高中数学空间直角坐标系试题
- 格式:doc
- 大小:248.00 KB
- 文档页数:5
空间中的点的坐标(北京习题集)(教师版)一.选择题(共9 小题)1.(2014•北京)在空间直角坐标系Oxyz 中,已知A(2 ,0, 0) ,B(2 ,2, 0) ,C(0 ,2, 0) ,D(1,1,2) ,若S 1 ,S ,分别表示三棱锥在,,坐标平面上的正投影图形的面积,则S D ABC xOy yOz zOx( )2 3A.S S S B.S S 且S S C.S S 且S S D.S S 且1 2 3 2 1 2 3 3 1 3 2 3 2 S S 3 12.(2019 秋•石景山区期末)如图,以长方体ABCD A B C D 的顶点D 为坐标原点,过D 的三条棱所在的直线为坐1 1 1 1标轴,建立空间直角坐标系,若DB 的坐标为 (4 ,3, 2) ,则C 的坐标是 ( )1 1A. (0 ,3, 2) B. (0 ,4, 2) C. (4 ,0, 2) D. (2 ,3, 4)3.(2018 秋•西城区期末)已知点A(2 ,0,1) ,B(4 ,2,3) ,P 是AB 中点,则点P 的坐标为 ( ) A.P ,1, 2) B.P(3,1, 4) C.P(0 , 2 ,1) D.P(6 ,4,5)(34.(2017 秋•丰台区期末)已知正方体ABCD A B C D 的每条棱都平行于空间直角坐标系的坐标轴,两顶点坐标分1 1 1 1别为A ,1,1) ,,3,,那么该正方体的棱长为( 1 C1(3 3) ( )A.1 B.2 C.3 D.45.(2017 秋•西城区校级期末)已知点A (3,1, 4) ,则点A 关于x 轴的对称点的坐标为 ( ) A. ( 3 ,1,4) B. (3 ,1,4) C. ( 3 ,1,4) D. ( 3 ,1,4)6.(2016 秋•海淀区期末)在空间直角坐标系中,点P(1,2,3) 关于坐标平面xOy 的对称点为 ( ) A. ( 1 , 2 ,3) B. ( 1 , 2 ,3) C. ( 1 ,2,3) D. (1 ,2,3)7.(2016 秋•西城区期末)在空间直角坐标系O xyz 中.正四面体P ABC 的顶点A ,B 分别在x 轴,y 轴上移动.若该正四面体的棱长是 2,则| OP | 的取值范围是 ( )A.[ 3 1, 3 1] B.[1,3] C.[ 3 1, 2] D.[1, 3 1]8.(2016 秋•西城区校级期中)点P (3 ,1, 0) 在空间直角坐标系的位置是 ( )第1页(共9页)A.在z 轴上B.在yO z 平面上C.在xO z 平面上D.在xOy 平面上9.(2015 秋•北京校级期中)在空间直角坐标系中,点B 是点A(1,2,3) 在坐标平面xOy 上的射影,O 为坐标原点,则OB 的长为 ( )A.10 B.13 C.14 D. 5二.填空题(共5 小题)10.(2017 秋•东城区期末)在空间直角坐标系中,点,,在平面内的射影为,,,则P(2 1 1) yOz Q(x y z) xyz.11.(2017 秋•东城区期末)在空间直角坐标系中,点,,在平面内的射影为,,,则P(2 1 1) yOz Q(x y z) x y z.12.(2015 春•北京校级期中)如图空间直角坐标系中,正方体AC 的棱长为 2,E 是BC 中点,则点E 的坐标是.113.(2014•海淀区校级模拟)已知点A(3,1, 4) ,则点A 关于原点的对称点B 的坐标为.14.(2014•海淀区校级模拟)在空间直角坐标系中,已知A(1,2,3) ,则点A 在yox 面上的投影点坐标是.三.解答题(共1 小题)15.(2008•海淀区自主招生)已知A 、B 是球心为O 的球面上的两点,在空间直角坐标系中,他们的坐标分别为O(0 ,0, 0) 、A( 2 ,1,1) 、B(0 , 2 ,2) .求(1)球的半径R (2)OA g OB第2页(共9页)空间中的点的坐标(北京习题集)(教师版)参考答案与试题解析一.选择题(共9 小题)1.(2014•北京)在空间直角坐标系Oxyz 中,已知A(2 ,0, 0) ,B(2 ,2, 0) ,C(0 ,2, 0) ,D(1,1,2) ,若S 1 ,,S 分别表示三棱锥D ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )S2 3A.S S S B.S S 且S S C.S S 且S S D.S S 且1 2 3 2 1 2 3 3 1 3 2 3 2 S S 3 1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设(2 ,0,,,2,,,2,,,1,,则各个面上的射影分别为,,A 0) B(2 0) C(0 0) D(1 2) A BC D,,1在xOy 坐标平面上的正投影A(2 ,0, 0) ,B(2 ,2, 0) ,C(0 ,2, 0) ,D(1,1, 0) ,S 2 2 2 .121在yOz 坐标平面上的正投影A(0 ,0, 0) ,B(0 ,2, 0) ,C(0 ,2, 0) ,D(0 ,1,2) ,S . 2 2 2221在坐标平面上的正投影,0,,,0,,,0,,,1,, 2 2 2 ,zOx A(2 0) B(2 0) C(0 0) D(0 2) S32则且S S ,S S3 2 3 1故选:D .【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.2.(2019 秋•石景山区期末)如图,以长方体ABCD A B C D 的顶点D 为坐标原点,过D 的三条棱所在的直线为坐1 1 1 1标轴,建立空间直角坐标系,若DB 的坐标为 (4 ,3, 2) ,则C 的坐标是 ( )1 1A. (0 ,3, 2) B. (0 ,4, 2) C. (4 ,0, 2) D. (2 ,3, 4)【分析】推导出,, 1 2 ,由此能求出C 的坐标.AD DC 3 DD41【解答】解:以长方体ABCD A B C D 的顶点D 为坐标原点,1 1 1 1过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,第3页(共9页)Q DB 的坐标为 (4 ,3, 2) ,1AD DC 3 DD 1 24 ,,,C 的坐标是: (0 ,3, 2) .1故选:A .【点评】本题考查点的坐标的求法,考查空间直角坐标系的性质等基础知识,考查运算求解能力,是基础题.3.(2018 秋•西城区期末)已知点A(2 ,0,1) ,B(4 ,2,3) ,P 是AB 中点,则点P 的坐标为 ( ) A.P(3,1, 2) B.P(3,1, 4) C.P(0 , 2 ,1) D.P(6 ,4,5)【分析】根据题意,由空间中点坐标的计算公式计算可得答案.【解答】解:根据题意,点A(2 ,0,1) ,B(4 ,2,3) ,P 是AB 中点,2 4 0 2 1 3则点P 的坐标为 ( ,,) ,即 (3 ,1, 2) ;2 2 2故选:A .【点评】本题考查空间直角坐标系,涉及中点坐标公式,属于基础题.4.(2017 秋•丰台区期末)已知正方体ABCD A B C D 的每条棱都平行于空间直角坐标系的坐标轴,两顶点坐标分1 1 1 1别为,,,1(3,3,,那么该正方体的棱长为A ( 1 1 1) C 3) ( )A.1 B.2 C.3 D.4【分析】根据正方体的结构特征,以及两点之间的距离公式即可求出.【解答】解:两顶点坐标分别为,,,1(3,3,,Q A ( 1 1 1)C 3),| AC | (3 1) (3 1) (3 1)3 42 2 2 2 21设棱长为,则,a a 2 a 2 a 2 3a 2 3 42解得a 4 ,故选:D .【点评】本题考查了正方体的结构特征,以及两点之间的距离公式,属于基础题.5.(2017 秋•西城区校级期末)已知点A(3,1, 4) ,则点A 关于x 轴的对称点的坐标为 ( )第4页(共9页)A.,1,B.,,C.,,D.,1,( 3 4) (3 1 4) ( 3 1 4) ( 3 4)【分析】根据空间中点的位置关系可得:点关于轴的对称点的坐标就是横坐标不变、纵坐标、竖坐标数值的A x A相反数.【解答】解:由题意可得:点A(3,1, 4) ,所以根据空间中点的位置关系可得:点关于轴的对称点的坐标就是横坐标不变、纵坐标、竖坐标数值的相反A x A数,所以可得( 3,,.A 1 4)故选:C .【点评】本题主要考查对称点的坐标的求法,解决此类问题的关键是熟练掌握空间直角坐标系,以及坐标系中点之间的位置关系,此题所以基础题.6.(2016 秋•海淀区期末)在空间直角坐标系中,点P(1,2,3) 关于坐标平面xOy 的对称点为 ( ) A. ( 1 , 2 ,3) B. ( 1 , 2 ,3) C. ( 1 ,2,3) D. (1 ,2,3)【分析】点,,关于坐标平面的对称点为,,.(a b c) xOy (a b c)【解答】解:在空间直角坐标系中,点P(1,2,3) 关于坐标平面xOy 的对称点为 (1 ,2,3) .故选:D .【点评】本题考查点的坐标的求法,是基础题,解题时要认真审题,注意空间直角坐标系的性质的合理运用.7.(2016 秋•西城区期末)在空间直角坐标系中.正四面体的顶点,分别在轴,轴上移O xyz P ABC A B x y 动.若该正四面体的棱长是 2,则| OP | 的取值范围是 ( )A.[ 3 1, 3 1] B.[1,3] C.[ 3 1, 2] D.[1, 3 1]【分析】根据题意画出图形,结合图形,固定正四面体P ABC 的位置,则原点O 在以AB 为直径的球面上运动,原点到点的最近距离等于减去球的半径,最大距离是加上球的半径.O P PM PM【解答】解:如图所示,若固定正四面体P ABC 的位置,则原点O 在以AB 为直径的球面上运动,设的中点为,则;AB M PM 22 12 3所以原点到点的最近距离等于减去球的半径,O P PM M最大距离是PM 加上球M 的半径;所以,3 1…| OP |… 3 1第5页(共9页)即的取值范围是,.| OP | [ 3 1 3 1]故选:.A【点评】本题主要考查了点到直线以及点到平面的距离与应用问题,也考查了数形结合思想的应用问题,是综合题.8.(2016 秋•西城区校级期中)点,,在空间直角坐标系的位置是P (3 1 0) ( )A.在z 轴上B.在yO z 平面上C.在xO z 平面上D.在xOy 平面上【分析】点 (a ,b , 0) 在xOy 平面上.【解答】解:点,,在平面上.P (3 1 0) xOy故选:D .【点评】本题考查空间中点的位置的判断,是基础题,解题时要认真审题,注意空间直角坐标系的性质的合理运用.9.(2015 秋•北京校级期中)在空间直角坐标系中,点B 是点A(1,2,3) 在坐标平面xOy 上的射影,O 为坐标原点,则OB 的长为 ( )A.10 B.13 C.14 D. 5【分析】根据射影的定义,求出点在坐标平面内的射影,计算线段即可.A xOyB | OB |【解答】解:在空间直角坐标系中,Q点B 是A(1,2,3) 在xOy 坐标平面内的射影,B 点的坐标是 (1 ,2, 0)| OB | 1 2 052 2 2.故选:D .【点评】本题考查了点在空间直角坐标平面内的射影以及两点间距离公式的应用问题,是基础题目.第6页(共9页)二.填空题(共5 小题)10.(2017 秋•东城区期末)在空间直角坐标系中,点(2 ,,在平面内的射影为,,,则P 1 1) yOz Q(x y z) xyz 0.【分析】根据点(2 ,,在平面内的射影为,,,得到在坐标平面上,竖标和纵标与相P 1 1) yOz Q(x y z) B yOz A 同,而横标为 0,写出Q 的坐标是 (0 ,1,1) ,由此能得到结果.【解答】解:在空间直角坐标系中,Q点,,在平面内的射影为,,,P(2 1 1) yOz Q(x y z)1 1)Q(0 ,,,xyz 0.故答案为:0.【点评】本题考查空间中的点的坐标、考查正投影的性质,是一个基础题,本题的运算量比较小,是一个必得分题目.11.(2017 秋•东城区期末)在空间直角坐标系中,点P(2 ,1,1) 在yOz 平面内的射影为Q(x ,y ,z) ,则x y z 0.【分析】在空间直角坐标系中,点P(2 ,1,1) 在yOz 平面内的射影为Q(0 ,1,1) ,由此能求出x y z .【解答】解:在空间直角坐标系中,点,,在平面内的射影为,,,Q P(2 1 1) yOz Q(x y z)Q 1 1)(0 ,,,x y z 0 11 0.故答案为:0.【点评】本题考查代数式求值,考查空间直角坐标系中点的射影的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.(2015 春•北京校级期中)如图空间直角坐标系中,正方体AC 的棱长为 2,E 是BC 中点,则点E 的坐标是1(1 ,2, 2) .第7页(共9页)【分析】根据空间直角坐标系,利用中点坐标公式求出的中点的坐标即可.BC E【解答】解:Q正方体ABCD A B C D 中,棱长为 2,1 1 1 1B(2 ,2, 2) ,C(0 ,2, 2) ,又Q E 是BC 的中点,(2 0E 的坐标为,,) ,2 2 2 22 2 2即 (1 ,2, 2) .故答案为: (1 ,2, 2) .【点评】本题考查了空间直角坐标系与中点坐标公式的应用问题,是基础题目.13.(2014•海淀区校级模拟)已知点A ,1, 4) ,则点A 关于原点的对称点B 的坐标为 (3 ,1,4) .( 3【分析】根据中心对称的性质,得线段AB 的中点为原点O ,由此结合中点坐标公式列方程组,解之即可得到点B 的坐标.【解答】解:设B(x ,y ,z) ,则Q点A(3,1, 4) 与B 关于原点O 对称,x (3)2x 3y 1O AB 0原点是线段的中点,可得,解之得y 12z 4z 42因此点坐标为,,B (3 1 4)故答案为:,,(3 1 4)【点评】本题给出点A 的坐标,求点A 关于原点的对称点B 的坐标,着重考查了空间点的位置关系的中点坐标公式等知识,属于基础题.14.(2014•海淀区校级模拟)在空间直角坐标系中,已知A(1,2,3) ,则点A 在yox 面上的投影点坐标是第8页(共9页)( 1 ,2, 0) .【分析】直接利用空间直角坐标系,点A 在yox 面上的投影点坐标是竖坐标为 0,写出结果.【解答】解:在空间直角坐标系中,已知A(1,2,3) ,则点A 在yox 面上的投影点坐标是竖坐标为 0,即: ( 1 ,2, 0) .故答案为: ( 1 ,2, 0) .【点评】本题考查空间直角坐标系的应用,点的位置关系,考查基本知识的应用.三.解答题(共1 小题)15.(2008•海淀区自主招生)已知A 、B 是球心为O 的球面上的两点,在空间直角坐标系中,他们的坐标分别为O(0 ,0, 0) 、A( 2 ,1,1) 、B(0 , 2 ,2) .求(1)球的半径R (2)OA g OB【分析】(1)根据球面上的点到球心的距离就是半径,得到只要求出A 到圆心O 的距离即可,利用两点之间的距离公式,得到结果,(2)根据两个点的坐标,写出以原点为起点的向量的坐标,利用两个向量数量积的坐标形式的公式,代入求出结果.【解答】解:(1)A 、B 是球心为O 的球面上的两点半径为 0A或 0B 的长度R | OA| 2 1 1 2(2)Q A( 2 ,1,1) 、B(0 , 2 ,2)OA ( 2 1 1) OB (0 2 2),,,,,OA g OB 0 2 2 0【点评】本题考查球的计算,考查空间直角坐标系,考查向量的数量积,是一个基础题,在解题时只要细心,这是一个送分题目.第9页(共9页)。
