有理数的加法法则
从上述①- ⑥所写出的算式中 ,你能总结出一些规律吗 ?
① ( + 20) + ( + 30) = + 50 ② ( - 20) + ( - 30) = - 50 ③ ( + 20) + ( - 30) = -10 ④ ( - 20) + ( + 30) = +10 ⑤ ( + 30) + ( - 30) = 0 ⑥ ( -30) + 0 = -30
情境导入
在小学里我们知道,数的加法满足交换律: 例如: 5+3. 5 =3. 5+5; 结合律: 例如:(5+3.5) +2.5 = 5 + (3.5 +2.5).
思考
引进了负数以后,这些运算律是否还成立呢? 例如:将上面两个等式中,5、3.5和2. 5换成任意的有理数, 是否仍然成立呢?
新课讲解
解法一:这10听罐头的总质量为 444+ 459+ 454+ 459+ 454+ 454+ 449+ 454+ 459+ 464 = 4 550(g). 解法二:把超过标准质量的克数用正数表示,不足的用负数表示, 列出 10听罐头与标准质量的差值表:
听号
1
234
5
与标准质量的差/g -10 +5 0 +5 0
有理数的加法法则
●
●
-20 -10 0 10 20 30 40 50 60
第一次向西走20米 ,第二次向东走 30米,由数轴表示运动过程可知: 小明位于原来位置的东边10米处即(+10米)
∴( -20) + ( + 30) = + 10,