等。
三种力学状态:玻璃态Tg以下分子链几乎无运动,链段处于冻结状态,受力变形很小类似玻璃。
高弹态Tg-Tf链段运动激发,但分子链间无滑移,聚合物表现为橡胶行为。
粘流态Tf以上,受外力作用时,大分子链与大分子链间发生相对位移,无法回复,行为与小分子液体类似两种转变:玻璃态转变为高弹态,转变温度称为玻璃化温度Tg,整个大分子链还无法运动,但链段开始发生运动。
高弹态转变为粘流态,转变温度称为粘流温度Tf,聚合物既呈现橡胶粘弹性又呈流动性玻璃化转变:指非晶态高聚物从玻璃态到高弹态的转变,对晶态分子来说玻璃化转变是指非晶部分的转变。
测量方法,膨胀剂法,差热分析法,力学方法,NMR,介电松弛应变,应力:当材料受到外力作用而所处的条件却使其不能产生惯性移动时,它的几何形状和尺寸将发生变化,这种变化称为应变,定义单位面积撒很难过的附加内力为应力模量:表征材料抵抗变形能力的大小(弹性模量)蠕变:是指在一定的温度和较小的恒定应力作用下,材料的应变随时间的增加而增大的现象应力松弛:在恒定的温度和形变保持不变的情况下,聚合物内部的应力随时间增加而逐渐衰减的现象松弛过程:由于高分子运动时,运动单元之间的作用力很大,因此高分子在外场下,会由一种平衡状态通过分子运动过渡到与外场相适应的新的平衡态,这一过程慢慢完成,完成这一过程需要时间-松弛时间滞后现象,内耗:聚合物在交变应力作用下落后于应力的现象。
由于发生滞后现象,在每一循环变化中,作为热损耗掉的能量与最大储存能量之比Ψ=2πtanσ称为力学内耗分子理论:从高分子的结构特点出发,研究聚合物的力学松弛过程,其核心问题是提出合理的分子模型,应用分子的微观物理量(原子半径,键长,键角,内旋转位垒,均方末端距,分子量,内外摩擦因子等)通过统计力学方法,推导出聚合物的松弛时间分布,溶液和本体的复数黏度,复数模量,复数柔量等宏观黏性弹性的表达式。
主要有RBZ理论和蛇形理论滞后现象:高聚物在应变力作用下,往往发生应变落后于应力的现象。
分子运动是联系结构与性能的桥梁:聚合物物分子运动的规律,研究聚合物在不同条件下的力学状态和相应的热转变。
高分子的结构层次微观结构特征要在材料的宏观性质上表现出来,则必须通过材料内部分子的运动。
为了研究高聚物的宏观性质(力学、电子、光子等方面性能),只了解高聚物的结构还不行,还必须弄清高聚物分子运动的规律,才能将微观结构与宏观结构性能相结合,才能了解高聚物结构与性能的内在联系。
不同物质,结构不同,在相同外界条件下,分子运动不同,从而表现出的性能不同。
相同物质,在不同外界条件下,分子运动不同,从而表现出的性能也不同。
(1)分子运动的多样性分子运动单元的多重性①链段的运动——主链中碳-碳单键的内旋转,使得高分子链有可能在整个分子不动,即分子链质量中心不变的情况下,一部分链段相对于另一部分链段而运动。
由于分子内旋转是导致分子链柔顺性的根本原因,而高分子链的内旋转又受其分子结构的制约,因而分子链的柔顺性与其分子结构密切相关。
高分子链能够通过内旋转作用改变其构象的性能称为高分子链的柔顺性。
高分子链能形成的构象数越多,柔顺性越大。
②链节的运动——比链段还小的运动单元③侧基的运动——侧基运动是多种多样的,如转动,内旋转,端基的运动等④高分子的整体运动——高分子作为整体呈现质量中心的移动⑤晶区内的运动——晶型转变,晶区缺陷的运动,晶区中的局部松弛模式等多种运动方式小尺寸运动单元(链段尺寸以下)大尺寸运动单元(链段尺寸以上)分子运动的时间依赖性——聚合物从一种平衡态通过分子运动到另一种新的平衡态总是需要时间的。
松弛过程:τ/0t ex x -∆=∆△x0——橡皮在外力作用下的长度增量 △x ——除去外力后t 时间橡皮长度的增量 t ——观察时间 τ——松弛时间,形变量恢复到原长度的1/e 时所需的时间.取决于材料固有性质和温度、外力大小,不是单一值。
低分子10-8~10-10s, 可以看着是无松弛的瞬时过程。
高分子, 10-1~10+4 s 或更大, 可明显观察到松弛过程。
第三章 高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。
除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。
高分子热运动是一个松驰过程。
在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -=式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。
因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小, τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。
②温度升高使高聚物发生体积膨胀。
升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能, 0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。