空间直角坐标系空间两点间的距离公式层级一学业水平达标1.点P(a,b,c)到坐标平面xOy的距离是()A.a2+b2B.|a|C.|b| D.|c|解析:选D点P在xOy平面的射影的坐标是P′(a,b,0),所以|PP′|=|c|.2.已知A(1,1,1),B(-3,-3,-3),则线段AB的长为()A.4 3 B.2 3C.4 2 D.3 2解析:选A|AB|=(1+3)2+(1+3)2+(1+3)2=4 3.3.在空间直角坐标系中,点P(3,1,5)关于平面xOz对称的点的坐标为()A.(3,-1,5) B.(-3,-1,5)C.(3,-1,-5) D.(-3,1,-5)解析:选A由于点关于平面xOz对称,故其横坐标、竖坐标不变,纵坐标变为相反数,即对称点坐标是(3,-1,5).4.若点P(-4,-2,3)关于xOy平面及y轴对称的点的坐标分别是(a,b,c),(e,f,d),则c与e的和为()A.7 B.-7C.-1 D.1解析:选D由题意,知点P关于xOy平面对称的点的坐标为(-4,-2,-3),点P 关于y轴对称的点的坐标为(4,-2,-3),故c=-3,e=4,故c+e=-3+4=1.5.点P(1,2,3)为空间直角坐标系中的点,过点P作平面xOy的垂线,垂足为Q,则点Q的坐标为()A.(0,0,3) B.(0,2,3)C.(1,0,3) D.(1,2,0)解析:选D由空间点的坐标的定义,知点Q的坐标为(1,2,0).6.空间点M(-1,-2,3)关于x轴的对称点的坐标是________.解析:∵点M(-1,-2,3)关于x轴对称,由空间中点P(x,y,z)关于x轴对称点的坐标为(x,-y,-z)知,点M关于x轴的对称点为(-1,2,-3).答案:(-1,2,-3)7.在空间直角坐标系中,点(-1,b,2)关于y轴的对称点是(a,-1,c-2),则点P(a,b ,c )到坐标原点的距离|PO |=________.解析:由点(x ,y ,z )关于y 轴的对称点是点(-x ,y ,-z )可得-1=-a ,b =-1,c -2=-2,所以a =1,c =0,故所求距离|PO |=12+(-1)2+02= 2. 答案: 28.在空间直角坐标系中,点M (-2,4,-3)在xOz 平面上的射影为点M 1,则点M 1关于原点对称的点的坐标是________.解析:由题意,知点M 1的坐标为(-2,0,-3),点M 1关于原点对称的点的坐标是(2,0,3). 答案:(2,0,3)9.如图,已知长方体ABCD -A 1B 1C 1D 1的对称中心在坐标原点,交于同一顶点的三个面分别平行于三个坐标平面,顶点A (-2,-3,-1),求其他七个顶点的坐标.解:由题意,得点B 与点A 关于xOz 平面对称,故点B 的坐标为(-2,3,-1);点D 与点A 关于yOz 平面对称,故点D 的坐标为(2,-3,-1);点C 与点A 关于z 轴对称,故点C 的坐标为(2,3,-1);由于点A 1,B 1,C 1,D 1分别与点A ,B ,C ,D 关于xOy 平面对称,故点A 1,B 1,C 1,D 1的坐标分别为A 1(-2,-3,1),B 1(-2,3,1),C 1(2,3,1),D 1(2,-3,1).10.如图,在长方体ABCD -A 1B 1C 1D 1中,|AB |=|AD |=2,|AA 1|=4,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 的中点,求M ,N两点间的距离.解析:由已知条件,得|A 1C 1|=2 2.由|MC 1|=2|A 1M |,得|A 1M |=223, 且∠B 1A 1M =∠D 1A 1M =π4.如图,以A 为原点,分别以AB ,AD ,AA 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则M ⎝⎛⎭⎫23,23,4,C (2,2,0),D 1(0,2,4).由N 为CD 1的中点,可得N (1,2,2).∴|MN |= ⎝⎛⎭⎫1-232+⎝⎛⎭⎫2-232+(2-4)2=533. 层级二 应试能力达标1.点A (0,-2,3)在空间直角坐标系中的位置是( )A .在x 轴上B .在xOy 平面内C .在yOz 平面内D .在xOz 平面内解析:选C ∵点A 的横坐标为0,∴点A (0,-2,3)在yOz 平面内.2.在空间直角坐标系中,点P (2,3,4)和点Q (-2,-3,-4)的位置关系是( )A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .以上都不对解析:选C 点P 和点Q 的横、纵、竖坐标均相反,故它们关于原点对称.3.设A (1,1,-2),B (3,2,8),C (0,1,0),则线段AB 的中点P 到点C 的距离为( ) A.132 B.534 C.532D.532 解析:选D 利用中点坐标公式,得点P 的坐标为⎝⎛⎭⎫2,32,3,由空间两点间的距离公式,得|PC |=(2-0)2+⎝⎛⎭⎫32-12+(3-0)2=532. 4.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5 D .2 6解析:选B 由已知,可得C 1(0,2,3),∴|AC 1|=(0-4)2+(2-0)2+(3-0)2=29.5.已知A (3,5,-7),B (-2,4,3),则线段AB 在yOz 平面上的射影长为________. 解析:点A (3,5,-7),B (-2,4,3)在yOz 平面上的射影分别为A ′(0,5,-7),B ′(0,4,3),∴线段AB 在yOz 平面上的射影长|A ′B ′|=(0-0)2+(4-5)2+(3+7)2=101.答案:1016.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且点M 到点A ,B 的距离相等,则点M 的坐标是________.解析:因为点M 在y 轴上,所以可设点M 的坐标为(0,y,0).由|MA |=|MB |,得(0-1)2+(y -0)2+(0-2)2=(0-1)2+(y +3)2+(0-1)2,整理得6y +6=0,解得y =-1,即点M 的坐标为(0,-1,0).答案:(0,-1,0) 7.在空间直角坐标系中,解答下列各题.(1)在x 轴上求一点P ,使它与点P 0(4,1,2)的距离为30;(2)在xOy 平面内的直线x +y =1上确定一点M ,使它到点N (6,5,1)的距离最短. 解:(1)设P (x,0,0).由题意,得|P 0P |=(x -4)2+1+4=30,解得x =9或x =-1.所以点P 的坐标为(9,0,0)或(-1,0,0).(2)由已知,可设M (x 0,1-x 0,0).则|MN |=(x 0-6)2+(1-x 0-5)2+(0-1)2=2(x 0-1)2+51.所以当x 0=1时,|MN |min =51.此时点M 的坐标为(1,0,0).8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,M 为BD 1的中点,N在A 1C 1上,且|A 1N |=3|NC 1|,试求MN 的长.解:以D 为原点,以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则B (a ,a,0),A 1(a,0,a ),C 1(0,a ,a ),D 1(0,0,a ).由于M 为BD 1的中点,所以M ⎝⎛⎭⎫a 2,a 2,a 2,取A 1C 1中点O 1,则O 1⎝⎛⎭⎫a 2,a 2,a ,因为|A 1N |=3|NC 1|,所以N 为O 1C 1的中点,故N ⎝⎛⎭⎫a 4,34a ,a . 由两点间的距离公式可得:|MN |= ⎝⎛⎭⎫a 2-a 42+⎝⎛⎭⎫a 2-34a 2+⎝⎛⎭⎫a 2-a 2 =64a .高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
一、选择题1.在空间直角坐标系中,M(–2,1,0)关于原点的对称点M′的坐标是A.(2,–1,0)B.(–2,–1,0)C.(2,1,0)D.(0,–2,1)【答案】A【解析】∵点M′与点M(–2,1,0)关于原点对称,∴M′(2,–1,0).故选A.2.点B是点A(1,2,3)在坐标平面yOz内的射影,则OB等于A.13B.14C.23D.13【答案】A3.点B30,0)是点A(m,2,5)在x轴上的射影,则点A到原点的距离为A.2B.2C.3D.5【答案】A【解析】点B30,0)是点A(m,2,5)在x轴上的射影,可得m3A到原点的距离222++2.故选A.(3)254.在空间直角坐标系中,点A(5,4,3),则A关于平面yOz的对称点坐标为A.(5,4,–3)B.(5,–4,–3)C.(–5,–4,–3)D.(–5,4,3)【答案】D【解析】根据关于坐标平面yOz 的对称点的坐标的特点,可得点A (5,4,3),关于坐标平面yOz 的对称点的坐标为(–5,4,3).故选D .5.空间中两点A (1,–1,2)、B (–1,1,22+2)之间的距离是A .3B .4C .5D .6【答案】B【解析】∵A (1,–1,2)、B (–1,1,22+2),∴A 、B 两点之间的距离d =222(11)(11)(2222)++--+--=4,故选B .6.在空间直角坐标系中,P (2,3,4)、Q (–2,–3,–4)两点的位置关系是A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .以上都不对【答案】C7.点P (1,1,1)关于xOy 平面的对称点为P 1,则点P 1关于z 轴的对称点P 2的坐标是A .(1,1,–1)B .(–1,–1,–1)C .(–1,–1,1)D .(1,–1,1)【答案】B【解析】∵点P (1,1,1)关于xOy 平面的对称点为P 1,∴P 1(1,1,–1),∴点P 1关于z 轴的对称点P 2的坐标是(–1,–1,–1).故选B .8.已知点A (2,–1,–3),点A 关于x 轴的对称点为B ,则|AB |的值为A .4B .6C 14D .10【答案】D【解析】点A (2,–1,–3)关于平面x 轴的对称点的坐标(2,1,3),由空间两点的距离公式可知:AB ()()()222221133-++++10,故选D .9.在空间直角坐标系Oxyz 中,点M (1,2,3)关于x 轴对称的点N 的坐标是A.N(–1,2,3)B.N(1,–2,3)C.N(1,2,–3)D.N(1,–2,–3)【答案】D【解析】∵点M(1,2,3),一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,∴点M(1,2,3)关于x轴对称的点的坐标为(1,–2,–3),故选D.10.空间点M(1,2,3)关于点N(4,6,7)的对称点P是A.(7,10,11)B.(–2,–1,0)C.579222⎛⎫⎪⎝⎭,,D.(7,8,9)【答案】A11.在空间直角坐标系中,已知点A(1,0,2),B(1,–4,0),点M是A,B的中点,则点M的坐标是A.(1,–1,0)B.(1,–2,1)C.(2,–4,2)D.(1,–4,1)【答案】B【解析】∵点M是A,B的中点,∴M110420222+-+⎛⎫⎪⎝⎭,,,即M(1,–2,1).故选B.二、填空题12.空间中,点(2,0,1)位于___________平面上(填“xOy”“yOz”或“xOz”)【答案】xOz【解析】空间中,点(2,0,1)位于xOz平面上.故答案为:xOz.13.在正方体ABCD–A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为___________.29【解析】∵在正方体ABCD –A 1B 1C 1D 1中,D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),∴C 1(0,2,3),∴对角线AC 1的长为|AC 1|=222(04)2329-++=.故答案为:29.14.在空间直角坐标系中,点P 的坐标为(1,2,3),过点P 作平面xOy 的垂线PQ ,则垂足Q 的坐标为___________. 【答案】(1,2,0)【解析】空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则点Q 的坐标为(1,2,0),如图所示.故答案为:(1,2,0).15.若A (1,3,–2)、B (–2,3,2),则A 、B 两点间的距离为___________.【答案】5【解析】由题意,A 、B 两点间的距离为222(12)(33)(22)++-+--=5.故答案为:5. 16.已知A (1,a ,–5),B (2a ,–7,–2)(a ∈R ),则|AB |的最小值为___________.【答案】3617.点A (–1,3,5)关于点B (2,–3,1)的对称点的坐标为___________.【答案】(5,–9,–3)【解析】设点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(a,b,c),则12 2332512abc-+⎧=⎪⎪+⎪=-⎨⎪+⎪=⎪⎩,解得a=5,b=–9,c=–3,∴点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(5,–9,–3).故答案为:(5,–9,–3).三、解答题18.若点P(–4,–2,3)关于坐标平面xOy及y轴的对称点的坐标分别是A和B.求线段AB的长.19.在Z轴上求一点M,使点M到点A(1,0,2)与点B(1,–3,1)的距离相等.【解析】设M(0,0,z),∵Z轴上一点M到点A(1,0,2)与B(1,–3,1)的距离相等,∴()222221021(03)(1)z z++-=+++-,解得z=–3,∴M的坐标为(0,0,–3).20.如图建立空间直角坐标系,已知正方体的棱长为2,(1)求正方体各顶点的坐标;(2)求A1C的长度.【解析】(1)∵正方体的棱长为2,∴A (0,0,2),B (0,2,2),C (2,2,2),D (2,0,2), A 1(0,0,0),B 1(0,2,0),C 1(2,2,0),D 1(2,0,0). (2)由(1)可知,A 1(0,0,0),C (2,2,2),A 1C 的长度|A 1C |=222222++=23.21.求证:以A (4,1,9),B (10,–1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.。
第一章 1.3 1.3.1A级——基础过关练1.已知点A(-3,1,4),则点A关于x轴对称的点的坐标为( )A.(-3,-1,-4) B.(-3,-1,4)C.(3,1,4) D.(3,-1,-4)【答案】A【解析】关于x轴对称的点,横坐标相同,纵坐标、竖坐标均互为相反数,所以A(-3,1,4)关于x轴的对称点坐标为(-3,-1,-4).2.在空间直角坐标系中,已知点P(1,2,3),过点P作平面Oyz的垂线PQ,则垂足Q 的坐标为( )A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)【答案】B【解析】由于垂足Q在Oyz平面内,可设Q(0,y,z),因为直线PQ⊥Oyz平面,所以P,Q两点的纵坐标、竖坐标都相等.因为点P的坐标为(1,2,3),所以y=2,z=3,可得Q(0,2,3).3.在如图所示的长方体ABCD-A1B1C1D1中,已知点B1(1,0,3),D(0,2,0),则点C1的坐标为( )A.(1,2,3) B.(1,3,2)C.(2,3,1) D.(3,2,1)【答案】A【解析】观察图形可知点C1的坐标为(1,2,3).4.在如图所示的空间直角坐标系中,单位正方体顶点A的坐标是( )A .(-1,-1,-1)B .(1,-1,1)C .(1,-1,-1)D .(-1,1,-1)【答案】C【解析】依据空间点的坐标定义可知,点A 的坐标是(1,-1,-1).5.如图,在正方体OABC -O 1A 1B 1C 1中,棱长为2,E 是B 1B 上的点,且|EB |=2|EB 1|,则点E 的坐标为( )A .(2,2,1)B .⎝ ⎛⎭⎪⎫2,2,23C .⎝ ⎛⎭⎪⎫2,2,13D .⎝⎛⎭⎪⎫2,2,43 【答案】D【解析】因为EB ⊥Oxy 平面,而B (2,2,0),故设E (2,2,z ).又因为|EB |=2|EB 1|,所以|BE |=23|BB 1|=43,故点E 的坐标为⎝⎛⎭⎪⎫2,2,43.6.(2021年绵阳月考)在空间直角坐标系中,已知点A (-1,1,3),则点A 关于xOz 平面的对称点的坐标为( )A .(1,1,-3)B .(-1,-1,-3)C .(-1,1,-3)D .(-1,-1,3)【答案】D【解析】根据空间直角坐标系的对称性可得点A (-1,1,3)关于xOz 平面的对称点的坐标为(-1,-1,3).故选D .7.(多选)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =5,AD =4,AA 1=3,以直线DA ,DC ,DD 1分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点B 1的坐标为(4,5,3)B .点C 1关于点B 对称的点为(5,8,-3) C .点A 关于直线BD 1对称的点为(0,5,3) D .点C 关于平面ABB 1A 1对称的点为(8,5,0) 【答案】ACD【解析】根据题意知,点B 1(4,5,3),A 正确;B (4,5,0),C 1(0,5,3),故点C 1关于点B 对称的点为(8,5,-3),B 错误;点A 关于直线BD 1对称的点为C 1(0,5,3),C 正确;点C (0,5,0)关于平面ABB 1A 1对称的点为(8,5,0),D 正确.故选ACD .8.如图,在长方体OABC -O 1A 1B 1C 1中,OA =2,AB =3,AA 1=2,M 是OB 1与BO 1的交点,则点M 的坐标是________.【答案】⎝ ⎛⎭⎪⎫1,32,1 【解析】因为OA =2,AB =3,AA 1=2,所以A (2,0,0),A 1(2,0,2),B (2,3,0),故B 1(2,3,2).所以点M 的坐标为⎝⎛⎭⎪⎫22,32,22,即点M 的坐标为⎝⎛⎭⎪⎫1,32,1. 9.在空间直角坐标系中,点M (-2,4,-3)在Ozx 平面上的射影为点M ′,则点M ′关于原点对称点的坐标是________.【答案】(2,0,3)【解析】点M 在Oxz 平面上的射影为点M ′(-2,0,-3),所以点M ′关于原点对称点的坐标为(2,0,3).10.已知点P 的坐标为(3,4,5),试在空间直角坐标系中作出点P ,并写出求解过程. 解:如图,由P (3,4,5)可知点P 在x 轴上的射影为点A (3,0,0),在y 轴上的射影为点B (0,4,0),以OA ,OB 为邻边的矩形OACB 的顶点C 是点P 在Oxy 坐标平面上的射影C (3,4,0).过点C 作直线垂直于Oxy 坐标平面,并在此直线的Oxy 平面上方截取5个单位长度,得到的点就是P.B级——能力提升练11.在空间直角坐标系中,点M的坐标是(4,7,6),则点M关于y轴对称的点在Ozx平面上的射影的坐标为( )A.(4,0,6) B.(-4,7,-6)C.(-4,0,-6) D.(-4,7,0)【答案】C【解析】点M关于y轴对称的点是M′(-4,7,-6),点M′在Ozx平面上的射影的坐标为(-4,0,-6).12.(多选)已知点M(x,y,z)是空间直角坐标系Oxyz中的一点,则( )A.与点M关于x轴对称的点是(x,-y,-z)B.与点M关于原点对称的点是(-x,-y,-z)C.与点M关于xOy平面对称的点是(x,y,-z)D.与点M关于yOz平面对称的点是(x,-y,z)【答案】ABC【解析】与点M关于yOz平面对称的点是(-x,y,z),D错误,A,B,C均正确.故选ABC.13.直三棱柱ABC-A1B1C1的所有棱长都是2,以A为坐标原点建立如图所示的空间直角坐标系,则顶点B1关于平面xAz对称的点的坐标是________.【答案】(3,-1,2)【解析】∵直三棱柱ABC-A1B1C1的所有棱长都是2,∴B(3,1,0),∴顶点B1的坐标是(3,1,2),则其关于平面xAz的对称点为(3,-1,2).14.在空间直角坐标系Oxyz中,z=1的所有点构成的图形是________________;点P(2,3,5)到平面xOy的距离为________.【答案】过点(0,0,1)且与z轴垂直的平面 5【解析】z =1表示一个平面,其与平面Oxy 平行且距离为1,故z =1的所有点构成的图形是过点(0,0,1)且与z 轴垂直的平面.点P (2,3,5)到平面Oxy 的距离与其横纵坐标无关,只与其竖坐标有关.由于平面Oxy 的方程为z =0,故点P (2,3,5)到平面Oxy 的距离为|5-0|=5.15.在空间直角坐标系中有一个点P (1,3,-2),求: (1)点P 关于坐标原点O 的对称点P 1的坐标; (2)点P 关于x 轴的对称点P 2的坐标; (3)点P 关于坐标平面Oyz 的对称点P 3的坐标.解:(1)设点P 1的坐标为(x 1,y 1,z 1),因为点P 和P 1关于坐标原点O 对称, 所以O 为线段PP 1的中点.由中点坐标公式,得⎩⎪⎨⎪⎧x 1=-1,y 1=-3,z 1=2,所以点P 1的坐标为(-1,-3,2). (2)设点P 2的坐标为(x 2,y 2,z 2), 因为点P 和P 2关于x 轴对称,所以⎩⎪⎨⎪⎧x 2=1,3+y 22=0,-2+z 22=0,即⎩⎪⎨⎪⎧x 2=1,y 2=-3,z 2=2,则点P 2的坐标为(1,-3,2). (3)设点P 3的坐标为(x 3,y 3,z 3), 因为点P 和P 3关于平面yOz 对称,所以⎩⎪⎨⎪⎧x 3+12=0,y 3=3,z 3=-2,即⎩⎪⎨⎪⎧x 3=-1,y 3=3,z 3=-2,故点P 3的坐标为(-1,3,-2).。
第一章空间向量与立体几何单元过关基础A 版解析版学校:___________姓名:___________班级:___________考号:___________一、单选题1.空间直角坐标系中,点()2,3,5-关于y 轴对称的点的坐标是( ) A .()2,3,5--- B .()2,3,5 C .()2,3,5-- D .()2,3,5-【答案】A 【解析】 【分析】关于y 轴对称,纵坐标不变,横坐标、竖坐标变为相反数. 【详解】关于y 轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数. 所以点()2,3,5-关于y 轴对称的点的坐标是()2,3,5---. 故选:A . 【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.2.如图所示,在一个长、宽、高分别为2、3、4的密封的长方体装置2223333DA B C D A B C -中放一个单位正方体礼盒1111DABC D A B C -,现以点D 为坐标原点,2DA 、2DC 、3DD 分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则正确的是( )A .1D 的坐标为(1,0,0)B .1D 的坐标为(0,1,0)C .13B B 293D .13B B 14【答案】D【分析】根据坐标系写出各点的坐标分析即可. 【详解】由所建坐标系可得:1(0,0,1)D ,1(1,1,1)B ,3(2,3,4)B ,13B B ==.故选:D. 【点睛】本题考查空间直角坐标系的应用,考查空间中距离的求法,考查计算能力,属于基础题.3.空间直角坐标系中,已知点()()1,2,3345A B 、,,,则线段AB 的中点坐标为( ) A .()234,, B .()134,, C .()235,, D .()245,, 【答案】A 【解析】点()()1,2,3345A B 、,,, 由中点坐标公式得中得为:132435,,222+++⎛⎫⎪⎝⎭,即()234,,. 故选A.4.已知空间中三点(0,1,0)A ,(2,2,0)B ,(1,3,1)C -,则( ) A .AB 与AC 是共线向量B .AB 的单位向量是⎫⎪⎪⎝⎭C .AB 与BCD .平面ABC 的一个法向量是(1,2,5)- 【答案】D 【分析】根据向量的相关性质判断. 【详解】对于A 项,(2,1,0)AB =,(1,2,1)AC =-,所以AB AC λ≠,则AB 与AC 不是共线向量,所以A 项错误;对于B 项,因为(2,1,0)AB =,所以AB的单位向量为55⎛⎫⎪ ⎪⎝⎭,所以B 项错误; 对于C 项,向量(2,1,0)AB =,(3,1,1)BC =-,所以cos ,11AB BC AB BC AB BC⋅==-⋅,所以C 项错误;对于D 项,设平面ABC 的法向量是(,,)n x y z =,因为(2,1,0)AB =,(1,2,1)AC =-,所以00n AB n AC ⎧⋅=⎨⋅=⎩,则2020x y x y z +=⎧⎨-++=⎩,令1x =,则平面ABC 的一个法向量为(1,2,5)n =-,所以D 项正确. 故选:D. 【点睛】本题考查共线向量的判断,单位向量的求法,夹角的求法,平面法向量的求法,属于空间向量综合题.5.两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,且两平面的一个法向量()1,0,1n =-,则两平面间的距离是()A .32BC D .【答案】B 【解析】两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,()2,1,1OA =,且两平面的一个法向量()1,0,1,n =-∴两平面间的距离22n OA n⋅-+===,故选B. 6.下图是棱长为2的正方体1111ABCD A B C D -木块的直观图,其中,,P Q F 分别是11D C ,BC ,AB 的中点,平面α过点D 且平行于平面PQF ,则该木块在平面α内的正投影面积是( )A .43B .33C .23D 3【答案】A 【分析】先根据题意平面α可以平移至平面11A BC ,即木块在平面α内的正投影即可看成是在平面11A BC 的正投影,根据投影的性质可得投影为正六边形'''111A A BC C D ,最后根据正六边形面积公式可求出投影的面积. 【详解】解:根据题意可知平面α过点D 且平行于平面PQF , 则平面α可以平移至平面11A BC ,木块在平面α内的正投影即可看成是在平面11A BC 的正投影, 根据投影的性质可得投影为正六边形'''111A A BC C D 如图所示, 因为正方体1111ABCD A B C D -棱长为2, 所以221222A B =+=则投影面内正六边形的边长为:'1226cos303A A ==根据正六边形面积公式可得投影的面积为:'''111233264323A A BC C D S ⎛=⨯= ⎝⎭故投影面积为:43故选:A【点睛】本题主要考查空间几何体和正投影得概念,考查面积公式是计算,考查空间想象力和推导能力,属于难题.7.如图,已知正方体1111ABCD A B C D -棱长为3,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .13【答案】D 【分析】建立空间直角坐标系,根据P 在11BCC B 内可设出P 点坐标,作1HM BB ⊥,连接PM ,可得222HP HM MP =+,作1PN CC ⊥,根据空间中两点间距离公式,再根据二次函数的性质,即可求得2HP 的范围. 【详解】根据题意,以D 为原点建立空间直角坐标系如图所示:作1HM BB ⊥交1BB 于M,连接PM ,则HM PM ⊥作1PN CC ⊥交1CC 于N ,则PN 即为点P 到平面11CDD C 距离. 设(),3,P x z ,则()()()1,3,2,3,3,2,0,3,F M N z ()03,03x z ≤≤≤≤ ∵点P 到平面11CDD C 距离等于线段PF 的长 ∴PN PF =由两点间距离公式可得()()2212x x z =-+-化简得()2212x z -=-,则210x -≥解不等式可得12x ≥综上可得132x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222332x z =+-+-()223321x x =+-+-()2213x =-+132x ⎛⎫≤≤ ⎪⎝⎭所以213HP ≥(当时2x = 取等) 故选:D 【点睛】本题考查了空间直角坐标系的综合应用,利用空间两点间距离公式及二次函数求最值,属于难题. 8.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .8【答案】A 【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2iAB A P B B +⋅,最后根据棱长为1以及i ABBP 即可得出结果.【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+, 因为棱长为1,i ABBP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅, 故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A . 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题.二、多选题9.给出下列命题,其中正确的有( ) A .空间任意三个向量都可以作为一组基底B .已知向量//a b ,则a 、b 与任何向量都不能构成空间的一组基底C .A ,B ,M ,N 是空间四点,若BA ,BM ,BN 不能构成空间的一组基底,则A ,B ,M ,N 共面D .已知{,,}a b c 是空间向量的一组基底,若m a c =+,则{,,}a b m 也是空间一组基底 【答案】BCD 【分析】选项A 、B 中,根据空间基底的概念,可判断;选项C 中,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,由此可判断;选项D 中:基向量,a b 与向量m a c =+一定不共面,由此可判断. 【详解】选项A 中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A 不正确;选项B 中,根据空间基底的概念,可得B 正确;选项C 中,由,,BA BM BN 不能构成空间的一个基底,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,所以C 正确;选项D 中:由{},,a b c 是空间的一个基底,则基向量,a b 与向量m a c =+一定不共面,所以可以构成空间另一个基底,所以D 正确. 故选:BCD.10.已知v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是( ) A .1n ∥2n ⇔α∥β B .1n ⊥2n ⇔α⊥β C .v ∥1n ⇔l ∥α D .v ⊥1n ⇔l ∥α【答案】AB 【分析】根据线面直线的位置关系逐一判断即可. 【详解】解:v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合), 则1n ∥2n ⇔α∥β,1n ⊥2n ⇔α⊥β,v ∥1n ⇔l ⊥α,v ⊥1n ⇔l ∥α或l ⊂α. 因此AB 正确.故选:AB.11.在长方体ABCD A B C D ''''-中,2AB =,3AD =,1AA '=,以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则下列说法正确的是( ) A .(3,2,1)BD '=--B .异面直线A D '与BD '所成角的余弦值为35C .平面A CD ''的一个法向量为(2,3,6)-- D .二面角C A D D '''--的余弦值为37【答案】ACD 【分析】由向量法对每一选项进行逐一计算验证,可得答案. 【详解】由题意可得()()()3,0,0,3,2,0,0,2,0A B C ,()()()()0,0,1,3,0,1,0,2,1,3,2,1D A C B '''' 选项A: 所以(3,2,1)BD '=--,则A 正确.