2. 高聚物的力学状态和热转变在一定的力学负荷下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复.这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t 称为玻璃态转变温度(T g ).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变.高弹态是高分子所特有的力学状态.流动温度:链段沿作用力方向的协同运动导致大分子的重心发生相对位移,聚合物呈现流动性,转变温度称为流动温度(T f ).粘流态:与小分子液体的流动相似,聚合物呈现粘性液体状,流动产生了不可逆变形.②交联高聚物的温度-形变曲线 交联度较小时,存在T g , 但T f 随交联度增加而逐渐消失.交联度较高时, T g 和T f 都不存在.③晶态聚合物的温度-形变曲线. 一般相对分子质量的晶态聚合物只有一个转变,即结晶的熔融,转变温度为熔点T m .当结晶度不高(X c <40%)时,能观察到非晶态部分的玻璃化转变,即有T g 和T m 两个转变.相对分子质量很大的晶态高聚物达到T m 后,先进入高弹态,在升温到T g 后才会进入粘流态,于是有两个转变.④增塑聚合物的温度-形变曲线 加入增塑剂一般使聚合物的T g 和T f 都降低,但对柔性链和刚性链,作用有所不同.对柔性链聚合物, T g 降低不多而T f 降低较多,高弹区缩小;对刚性链聚合物, T g 和T f 都显著降低,在增塑剂达到一定浓度时,由于增塑剂分子与高分子基团间的相互作用,使刚性链变为柔性链,此时T g 显著降低而T f 降低不大,即扩大了高弹区,称”增弹作用”,这点对生产上极为有用(如PVC 增塑后可作为弹性体用).3. 高聚物的松驰转变及其分子机理在T g 以下,链段是不能运动了,但较小的运动单元仍可运动,这些小运动单体从冻结到运动的变化过程也是松弛过程,称为次级松弛。
1.玻璃态
T<Tg
(2)力学特征:形变量小(0.01 ~1%),模量高(109 ~1010Pa)。
形变与时间无关,呈普弹性。
(1)运动单元:键长、键角的改变或小尺寸单元的运动。
T d
T f
T g
2.玻璃化转变区(1)链段运动逐渐开始
(2)形变量ε增大,模量E降低。
T d
T f
T g
3.高弹态
T g ~T f
(1)运动单元:链段运动
(2)力学特征:高弹态
形变量大,100-1000﹪
模量小,105-107Pa T d
T f
T
g
4.粘流转变区
(2)形变量加大,模量降低,宏观上表现为流动
(1)整链分子逐渐开始运动,
T d
T f
T g
5.粘流态
T f ~T d
(2)力学特征:形变量更大
模量更低
流动
(3)T 与平均分子量有关
(1)运动单元:整链分子产生相对位移T d
T f
T g
T f
图5-9 高聚物的比容-压力曲线图5-10 高聚物的tanδ-lgν曲线
33。
第5章聚合物的转变与松弛5.1高聚物的分子运动特点高聚物的结构比小分子化合物复杂的多,因而其分子运动也非常复杂。
主要有以下几个特点:1、运动单元的多重性。
除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动)。
2、运动的时间依赖性。
从一种状态到另一种状态的运动需要克服分子间很强的次价键作用力(即内摩擦),因而需要时间,称为松弛时间,记作。
当时,,因而松弛时间的定义为:变到等于的分之一时所需要的时间。
它反映某运动单元松弛过程的快慢。
由于高分子的运动单元有大有小,不是单一值而是一个分布,称“松弛时间谱”。
3、运动的温度依赖性。
升高温度加快分子运动,缩短了松弛时间。
式中:为活化能;为常数5.2聚合物的热转变与力学状态①线形非晶态聚合物的温度-形变曲线:将一定尺寸的非晶态聚合物在一定应力作用下,以一定速度升高温度,同时测定样品形变随温度的变化,可以得到温度-形变曲线(也称为热-机械曲线)。
如果用模量对温度作图曲线上有两个斜率突变区,分别称为玻璃化转变区和粘弹转变区。
在这两个转变区之间和两侧,聚合物分别呈现三种不同的力学状态,依温度自低到高的顺序分别为:玻璃态,高弹态,粘流态。
两种转变区及三种力学状态的特征及分子运动机理如下:1、玻璃态由于温度较低,分子热运动能低,链段的热运动能不足以克服主链内旋转的势垒,因此,链段处于被“冻结”状态。
只有侧基、链节、短支链等小运动单元的局部振动及键长,键角的变化,因此弹性模量很高(1010~1011dyn/cm2),形变很小(0.1~1%),具有虎克弹性行为,质硬而脆,类似玻璃,因而称为玻璃态。
2、玻璃化转变区这是一个对温度十分敏感的区域,在3~5范围内几乎所有性质都发生突变(例如热膨胀系数、模量、介电常数、折光指数等)。
从分子运动机理看,在此温度链段已开始“解冻”,即链段的运动被激发。
由于链段绕主链轴的旋转使分子的形态不断变化,即由于构象的改变,长链分子可以外力作用下伸展(或卷曲),因此弹性模量迅速下降3~4个数量级,形变迅速增加。