选项B:()3,0,1DA '=,(3,2,1)BD '=--,所以,cos ,10DA BDDA BD DA BD ''''==''⋅=所以异面直线A D '与BD '所成角的余弦值为35,则B 不正确. 选项C :设平面A C D ''的一个法向量为(),,n x y z =由()3,0,1DA '=,()0,2,1DC '=,则00n DA n DC ⎧⋅=⎨⋅=⎩'' 所以3020x z y z +=⎧⎨+=⎩ ,取6z =,得()2,3,6n =--,则C 正确.选项D :由上可得平面A C D ''的一个法向量为(2,3,6)n =-- 又平面A DD ''的法向量为()0,1,0m = 则3cos ,17n m n m n m⋅-==⨯⋅ 所以二面角C A D D '''--的余弦值为37,则D 正确. 故选:ACD12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD 【分析】以1{,,}AB AD AA 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-,因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径22222462R ++==,所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD. 【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积.三、填空题13.若直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,且l α⊥,则m =______. 【答案】2- 【分析】由已知可知,直线l 的方向向量与平面α的法向量平行,根据空间向量平行的充要条件可得到一个关于λ和m 的方程组,解方程组即可得到答案. 【详解】 解:l α⊥,直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,∴直线l 的方向向量与平面α的法向量平行.则存在实数λ使()4,2,m λ=()2,1,1-,即422m λλλ=⎧⎪=⎨⎪=-⎩,∴2m =-. 故答案为:2-.【点睛】本题考查向量语言表述线面垂直,直线的方向向量与平面的法向量平行是解本题的关键,属于基础题.14.若(1,1,0),(1,0,2),a b a b ==-+则与同方向的单位向量是________________【答案】【解析】 试题分析:,与同方向的单位向量是考点:空间向量的坐标运算;15.如图,在正四面体P ABC -中,,M N 分别为,PA BC 的中点,D 是线段MN 上一点,且2ND DM =,若PD xPA yPB zPC =++,则x y z ++的值为_______.【答案】23【分析】利用基向量表示PD ,结合空间向量基本定理可得. 【详解】1111111()2323366PD PM MD PA MN PA PN PM PA PB PC =+=+=+-=++ 所以11,36x y z ===,所以23x y z ++=.【点睛】本题主要考查空间向量的基本定理,把目标向量向基底向量靠拢是求解的主要思路.16.如图所示的正方体是一个三阶魔方(由27个全等的棱长为1的小正方体构成),正方形ABCD 是上底面正中间一个正方形,正方形1111D C B A 是下底面最大的正方形,已知点P 是线段AC 上的动点,点Q 是线段1B D 上的动点,则线段PQ 长度的最小值为_______.334【分析】建立空间直角坐标系,写出点的坐标,求出目标PQ 的表达式,从而可得最小值. 【详解】以1B 为坐标原点,1111,B C B A 所在直线分别为x 轴,y 轴建立空间直角坐标系,则()()()()10,0,0,1,2,3,2,1,3,2,2,3B A C D , 设11B Q B D λ=,AP AC μ=,[],0,1λμ∈.()12,2,3B Q λλλ=,()1111,2,3B P B A AP B A AC μμμ=+=+=+-. ()1112,22,33QP B P B Q μλμλλ=-=+----, ()()()2222122233QP μλμλλ=+-+--+-222215191730221417217234λλμμλμ⎛⎫⎛⎫=-+-+=-+-+ ⎪ ⎪⎝⎭⎝⎭当1517λ=且12μ=时,2QP 取到最小值934,所以线段PQ 长度的最小值为33434. 【点睛】本题主要考查空间向量的应用,利用空间向量求解距离的最值问题时,一般是把目标式表示出来,结合目标式的特征,选择合适的方法求解最值.四、解答题17.如图,已知1111ABCD A B C D -是四棱柱,底面ABCD 是正方形,132AA AB ==,,且1160C CB C CD ︒∠=∠=,设1,,CD C a b B CC c ===.(1)试用,,a b c 表示1AC ; (2)已知O 为对角线1A C 的中点,求CO 的长.【答案】(1)1AC a b c =---;(2)292. 【分析】(1)由11AC A A AD DC =++可表示出来; (2)由21||()4CO a b c =++可计算出. 【详解】(1)11AC A A AD DC =++1AA BC CD =-+- 1CC CB CD c b a a b c =---=---=---;(2)由题意知||2,||2,||3a b c ===,110,233,23322a b a c a b ⋅=⋅=⨯⨯=⋅=⨯⨯=,111()22CO CA a b c ==++,∴21||()4CO a b c =++ ()22212224a b c a b a c b c =+++⋅+⋅+⋅, ()2221292922302323442=⨯++++⨯+⨯==. 【点睛】本题考查空间向量的线性运算,考查利用向量计算长度,属于基础题.18.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 中点,O 为AC 中点,222AD AB AP ===.(1)证明:OE //平面PAB ;(2)异面直线PC 与OE 所成角的余弦值.【答案】(1)见详解; (2)33【分析】(1)连接BD ,得到O 为BD 中点,然后利用中位线定理,可得//OE PB ,根据线面平行的判定定理,可得结果.(2)通过建系,可得,PC OE ,然后利用向量的夹角公式,可得结果. 【详解】(1)证明:连接BD ,则O 为BD 中点, 又E 为PD 中点,∴OE //PB .∵PB ⊂平面PAB ,OE ⊄平面PAB , ∴OE //平面PAB(2)以A 为原点建立空间直角坐标系, 如图,则(0,0,1),(1,2,0),(0,2,0)P C D ,110,1,,,1,022E O ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∴11(1,2,1),,0,22PC OE ⎛⎫=-=-⎪⎝⎭, ∴3cos ,162PC OE ==⋅即异面直线PC 与OE 3【点睛】本题考查线面平行的判定定理以及建系通过利用向量的方法解决线线角,将几何问题用代数方法来解决,化繁为简,属基础题.19.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,60BAD ∠=,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,2DE =,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M CDE -的体积; (2)求证:DM ⊥平面ACE .【答案】(1)M 到平面DEC 的距离为3,233M CDE V -=;(2)证明见解析. 【分析】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,利用空间向量法可求得点M 到平面DEC 的距离,计算出CDE △的面积,利用锥体的体积公式可计算出三棱锥M CDE -的体积;(2)利用向量法证明出0AC DM ⋅=,0AE DM ⋅=,可得出DM AC ⊥,DM AE ⊥,再利用线面垂直的判定定理可证得DM ⊥平面ACE . 【详解】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,如图所示.易知z 轴在平面BDEF 内,且////BF DE z 轴,则()0,3,0C 、()1,0,0D -、()1,0,2E -、()1,0,1M ,()0,0,2DE ∴=,()1,3,0DC =,()2,0,1DM =,设平面DEC 的一个法向量(),,n x y z =,则2030n DE z n DC x y ⎧⋅==⎪⎨⋅=+=⎪⎩,取3x =,得()3,1,0n =-,M ∴到平面DEC 的距离23331DM n h n⋅===+, 又1122222DECSDE DC =⨯⨯=⨯⨯=, 因此,三棱锥M CDE -的体积112323333M CDE DEC V S h -=⨯⨯=⨯⨯=△; (2)证明:由(1)易知()0,3,0A -,则()0,23,0AC =,()1,3,2AE =-,02230010AC DM ⋅=⨯+⨯+⨯=,1230210AE DM ⋅=-⨯+⨯+⨯=,DM AC ∴⊥,DM AE ⊥,ACAE A =,DM ∴⊥平面ACE .【点睛】本题考查利用空间向量法计算点到平面的距离、三棱锥体积的计算,同时也考查了利用空间向量法证明线面垂直,考查推理能力与计算能力,属于中等题.20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是正方形,侧面PDC 是边长为a 的正三角形,且平面PDC ⊥底面ABCD ,E 为PC 的中点.(1)求异面直线PA 与DE 所成角的余弦值; (2)求直线AP 与平面ABCD 所成角的正弦值. 【答案】(16(26【分析】取CD 的中点O ,连接PO ,证明出PO ⊥平面ABCD ,然后以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立空间直角坐标系.(1)写出PA 、DE 的坐标,利用空间向量法可求得异面直线PA 与DE 所成角的余弦值; (2)求得平面ABCD 的一个法向量,并写出PA ,利用空间向量法可求得直线AP 与平面ABCD 所成角的正弦值. 【详解】取DC 的中点O ,连接PO ,PDC △为正三角形,O 为DC 的中点,则PO DC ⊥.又平面PDC ⊥平面ABCD ,平面PDC平面ABCD DC =,PO ⊂平面PDC ,PO ∴⊥平面ABCD .以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立如下图所示的空间直角坐标系O xyz -,则30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭、,,02a A a ⎛⎫- ⎪⎝⎭、0,,02a C ⎛⎫ ⎪⎝⎭、0,,02a D ⎛⎫- ⎪⎝⎭.(1)设异面直线PA 与DE 所成的角为θ,E 为PC 的中点,30,4a E ⎛⎫∴ ⎪ ⎪⎝⎭,330,4DE a ⎛⎫∴= ⎪ ⎪⎝⎭,3,,2a PA a ⎛⎫=- ⎪ ⎪⎝⎭, 233330244a a PA DE a a ∴⋅=⨯-⨯=-,2PA a =,32DE =,2364cos cos ,4322a PA DE PA DE PA DEa a θ⋅=<>===⋅⨯, 因此,异面直线PA 与DE 6 (2)设直线AP 与平面ABCD 所成的角为α,易知平面ABCD 的一个法向量为()0,0,1n =,362cos ,421aPA n PA n a PA n-⋅<>===-⨯⋅. 因此,直线AP 与平面ABCD 所成角的正弦值为64. 【点睛】本题考查利用空间向量法计算异面直线所成角的余弦值以及线面角的正弦值,考查计算能力,属于中等题.21.如图,四棱锥P ABCD -中,PA ⊥平面ABCD 、底面ABCD 为菱形,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1,120PA BAD ︒=∠=,菱形ABCD 的面积为23D AE C --的余弦值. 【答案】(1)证明见解析;(2)14. 【分析】(1)连接BD 交AC 于点O ,连接OE ,则//PB OE ,利用线面平行的判定定理,即可得证; (2)根据题意,求得菱形ABCD 的边长,取BC 中点M ,可证AM BC ⊥,如图建系,求得点坐标及,AE AC 坐标,即可求得平面ACE 的法向量,根据AM ⊥平面P AD ,可求得面ADE 的法向量,利用空间向量的夹角公式,即可求得答案. 【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 、E 分别为,AB ACAM PAD AE AC =⊥、PD 的中点,所以//PB OE , 又OE ⊂平面,ACE PB ⊄平面ACE 所以//PB 平面ACE(2)由菱形ABCD 的面积为23,120BAD ︒∠=,易得菱形边长为2, 取BC 中点M ,连接AM ,因为AB AC =,所以AM BC ⊥,以点A 为原点,以AM 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立如图所示坐标系.则()())10,2,0,0,0,0,0,1,,3,1,02D A E C⎛⎫ ⎪⎝⎭所以()10,1,,3,1,02AE AC ⎛⎫== ⎪⎝⎭设平面ACE 的法向量()1,,n x y z =,由11,n AE n AC ⊥⊥得10230y z x y ⎧+=⎪⎪+=⎩,令3x =3,6y z =-= 所以一个法向量()13,3,6n =-,因为AM AD ⊥,AM PA ⊥,所以AM ⊥平面P AD , 所以平面ADE 的一个法向量()21,0,0n = 所以12121231cos ,43936n n n n n n ⋅<>===++,又二面角D AE C --为锐二面角,所以二面角D AE C --的余弦值为14【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.22.如图,在四棱锥M ABCD -中,//AB CD ,90ADC BM C ∠=∠=,M B M C =,122AD DC AB ===,平面BCM ⊥平面ABCD .(1)求证://CD 平面ABM ; (2)求证:AC ⊥平面BCM ;(3)在棱AM 上是否存在一点E ,使得二面角E BC M --的大小为4π?若存在,求出AEAM 的值;若不存在,请说明理由.【答案】(1)证明见解析(2)证明见解析(3)存在;23AE AM=【分析】(1)由线面平行判定定理证明即可;(2)由勾股定理得出2BC =,进而得AC BC ⊥,再由面面垂直的性质定理即可证明AC ⊥平面BCM ;(3)建立空间直角坐标系,利用向量法求解即可. 【详解】证明:(1)因为AB CD ∥,AB 平面ABM ,CD ⊄平面ABM ,所以CD ∥平面ABM .(2)取AB 的中点N ,连接CN . 在直角梯形ABCD 中, 易知2AN BN CD ===CN AB ⊥.在Rt CNB △中,由勾股定理得2BC =. 在ACB △中,由勾股定理逆定理可知AC BC ⊥. 又因为平面BCM ⊥平面ABCD , 且平面BCM平面ABCD BC =,所以AC ⊥平面BCM .(3)取BC 的中点O ,连接OM ,ON . 所以ON AC ∥, 因为AC ⊥平面BCM , 所以ON ⊥平面BCM . 因为BM MC =, 所以OM BC ⊥.如图建立空间直角坐标系O xyz -,则()0,0,1M ,()0,1,0B ,()0,1,0C -,()2,1,0A -,()2,1,1AM =-,()0,2,0BC =-,()2,2,0BA =-.易知平面BCM 的一个法向量为()1,0,0m =.假设在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π.不妨设AE AM λ=(01λ≤≤), 所以()22,2,BE BA AE λλλ=+=--, 设(),,n x y z =为平面BCE 的一个法向量,则0,0,n BC n BE ⎧⋅=⎪⎨⋅=⎪⎩ 即()20,220,y x z λλ-=⎧⎨-+=⎩令x λ=,22z λ=-,所以(),0,22n λλ=-.从而2cos ,2m n m nm n ⋅==⋅.解得23λ=或2λ=. 因为01λ≤≤,所以23λ=. 由题知二面角E BC M --为锐二面角.所以在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π, 此时23AE AM=.【点睛】本题主要考查了证明线面平行,线面垂直以及由面面角求其他量,属于中档题.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
高中数学《空间直角坐标系》课堂练习题【小编寄语】查字典数学网小编给大伙儿整理了高中数学《空间直角坐标系》课堂练习题,期望能给大伙儿带来关心!当堂练习:1.在空间直角坐标系中, 点P(1,2,3)关于x轴对称的点的坐标为( )A.(-1,2,3)B.(1,-2,-3)C.(-1, -2, 3)D.(-1 ,2, -3)2.在空间直角坐标系中, 点P(3,4,5)关于yOz平面对称的点的坐标为( )A.(-3,4,5)B.(-3,- 4,5)C.(3,-4,-5)D.(-3,4,-5)3.在空间直角坐标系中, 点A(1, 0, 1)与点B(2, 1, -1)之间的距离为( )A.B.6C.D.24.点P( 1,0, -2)关于原点的对称点P/的坐标为( )A.(-1, 0, 2)B.(-1,0, 2)C.(1 , 0 ,2)D.(-2,0,1)5.点P( 1, 4, -3)与点Q(3 , -2 , 5)的中点坐标是( )A.( 4, 2, 2)B.(2, -1, 2)C.(2, 1 , 1)D. 4, -1, 2)6.若向量在y轴上的坐标为0, 其他坐标不为0, 那么与向量平行的坐标平面是( )A. xOy平面B. xOz平面C.yOz平面D.以上都有可能7.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是( )A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对8.已知点A的坐标是(1-t , 1-t , t), 点B的坐标是(2 , t, t), 则A与B两点间距离的最小值为( )A.C.D.9.点B是点A(1,2,3)在坐标平面内的射影,则OB等于( )A.B.C.D.10.已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则点D的坐标为( )A.(,4,-1) B.(2,3,1) C.(-3,1,5) D.(5,13,-3)11.点到坐标平面的距离是( )A.B.C.D.12.已知点三点共线,那么的值分别是( )A.,4 B.1,8 C.,-4 D.-1,-813.在空间直角坐标系中,一定点到三个坐标轴的距离差不多上1,则该点到原点的距离是( )A.C.D.14.在空间直角坐标系中, 点P的坐标为(1,),过点P作yOz平面的垂线PQ, 则垂足Q的坐标是______________ __.15.已知A(x, 5-x, 2x-1)、B(1,x+2,2-x),当|AB|取最小值时x的值为_______________.16.已知空间三点的坐标为A(1,5,-2)、B(2,4,1)、C(p,3,q+2),若A、B、C三点共线,则p =_________,q=__________.17.已知点A(-2, 3, 4), 在y轴上求一点B , 使|AB|=7 , 则点B的坐标为________________.18.求下列两点间的距离:A(1 , 1 , 0) , B(1 , 1 , 1);C(-3 ,1 , 5) , D(0 , -2 , 3).19.已知A(1 , -2 , 11) , B(4 , 2 , 3) ,C(6 , -1 , 4) , 求证:ABC是直角三角形.20.求到下列两定点的距离相等的点的坐标满足的条件:A(1 , 0 ,1) , B(3 , -2 , 1) ;A(-3 , 2 , 2) , B(1 , 0 , -2).21.在四棱锥P-ABCD中,底面ABCD为正方形,且边长为2a,棱P D⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G,H,写出点E,F,G,H的坐标.参考答案:经典例题:解:(1)假设在在y轴上存在点M,满足因M在y轴上,可设M(0,y,0),由,可得明显,此式对任意恒成立.这确实是说y轴上所有点都满足关系(2)假设在y轴上存在点M,使△MAB为等边三角形.由(1)可知,y轴上任一点都有,因此只要就能够使得△MAB是等边三角形.因为因此,解得故y轴上存在点M使△MAB等边,M坐标为(0,,0),或(0,,0).当堂练习:1.B;2.A;3.A;4.B;5.C;6.B;7.B;8.C;9.B; 10.D; 11.C; 12.C; 13. A; 14. (0,); 15.; 16. 3 , 2; 17. (0,18. 解: (1)|AB|=(2)|CD|=19. 证明:为直角三角形.20. 解: (1)设满足条件的点的坐标为(x ,y , z) , 则化简得4x-4y-3=0即为所求.(2)设满足条件的点的坐标为(x ,y , z) , 则化简得2x-y-2z+3=0即为所求.21. 解: 由图形知,DA⊥DC,DC⊥DP,DP⊥DA,故以D为原点,建立如图空间坐标系D-xyz.因为E,F,G,H分别为侧棱中点,由立体几何知识可知,平面EF GH与底面ABCD平行,从而这4个点的竖坐标都为P的竖坐标的一半,也确实是b,由H为DP中点,得H(0,0,b)E在底面面上的投影为AD中点,因此E的横坐标和纵坐标分别为a 和0,因此E(a,0,b),同理G(0,a,b);唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。
§1.3空间向量及其运算的坐标表示1.3.1空间直角坐标系1.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则点B1的坐标是()A.(1,0,0)B.(1,0,1)C.(1,1,1)D.(1,1,0)答案C解析点B1到三个坐标平面的距离都为1,易知其坐标为(1,1,1),故选C.2.点A(0,-2,3)在空间直角坐标系中的位置是()A.在x轴上B.在xOy平面内C.在yOz平面内D.在xOz平面内答案C解析∵点A的横坐标为0,∴点A(0,-2,3)在yOz平面内.3.在空间直角坐标系中,P(2,3,4),Q(-2,-3,-4)两点的位置关系是()A.关于x轴对称B.关于yOz平面对称C.关于坐标原点对称D.以上都不对答案C解析当三个坐标均相反时,两点关于原点对称.4.在空间直角坐标系中,已知点P(1,2,3),过点P作平面yOz的垂线PQ,则垂足Q 的坐标为()A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)答案B解析由于垂足在平面yOz 上,所以纵坐标,竖坐标不变,横坐标为0.5.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于()A.⎝⎛⎭⎫0,14,-1B.⎝⎛⎭⎫-14,0,1 C.⎝⎛⎭⎫0,-14,1D.⎝⎛⎭⎫14,0,-1 答案C解析BE →=BB 1—→+B 1E —→=k -14j =⎝⎛⎭⎫0,-14,1. 6.点P (1,2,-1)在xOz 平面内的射影为B (x ,y ,z ),则x +y +z =________. 答案0解析点P (1,2,-1)在xOz 平面内的射影为B (1,0,-1),∴x =1,y =0,z =-1, ∴x +y +z =1+0-1=0.7.已知A (3,2,-4),B (5,-2,2),则线段AB 中点的坐标为________. 答案(4,0,-1)解析设中点坐标为(x 0,y 0,z 0),则x 0=3+52=4,y 0=2-22=0,z 0=-4+22=-1,∴中点坐标为(4,0,-1).8.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为________. 答案(5,4,1)解析设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1).9.建立空间直角坐标系如图所示,正方体DABC -D ′A ′B ′C ′的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C ′D ′,D ′A ′,A ′A ,AB ,BC ,CC ′的中点,写出正六边形EFGHIJ 各顶点的坐标.解正方体DABC -D ′A ′B ′C ′的棱长为a ,且E ,F ,G ,H ,I ,J 分别是棱C ′D ′,D ′A ′,A ′A ,AB ,BC ,CC ′的中点,∴正六边形EFGHIJ 各顶点的坐标为E ⎝⎛⎭⎫0,a 2,a ,F ⎝⎛⎭⎫a 2,0,a ,G ⎝⎛⎭⎫a ,0,a 2,H ⎝⎛⎭⎫a ,a 2,0,I ⎝⎛⎭⎫a 2,a ,0,J ⎝⎛⎭⎫0,a ,a 2. 10.如图所示,过正方形ABCD 的中心O 作OP ⊥平面ABCD ,已知正方形的边长为2,OP =2,连接AP ,BP ,CP ,DP ,M ,N 分别是AB ,BC 的中点,以O 为原点,⎩⎨⎧⎭⎬⎫OM →,ON →,12OP →为单位正交基底建立空间直角坐标系.若E ,F 分别为P A ,PB 的中点,求点A ,B ,C ,D ,E ,F 的坐标.解由题意知,点B 的坐标为(1,1,0).由点A 与点B 关于x 轴对称,得A (1,-1,0), 由点C 与点B 关于y 轴对称,得C (-1,1,0), 由点D 与点C 关于x 轴对称,得D (-1,-1,0). 又P (0,0,2),E 为AP 的中点,F 为PB 的中点, 所以由中点坐标公式可得E ⎝⎛⎭⎫12,-12,1,F ⎝⎛⎭⎫12,12,1.11.已知空间中点A (1,3,5),点A 与点B 关于x 轴对称,则向量点B 的坐标为________. 答案(1,-3,-5)12.在空间直角坐标系中,点M (-2,4,-3)在xOz 平面上的射影为点M 1,则点M 1关于原点对称的点的坐标是________. 答案(2,0,3)解析由题意,知点M 1的坐标为(-2,0, -3),所以点M 1关于原点对称的点的坐标是(2,0,3).13.如图,正方体ABCD -A ′B ′C ′D ′的棱长为2,则图中的点M 关于y 轴的对称点的坐标为________.答案(-1,-2,-1)解析因为D (2,-2,0),C ′(0,-2,2),所以线段DC ′的中点M 的坐标为(1,-2,1), 所以点M 关于y 轴的对称点的坐标为(-1,-2,-1).14.如图是一个正方体截下的一角P -ABC ,其中P A =a ,PB =b ,PC =c .建立如图所示的空间直角坐标系,则△ABC 的重心G 的坐标是________.答案⎝⎛⎭⎫a 3,b 3,c 3解析由题意知A (a ,0,0),B (0,b ,0),C (0,0,c ). 由重心坐标公式得点G 的坐标为⎝⎛⎭⎫a 3,b 3,c 3.15.已知向量p 在基底{a ,b ,c }下的坐标为(2,1,-1),则p 在基底{2a ,b ,-c }下的坐标为________;在基底{a +b ,a -b ,c }下的坐标为________. 答案(1,1,1)⎝⎛⎭⎫32,12,-1 解析由题意知p =2a +b -c ,则向量p 在基底{2a ,b ,-c }下的坐标为(1,1,1). 设向量p 在基底{a +b ,a -b ,c }下的坐标为(x ,y ,z ),则 p =x (a +b )+y (a -b )+z c =(x +y )a +(x -y )b +z c , 又∵p =2a +b -c ,∴⎩⎪⎨⎪⎧x +y =2,x -y =1,z =-1,解得x =32,y =12,z =-1,∴p 在基底{a +b ,a -b ,c }下的坐标为⎝⎛⎭⎫32,12,-1. 16.如图,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°,求点D 的坐标.解过点D 作DE ⊥BC ,垂足为E .在Rt △BDC 中,∠BDC =90°,∠DCB =30°,BC =2,得|BD →|=1,|CD →|=3, ∴|DE →|=|CD →|sin30°=32,|OE →|=|OB →|-|BE →|=|OB →|-|BD →|cos60°=1-12=12,∴点D 的坐标为⎝⎛⎭⎫0,-12,32.。
温馨提示:考点36 空间直角坐标系、空间向量及其运算1.(2014·广东高考理科)已知向量a=(1,0,-1),则下列向量中与a 成60°夹角的 是 ( ) A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)【解题提示】直接利用向量的夹角与数量积公式逐一验证.【解析】选B.(1,0,-1)·(-1,1,0)=-1,夹角不可能为60°,(1,0,-1)·(1,-1,0)=1,且|(1,0,-1)|=|(1,-1,0)|=,夹角恰好为60°.关闭Word 文档返回原板块高中数学公式及常用结论大全1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式()()()()card A B card B C card C A card A B C ---+(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->-⇔11()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.真值表13.14.四种命题的相互关系互 否15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数. 22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=. (2)函数()y f x =图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. 26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+0()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm na a-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)n a =.(2)当n为奇数时,a =;当n为偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用. 33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.(2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a a m nm n +<.38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cosx x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ). 48.二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式 3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.51.正弦定理212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩2sin sin sin a b cR A B C ===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解 sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤.s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤. tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈. tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈. sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.61.a 与b 的数量积(或内积) a ·b =|a ||b |cos θ.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ). 65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λ a 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式 ''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小. (2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大. 73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-. 75.无理不等式(1)()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (2)2()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (3)2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数. (2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直直线系方程0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左. 85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是 0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程. ②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b +=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b+=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b-=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 101.抛物线px y 22=上的动点可设为P ),2(2y py或或)2,2(2pt pt P P (,)x y ,其中22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-; (3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =. 105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <. 当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212|||AB x x y y ==-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F bkx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ).(3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量. 117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA y MB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++. 121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e 122.向量的直角坐标运算 设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直 设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉=.推论 222222*********3123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量) 128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+. 特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+. 特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量). 132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ). 136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =',d EA AF =.d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =).139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例). 141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比. 145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=,其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.(3) 球与正四面体的组合体: 棱长为a的正四面体的内切球的半径为,外接球的半径为4a . 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理)12n N m m m =+++.150.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤). 注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1m mn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n nA A mA -+=+.(6)1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.153.组合数公式mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质(1)m n C =mn n C - ;(2) m n C +1-m n C =m n C 1+.注:规定10=nC . 155.组合恒等式 (1)11m m n n n m C C m --+=;(2)1m m n n n C C n m -=-;(3)11mm nn n C C m--=; (4)∑=nr r n C 0=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C .(6)n nn r n n n nC C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n nC C C C C C . (8)1321232-=++++n n n n n nn nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.(3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n nn p n p n n n m p m C C C N mm=⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n =1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m =⋅=-.。
高一数学试题答案及解析(4,1,2)的距离为.1.给定空间直角坐标系,在x轴上找一点P,使它与点P【答案】点P坐标为(9,0,0)或(﹣1,0,0).【解析】设出x轴上的点的坐标,根据它与已知点之间的距离,写出两点之间的距离公式,得到关于未知数的方程,解方程即可,注意不要漏掉解,两个结果都合题意.解:设点P的坐标是(x,0,0),由题意,即,∴(x﹣4)2=25.解得x=9或x=﹣1.∴点P坐标为(9,0,0)或(﹣1,0,0).点评:本题考查空间两点之间的距离公式,是一个基础题,在两点的坐标,和两点之间的距离,这三个量中,可以互相求解.2.求值:().A.B.C.D.【答案】B【解析】.【考点】诱导公式的应用.3.在中,内角的对边分别为,若,,,则等于( ).A.1B.C.D.2【答案】A【解析】由正弦定理得.【考点】正弦定理的应用.4.圆上的点到直线的距离最大值是()A.B.C.D.【答案】B【解析】先将圆配方得,知此圆的圆心坐标为半径r=1,再求出圆心到已知直线的距离:,画出草图可知:所求最大值应为1+,故选B.【考点】直线与圆的位置关系.5.要得到函数的图像,只需将函数的图像()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】C【解析】平移规律“左加右减”,,所以只需将函数的图像向左平行移动个单位长度,本题易错选为A,要理解“左加右减”指的是.【考点】三角函数的图象变换规律.6.已知tan(α﹣β)=,且α,β∈(0,π),则2α﹣β=()A.B.C.D.【答案】C【解析】因为所以又所以选C.【考点】两角和与差正切公式,三角函数值估计范围7.如图所示,已知,,,,则下列等式中成立的是( )A.B.C.D.【答案】【解析】,所以.【考点】向量的三角形法则.8.已知数列中,,则( )A.6B.C.3D.【答案】B【解析】依题意可知,从第三项起,后一项是前两项的差,所以有,,,,,,,,……,从中可以看到,该数列是以6为周期的周期数列,从而,故选B.【考点】1.数列的概念及其表示;2.数列的周期性.9.已知等比数列的前项和为,,且满足成等差数列,则等于( ) A.B.C.D.【答案】C【解析】由成等差数列可得,,即,也就是,所以等比数列的公比,从而,故选C.【考点】1.等差数列的定义;2.等比数列的通项公式及其前项和.10.在中,若,则是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【答案】A【解析】由,知所以,故为直角三角形【考点】向量的加、减法,向量垂直的充要条件11.已知一个四棱锥的三视图如图所示,则该四棱锥的四个侧面中,直角三角形的个数是()A.4B.3C.2D.1【答案】A【解析】由三视图分析可知此几何体是底面为矩形且其中一条侧棱垂直与底面的四棱锥,不妨设底面为,侧棱。
空间直角坐标系练习题班级姓名一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内。
1、在空间直角坐标系中,有( )坐标轴A:一个 B:两个 C:三个 D:四个2、在空间直角坐标系中,有( )张坐标平面.A:一个 B:两个 C:三个 D:四个3、坐标平面将空间分成( )个空间区域-卦限A: 两个 B:四个 C:六个 D:八个。
4、有下列叙述:①在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c);②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c);③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c);④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。
其中正确的个数是()A、1B、2C、3D、45、以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为()A、(12,1,1) B、(1,12,1) C、(1,1,12) D、(12,12,1)6、点M(0,0,6)的位置是()A、在ox轴上B、在oy轴上C、在oz轴上D、在面xoy上7、已知M(-2,2,5),N(0,-2,3),则线段MN的中点坐标为()A、 (-1,0,4)B、 (-2,0,4)C、 (-1,2,4)D、 (-1,0,5)8、过点A(-2,1,3),且与面xoy垂直的直线上点的坐标满足()A、 x=-2 B 、 y=1 C、 x=-2或y=1 D、x=-2且y=1 9、在空间直角坐标系中,点P(-1,-2,-3)到平面yOz的距离是( )A. 1B. 2C. 3D. √1410、设y∈R,则点P(1,y,2)的集合为( )A.垂直于xOz平面的一条直线B.平行于xOz平面的一条直线C.垂直于y轴的一个平面D.平行于y轴的一个平面二、填空题:11、将空间直角坐标系画在纸上时,x轴与y轴、x轴与z轴均成,而z轴垂直于y轴,,y轴和z轴的长度单位,x轴上的单位长度为y轴(或z轴)的长度的。
高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。
高中数学高考总复习立体几何空间向量空间直角坐标系习题及详解一、选择题1.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( )A .平行四边形B .梯形C .平面四边形D .空间四边形[答案] D[解析] ∵AB →·BC →>0,∴∠ABC >π2,同理∠BCD >π2,∠CDA >π2,∠DAB >π2,由内角和定理知,四边形ABCD 一定不是平面四边形,故选D.2.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB →的值为( )A .0B .1C .0或1D .任意实数 [答案] C[解析] AP →可为下列7个向量:AB →,AC →,AD →,AA 1→,AB 1→,AC 1→,AD 1→,其中一个与AB →重合,AP →·AB →=|AB →|2=1;AD →,AD 1→,AA 1→与AB →垂直,这时AP →·AB →=0;AC →,AB 1→与AB →的夹角为45°,这时AP →·AB →=2×1×cos π4=1,最后AC 1→·AB →=3×1×cos ∠BAC 1=3×13=1,故选C.3.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,N 为BB 1的靠近B 的三等分点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则MN →等于( )A .-12a +12b +13cB.12a +12b -13cC.12a -12b -13c D .-12a -12b +23c[答案] C[解析] MN →=MB →+BN →=12D 1B 1→+13BB 1→=12(A 1B 1→-A 1D 1→)-13A 1A →=12a -12b -13c . 4.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则AC →与AB →的夹角为( ) A .30° B .45° C .60°D .90°[答案] C[解析] AB →=(0,3,3),AC →=(-1,1,0).设〈AB →,AC →〉=θ,则cos θ=AB →·AC →|AB →|·|AC →|=332·2=12,∴θ=60°. 5.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627 B.637 C.647D.657[答案] D[解析] ∵a ,b ,c 三向量共面, ∴存在实数m ,n 使c =m a +n b , 即(7,5,λ)=(2m -n ,-m +4n,3m -2n ), ∴⎩⎪⎨⎪⎧2m -n =7-m +4n =5λ=3m -2n,∴λ=657.6.(2010·山东青岛)在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →的值为( )A .0 B.32C .1D .无法确定[答案] A[解析] AB →·CD →+AC →·DB →+AD →·BC →=AB →·(BD →-BC →)+(BC →-BA →)·DB →+(BD →-BA →)·BC →=AB →·BD →-AB →·BC →+BC →·DB →-BA →·DB →+BD →·BC →-BA →·BC →=0,故选A.7.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD等于( )A .5 B.41 C .4D .2 5[答案] A[解析] 设AD →=λAC →,D (x ,y ,z ),则(x -1,y +1,z -2)=λ(0,4,-3), ∴x =1,y =4λ-1,z =2-3λ. ∴BD →=(-4,4λ+5,-3λ), 又AC →=(0,4,-3),AC →⊥BD →, ∴4(4λ+5)-3(-3λ)=0, ∴λ=-45,∴BD →=⎝⎛⎭⎫-4,95,125, ∴|BD →|=(-4)2+⎝⎛⎭⎫952+⎝⎛⎭⎫1252=5. 8.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,AM →=12MC →,点N 为B 1B 的中点,则线段MN 的长度为( )A.216B.66C.156D.153[答案] A[解析] MN →=AN →-AM →=AN →-13AC →=AB →+BN →-13()AB →+AD →+AA 1→ =23AB →+16AA 1→-13AD →. ∴MN =|MN →|=49|AB →|2+136|AA 1→|2+19|AD →|2=216. 9.设空间四点O 、A 、B 、P 满足OP →=OA →+tAB →,其中0<t <1,则有( ) A .点P 在线段AB 上 B .点P 在线段AB 的延长线上 C .点P 在线段BA 的延长线上 D .点P 不一定在直线AB 上 [答案] A[解析] ∵OP →=OA →+tAB →,∴AP →=tAB →,∵0<t <1,∴点P 在线段AB 上.10.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( )A.32B.1010C.35D.25[答案] D[解析] AM →=AA 1→+A 1M →=AA 1→+12AB →,CN →=CB →+BN →=-AD →+12AA 1→,AM →·CN →=-AA 1→·AD →-12AB →·AD →+12|AA 1→|2+14AA 1→·AB →=12,|AM →|2=|AA 1→|2+14|AB →|2+AA 1→·AB →=54,|CN →|2=|AD →|2+14|AA 1|2-12AD →·AA 1→=54,∴cos 〈AM →,CN →〉=AM →·CN →|AM →|·|CN →|=25,故选D.二、填空题11.已知a =(1,2x -1,-x ),b =(x +2,3,-3),若a ∥b ,则x =________. [答案] 1[解析] ∵a ∥b ,∴1x +2=2x -13=-x -3,由1x +2=2x -13得,2x 2+3x -5=0,∴x =1或-52, 由2x -13=-x-3得x =1,∴x =1. 12.设向量a =(-1,3,2),b =(4,-6,2),c =(-3,12,t ),若c =m a +n b ,则m +n =________. [答案]112[解析] m a +n b =(-m +4n,3m -6n,2m +2n ), ∴(-m +4n,3m -6n,2m +2n )=(-3,12,t ). ∴⎩⎪⎨⎪⎧-m +4n =-33m -6n =122m +2n =t,解得⎩⎪⎨⎪⎧m =5,n =12,t =11.∴m +n =112.13.若|a |=17,b =(1,2,-2),c =(2,3,6),且a ⊥b ,a ⊥c ,则a =________. [答案] (-185,2,15)或(185,-2,-15)[解析] 设a =(x ,y ,z ), ∵a ⊥b ,∴x +2y -2z =0.① ∵a ⊥c ,∴2x +3y +6z =0.② ∵|a |=17.∴x 2+y 2+z 2=17.③ ∴联立①②得x =-18z ,y =10z . 代入③得425z 2=17,∴z =±15.∴a =(-185,2,15)或(185,-2,-15).14.直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,AA 1=6,M 是CC 1的中点,则异面直线AB 1与A 1M 所成角为________.[答案] π2[解析] 由条件知AC 、BC 、CC 1两两垂直,以C 为原点,CB ,CA ,CC 1分别为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),A (0,3,0),B 1(1,0,6),M (0,0,62),A 1(0,3,6),∴AB 1→=(1,-3,6),A 1M →=(0,-3,-62),cos 〈AB 1→,A 1M →〉=AB 1→·A 1M →|AB 1→|·|A 1M →|=0,∴〈AB 1→,A 1M →〉=π2,即直线AB 1与A 1M 所成角为π2.三、解答题15.已知向量b 与向量a =(2,-1,2)共线,且满足a ·b =18,(k a +b )⊥(k a -b ),求向量b 及k 的值.[解析] ∵b ≠0,a ,b 共线,∴存在实数λ,使a =λb ,∵a =(2,-1,2),∴|a |=3, ∴a ·b =λa 2=λ|a |2=9λ=18, ∴λ=2.∴b =(4,-2,4).∵(k a +b )⊥(k a -b ),∴(k a +b )·(k a -b )=0. ∴(k a +2a )·(k a -2a )=0. ∴(k 2-4)|a |2=0.∴k =±2.16.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点.(1)求异面直线A 1B 、EF 所成角θ的大小(用反三角函数值表示); (2)求点B 1到平面AEF 的距离.[解析] 以A 为原点建立如图所示空间直角坐标系,则各点坐标为A 1(0,0,2),B (2,0,0),B 1(2,0,2),E (0,2,1),F (1,1,0),(1)A 1B →=(2,0,-2),EF →=(1,-1,-1), cos θ=A 1B →·EF →|A 1B →|·|EF →|=422×3=63,∴θ=arccos63. (2)设平面AEF 的一个法向量为n =(a ,b ,c ), ∵AE →=(0,2,1),AF →=(1,1,0), 由⎩⎪⎨⎪⎧n ·AE →=0n ·AF →=0得,⎩⎪⎨⎪⎧2b +c =0a +b =0,令a =1可得n =(1,-1,2),∵AB 1→=(2,0,2),∴d =|AB 1→·n ||n |=66= 6.∴点B 1到平面AEF 的距离为 6.17.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (3)设AB =BE ,证明:平面ADE ⊥平面CDE .[解析] 由题设知,F A 、AB 、AD 两两互相垂直.如图,以A 为坐标原点,射线AB 为x 轴正半轴,建立如图所示的直角坐标系A -xyz .(1)设AB =a ,BC =b ,BE =c ,则由题设得A (0,0,0),B (a,0,0),C (a ,b,0),D (0,2b,0),E (a,0,c ),G (0,0,c ),H (0,b ,c ),F (0,0,2c ).所以,GH →=(0,b,0),BC →=(0,b,0), 于是GH →=BC →.又点G 不在直线BC 上, 所以四边形BCHG 是平行四边形. (2)C 、D 、F 、E 四点共面.理由如下: 由题设知,F (0,0,2c ),所以EF →=(-a,0,c ),CH →=(-a,0,c ),EF →=CH →, 又C ∉EF ,H ∈FD ,故C 、D 、F 、E 四点共面.(3)由AB =BE ,得c =a ,所以CH →=(-a,0,a ),AE →=(a,0,a ) 又AD →=(0,2b,0),因此CH →·AE →=0,CH →·AD →=0 即CH ⊥AE ,CH ⊥AD ,又AD ∩AE =A ,所以CH ⊥平面ADE .故由CH ⊂平面CDFE ,得平面ADE ⊥平面CDE .[点评] 如果所给问题中存在两两垂直的直线交于一点,容易将各点的坐标表示出来时,可用向量法求解.如果其所讨论关系不涉及求角,求距离或所求角、距离比较容易找(作)出时,可不用向量法求解,本题解答如下:(1)由题设知,FG =GA ,FH =HD ,所以GH 綊12AD .又BC 綊12AD ,故GH 綊BC ,所以四边形BCHG 是平行四边形.(2)C 、D 、F 、E 四点共面.理由如下: 由BE 綊12AF ,G 是F A 的中点知,BE 綊GF ,所以EF ∥BG ,由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面. 又点D 直线FH 上,所以C 、D 、F 、E 四点共面.(3)连结EG ,由AB =BE ,BE 綊AG ,及∠BAG =90°知ABEG 是正方形, 故BG ⊥EA .由题设知,F A 、AD 、AB 两两垂直,故AD ⊥平面F ABE , 因此EA 是ED 在平面F ABE 内的射影,∴BG ⊥ED . 又EC ∩EA =E ,所以BG ⊥平面ADE .由(1)知,CH ∥BG ,所以CH ⊥平面ADE .由(2)知F ∈平面CDE ,故CH ⊂平面CDE ,得平面ADE ⊥平面CDE .。
高中数学必修二空间直角坐标系习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修二空间直角坐标系习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修二空间直角坐标系习题(word版可编辑修改)的全部内容。
课后练习与提高1。
在空间直角坐标系中,点(123)P ,,,过点P 作平面xOy 的垂线PQ ,则Q 的坐标为( ) A.(020),, B.(023),,C.(103),, D.(120),,2。
已知点(314)A -,,,则点A 关于原点的对称点的坐标为( )A.(134)--,, B.(413)--,, C.(314)--,,D.(413)-,,3。
坐标原点到下列各点的距离最小的是( )A.(111),, B.(122),, C.(235)-,, D.(304),,4.在空间直角坐标系O xyz -中,1z =的所有点构成的图形是 .5。
点(321)P --,,关于平面xOy 的对称点是 ,关于平面yOz 的对称点是 ,关于平面zOx 的对称点是 ,关于x 轴的对称点是 ,关于y 轴的对称点是 ,关于z 轴的对称点是 .6。
求证:以(419)A ---,,,(1016)B --,,,(243)C ---,,为顶点的三角形是等腰直角三角形.7.已知空间中两点P(-1,2,-3),Q(3,-2,-1),则P 、Q 两点间的距离是 ( ) A 。
6 B .22 C .36 D .258.点A(3,-2,4)关于点(0,1,-3)的对称点的坐标是()A.(-3,4,-10)B.(-3,2,-4)C.错误!D.(6,-5,11)9.空间直角坐标系中,点A(-3,4,0)和B(x,-1,6)的距离为错误!,则x的值为()A.2 B.-8C.2或-8 D.8或-210。
4。
3。
1空间直角坐标系一、选择题:1。
已知点(3,1,4)-A ,则点A 关于原点的对称点的坐标为( )A.(1,3,4)-- B .(4,1,3)--C 。
(3,1,4)-- D 。
(4,1,3)-2.设点B 是点(2,3,5)-A )关于xOy 坐标面的对称点,则||=AB ()A.10 B 。
4 C 。
6 D 。
10 3。
点(,,)M x y z 在坐标平面xOy 内的射影为1M ,1M 在坐标平面yOz 内的射影为2M ,2M 在坐标平面zOx 内的射影的坐标为() A 。
(,,)---x y z B.(,,)x y z C 。
(0,0,0) D.(,,)333++++++x y z x y z x y z 二、填空题:4.如图所示,在长方体1111-OABC O A B C 中,||2OA =,||3AB =,1||3AA =,M 是1OB 与1BO 的交点,则M 点的坐标是________.5.已知∆ABC 的三个顶点坐标分别为(2,3,1)A ,(4,3,2)B -,(6,3,7)C ,则∆ABC 的重心坐标为 。
7。
空间直角坐标系中,若点P 到xOy 面,xOz 面,yOz 面的距离都是2,则点P 到原点的距离为.三、解答题:6。
如图在四棱锥-P ABCD 中,ABCD 为矩形,且平面⊥PA ABCD ,若点M 是PC 中点,点N 在PB 上,3=PN NB ,4,3,5===AB AD PA ,试建立空间直角坐标系,写出点,,,,,,P A B C D M N 的坐标.BA C DP M N。
课时分层作业(四)(建议用时:40分钟)一、选择题1.空间两点A,B的坐标分别为(x,-y,z),(-x,-y,-z),则A,B两点的位置关系是()A.关于x轴对称B.关于y轴对称C.关于z轴对称D.关于原点对称B[纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y轴对称.]2.已知A(1,2,-1),B(5,6,7),则直线AB与平面xOz交点的坐标是()A.(0,1,1) B.(0,1,-3)C.(-1,0,3) D.(-1,0,-5)D[设直线AB与平面xoz交点坐标是M(x,y,z),则错误!=(x-1,-2,z+1),错误!=(4,4,8),又错误!与错误!共线,∴错误!=λ错误!,即错误!解得x=-1,z=-5,∴点M(-1,0,-5).故选D。
]3.设A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离|CM|=()A.错误!B.错误!C.错误!D.错误!C[M错误!,|CM|=错误!=错误!。
]4.如图,在空间直角坐标系中,正方体ABCD.A1B1C1D1的棱长为1,B1E=错误!A1B1,则错误!等于()A.错误!B.错误!C.错误!D.错误!C[{错误!,错误!,错误!}为单位正交向量,错误!=错误!+错误!=-错误! DC,→+错误!,∴错误!=错误!。
]5.设{i,j,k}是单位正交基底,已知向量p在基底{a,b,c}下的坐标为(8,6,4),其中a=i+j,b=j+k,c=k+i,则向量p在基底{i,j,k}下的坐标是()A.(12,14,10) B.(10,12,14)C.(14,12,10) D.(4,3,2)A[依题意,知p=8a+6b+4c=8(i+j)+6(j+k)+4(k +i)=12i+14j+10k,故向量p在基底{i,j,k}下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P(1,错误!,错误!),过点P作平面yOz的垂线PQ,则垂足Q的坐标为________.(0,错误!,错误!)[过P的垂线PQ⊥面yOz,则Q点横坐标为0,其余不变,故Q(0,错误!,错误!).]7.设{e1,e2,e3}是空间向量的一个单位正交基底,a=4e1-8e2+3e3,b=-2e1-3e2+7e3,则a,b的坐标分别为________.(4,-8,3),(-2,-3,7)[由题意可知a=(4,-8,3),b =(-2,-3,7).]8。
二十九 空间直角坐标系【基础全面练】 (20分钟 35分)1.空间直角坐标系中,下列说法正确的是( )A .点P ()1,2,3 关于坐标平面xOy 的对称点的坐标为()-1,2,-3B .点Q ()1,0,2 在平面xOz 面上C .z =1表示一个点(0,0,1)D .2x +3y =6表示一条直线【解析】选B.对于A 项,点P ()1,2,3 关于坐标平面xOy 的对称点的坐标为()1,2,-3 ,故A 错误;对于B 项,因为点Q ()1,0,2 纵坐标为0,所以点Q ()1,0,2 在平面xOz 面上,故B 正确;对于C 项,z =1,则横坐标和纵坐标为任意数,故与坐标平面xOy 平行,故C 错误;对于D 项,2x +3y =6,说明竖坐标为任意数,表示一个平面,故D 错误. 2.点M(0,3,0)在空间直角坐标系中的位置是在( ) A .x 轴上B .y 轴上C .z 轴上D .xOz 平面上【解析】选B.因为点M(0,3,0)的横坐标、竖坐标均为0,纵坐标不为0,所以点M 在y 轴上.3.如图所示,在正方体OABC O 1A 1B 1C 1中,棱长为2,E 是B 1B 上的点,且|EB|=2|EB 1|,则点E 的坐标为( )A .(2,2,1)B .⎝ ⎛⎭⎪⎫2,2,23C .⎝ ⎛⎭⎪⎫2,2,13D .⎝⎛⎭⎪⎫2,2,43【解析】选D.由题图可知E 为BB 1的三等分点,则|BE|=23 |BB 1|,所以E 点坐标为⎝ ⎛⎭⎪⎫2,2,43 .4.空间直角坐标系中与点P(2,3,5)关于yOz 平面对称的点为P ′,则点P ′的坐标为________.【解析】一般地,在空间直角坐标系中,若点M的坐标是M(x,y,z),设点M关于yOz平面对称的点为M1,那么点M1的坐标是(-x,y,z),因此空间直角坐标系中与点P(2,3,5)关于yOz平面对称的点P′的坐标为(-2,3,5).答案:(-2,3,5)【补偿训练】已知空间中点A(1,3,5),C(1,3,-5),点A与点B关于x轴对称,则点B与点C的对称关系是( )A.关于平面xOy对称B.关于平面yOz对称C.关于y轴对称D.关于平面xOz对称【解析】选D.因为点(x,y,z)关于x轴对称的点的坐标为(x,-y,-z),所以B(1,-3,-5),与点C的坐标比较,知横坐标、竖坐标分别对应相同,纵坐标互为相反数,所以点B 与点C关于平面xOz对称.5.在空间直角坐标系中,点(4,-1,2)关于原点的对称点的坐标是__________.【解析】空间直角坐标系中关于原点对称的点的坐标互为相反数,故点(4,-1,2)关于原点的对称点的坐标是(-4,1,-2).答案:(-4,1,-2)【补偿训练】已知点P(2,3,-1),求:(1)点P关于各坐标平面对称的点的坐标.(2)点P关于各坐标轴对称的点的坐标.(3)点P关于坐标原点对称的点的坐标.【解析】(1)设点P关于xOy平面的对称点为P′,则点P′的横坐标、纵坐标与点P的横坐标、纵坐标相同,点P′的竖坐标与点P的竖坐标互为相反数.所以点P关于xOy平面的对称点P′的坐标为(2,3,1).同理,点P关于yOz,xOz平面的对称点的坐标分别为(-2,3,-1),(2,-3,-1).(2)设点P关于x轴的对称点为Q,则点Q的横坐标与点P的横坐标相同,点Q的纵坐标、竖坐标与点P的纵坐标、竖坐标互为相反数.所以点P 关于x 轴的对称点Q 的坐标为(2,-3,1).同理,点P 关于y 轴,z 轴的对称点的坐标分别为(-2,3,1),(-2,-3,-1). (3)点P(2,3,-1)关于坐标原点对称的点的坐标为(-2,-3,1).6.如图,已知正方体ABCD A 1B 1C 1D 1的棱长为a ,点P 在对角线BD 1上,PD 与面ABCD 所成的角为45°.试建立空间直角坐标系,写出A ,B ,C ,D ,A 1,B 1,C 1,D 1,P ,这9个点的坐标.(建系方法不同,答案不同)【解析】如图建立空间直角坐标系,则A(a ,0,0),B(a ,a ,0),C(0,a ,0),D(0,0,0),A 1(a ,0,a),B 1(a ,a ,a), C 1(0,a ,a),D 1(0,0,a),设P(x ,y ,z),如图在对角面BB 1D 1D 中,作PP ′⊥BD ,∠PDP ′=45°,PP ′=z =DP ′,PP ′∥DD 1,PP ′DD 1 =BP ′BD, 即z a =2a -z2a , 解得z =()2-2 a , 则x =y =DP ′2=( 2 -1)a ,所以P(( 2 -1)a ,( 2 -1)a ,(2- 2 )a).【补偿训练】如图,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°,求点D 的坐标.【解析】过点D 作DE ⊥BC ,垂足为E.在Rt △BDC 中,∠BDC =90°,∠DCB =30°,BC =2,得|BD|=1,|CD|= 3 , 所以|DE|=|CD|sin 30°=32, |OE|=|OB|-|BE| =|OB|-|BD|cos 60° =1-12 =12,所以点D 的坐标为⎝ ⎛⎭⎪⎫0,-12,32 .【综合突破练】 (30分钟 60分) 一、选择题(每小题5分,共25分)1.设z 是任意实数,相应的点P(2,2,z)运动的轨迹是( ) A .一个平面 B .一条直线C.一个圆 D.一个球【解析】选B.轨迹是过点(2,2,0)且与z轴平行的一条直线.2.空间两点A,B的坐标分别为(x,-y,z),(-x,-y,-z),则A,B两点的位置关系是( )A.关于x轴对称 B.关于y轴对称C.关于z轴对称 D.关于原点对称【解析】选B.由A,B两点的坐标可知,A,B两点关于y轴对称.3.下列叙述中,正确的个数是( )①空间直角坐标系中,在x轴上的点的坐标可写成(0,b,c)的形式;②空间直角坐标系中,在yOz平面内的点的坐标可写成(0,b,c)的形式;③空间直角坐标系中,在z轴上的点的坐标可写成(0,0,c)的形式;④空间直角坐标系中,在xOz平面内的点的坐标可写成(a,0,c)的形式.A.1 B.2 C.3 D.4【解析】选C.①空间直角坐标系中,在x轴上的点的坐标可写成(a,0,0)的形式,故①错误;②空间直角坐标系中,在yOz平面内的点的坐标可写成(0,b,c)的形式,故②正确;③空间直角坐标系中,在z轴上的点的坐标可写成(0,0,c)的形式,故③正确;④空间直角坐标系中,在xOz平面内的点的坐标可写成(a,0,c)的形式,故④正确.4.在空间直角坐标系中,已知点P(1, 2 , 3 ),点P关于平面xOy的对称点为Q,则Q 的坐标为( )A.(0, 2 ,0) B.(0, 2 , 3 )C.(1,0, 3 ) D.(1, 2 ,- 3 )【解析】选D.点P(1, 2 , 3 )关于平面xOy的对称点是Q (1, 2 ,- 3 ).5.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB= 2 ,AF=1,M在EF上,且AM ∥平面BDE,则M点的坐标为( )A .(1,1,1)B .⎝ ⎛⎭⎪⎫23,23,1C .⎝ ⎛⎭⎪⎫22,22,1D .⎝ ⎛⎭⎪⎫24,24,1【解析】选C.设AC ,BD 交于点O ,连接OE ,因为正方形ABCD 与矩形ACEF 所在平面互相垂直,M 在EF 上,且AM ∥平面BDE ,所以AM ∥OE ,又AO ∥EM ,所以四边形OAME 是平行四边形,所以M 是EF 的中点,因为AB = 2 ,AF =1,所以,E(0,0,1),F ()2,2,1 ,所以M ⎝ ⎛⎭⎪⎫22,22,1 .【补偿训练】在空间直角坐标系O xyz 中,点(3,-1,m)关于平面xOy 的对称点为(3,n ,-2),则m +n =________.【解析】因为在空间直角坐标系Oxyz 中,点(3,-1,m)关于平面xOy 的对称点为(3,n ,-2),所以m =2,n =-1,所以m +n =2-1=1. 答案:1二、填空题(每小题5分,共15分)6.如图,在长方体ABCD A 1B 1C 1D 1中,已知A 1(a ,0,c),C(0,b ,0),则点B 1的坐标为________.【解析】由题干图可知,点B 1的横坐标和竖坐标与点A 1的横坐标和竖坐标相同,点B 1的纵坐标与点C 的纵坐标相同,所以点B 1的坐标为(a ,b ,c). 答案:(a ,b ,c)【补偿训练】棱长为2的正方体ABCD A 1B 1C 1D 1在如图所示的空间直角坐标系中,则体对角线的交点的坐标是__________.【解析】设O点是线段AC1的中点,又A(0,0,0),C1(2,2,-2),故O点坐标是(1,1,-1).答案:(1,1,-1)7.在空间直角坐标系中,已知A(m,n,1),B(3,2,1)关于z轴对称,则m+n=________. 【解析】因为B(3,2,1)其关于z轴对称的点的坐标为(-3,-2,1),又对称点为A(m,n,1),则m=-3,n=-2,所以m+n=-5.答案:-58.已知集合A={(x,y,z)|y=0,z=0},集合B={(x,y,z)|x=0,y=0},集合C={(x,y,z)|x=0,z=0},则A∩B∩C=________.【解析】A集合表示在x轴上的点的集合,B集合表示在z轴上的点的集合,C集合表示在y 轴上的点的集合,所以A∩B∩C={(0,0,0)}.答案:{(0,0,0)}【补偿训练】在空间直角坐标系中,点P(2,-1,1)在yOz平面内的射影为Q(x,y,z),则x+y+z=________.【解析】因为在空间直角坐标系中,点P(2,-1,1)在yOz平面内的射影为Q(x,y,z),所以Q(0,-1,1),所以x+y+z=0-1+1=0.答案:0三、解答题(每小题10分,共20分)9.在空间直角坐标系Oxyz中,(1)哪个坐标平面与x轴垂直?哪个坐标平面与y轴垂直?哪个坐标平面与z轴垂直?【解析】平面yOz与x轴垂直,平面xOz与y轴垂直,平面xOy与z轴垂直;(2)写出点P()2,3,4在三个坐标平面内的射影的坐标.【解析】点P ()2,3,4 在平面yOz 的射影的坐标P ′()0,3,4 .点P ()2,3,4 在平面xOy 的射影的坐标P ′()2,3,0 .点P ()2,3,4 在平面xOz 的射影的坐标P ′()2,0,4 . (3)写出点P ()1,3,5 关于原点成中心对称的点的坐标.【解析】点P ()1,3,5 关于原点成中心对称的点的坐标是P ′()-1,-3,-5 . 10.如图,AF ,DE 分别是⊙O ,⊙O 1的直径,AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE ∥AD ,试建立适当的空间直角坐标系,求出点A ,B ,C ,D ,E ,F 的坐标.【解析】因为AD 与两圆所在的平面均垂直,OE ∥AD , 所以OE ⊥平面ABC. 又AF ⊂平面ABC , BC ⊂平面ABC , 所以OE ⊥AF ,OE ⊥BC. 又BC 是圆O 的直径, 所以OB =OC. 又AB =AC =6,所以OA ⊥BC ,BC =6 2 . 所以OA =OB =OC =OF =3 2 .如图所示,以O 为坐标原点,分别以OB ,OF ,OE 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系则A(0,-3 2 ,0),B(3 2 ,0,0),C(-3 2 ,0,0),D(0,-3 2 ,8),E(0,0,8),F(0,3 2 ,0).【补偿训练】如图,已知长方体ABCDA1B1C1D1的对称中心在坐标原点,交于同一顶点的三个面分别平行于三个坐标平面,顶点A(-2,-3,-1),求其他七个顶点的坐标.【解析】由题意,得点B与点A关于xOz平面对称,故点B的坐标为(-2,3,-1);点D与点A关于yOz平面对称,故点D的坐标为(2,-3,-1);点C与点A关于z轴对称,故点C的坐标为(2,3,-1);由于点A1,B1,C1,D1分别与点A,B,C,D关于xOy平面对称,故点A1,B1,C1,D1的坐标分别为A1(-2,-3,1),B1(-2,3,1),C1(2,3,1),D1(2,-3,1).。
新人教A版高二1.3.1 空间直角坐标系(2016)1.在空间直角坐标系中,已知点A(1,−2,3),B(3,2,−5),则线段AB的中点坐标为()A.(−1,−2,4)B.(−2,0,1)C.(2,0,−2)D.(2,0,−1)2.如图所示,正方体ABCO−A1B1C1D1的棱长为1,则点B1的坐标是()A.(1,0,0)B.(1,0,1)C.(1,1,1)D.(1,1,0)3.在空间直角坐标系中,点P(1,5,6)关于Oxy平面的对称点Q的坐标是()A.(1,−5,6)B.(1,5,−6)C.(−1,−5,6)D.(−1,5,−6)4.若点P(−4,−2,3)关于坐标平面xOy及y轴对称的点的坐标分别是(a,b,c),(e,f,d),则c与e的和为()A.7B.−7C.−1D.15.在空间直角坐标系中,已知点P(−2,1,3),过点P作Oxz平面的垂线PQ,垂足为Q,则点Q的坐标为()A.(0,1,0)B.(0,1,3)C.(−2,0,3)D.(−2,1,0)6.如图,正方体ABCD−A′B′C′D′的棱长为1,P在线段BD′上,且BP=13BD′,则P点的坐标为()A.(13,13,13) B.(23,23,23) C.(13,23,13) D.(23,23,13)7.如图,在空间直角坐标系中,正方体ABCD−A1B1C1D1的棱长为1,E在棱A1B1上,且B1E=14A1B1,则BE→等于()A.(0,14,−1) B.(−14,0,1) C.(0,−14,1) D.(14,0,−1)8.设y∈R,则点P(1,y,2)的集合为()A.垂直于Oxz平面的一条直线B.平行于Oxz平面的一条直线C.垂直于y轴的一个平面D.平行于y轴的一个平面9.点P(2,−1,8)在坐标平面Oxz内的射影的坐标为.10.若点A(2,−3,−5)关于原点对称的点为B(a,b,c),则a+b+c=.11.在如图所示的棱长为3a的正方体OABC−O′A′B′C′中,点M在B′C′上,且C′M=2MB′,以O为坐标原点,建立空间直角坐标系,则点M的坐标为.12.已知点A(−4,2,3)关于坐标原点的对称点为A1,A1关于Oxz平面的对称点为A2,A2关于z轴的对称点为A3,则线段AA3的中点M的坐标为.13.如图,在长方体ABCD−A1B1C1D1中,AB=4,AD=3,AA1=5,N为棱CC1的中点,以A为原点,分别以AB,AD,AA1所在直线为x轴、y轴、z轴建立空间直角坐标系.(1)求点A,B,C,D,A1,B1,C1,D1的坐标;(2)求ND→的坐标.14.如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP,BP,CP,DP,M,N分别是AB,BC的中点.以O为原点,以OM→,ON→,OP→的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系,求点P,A,B,C,D的坐标.15.已知{a,b,c}是空间的一个基底,{a+b,a−b,c}是空间的另一个基底,若向量p在基底{a,b,c}下的坐标为(4,2,3),则向量p在基底{a+b,a−b,c}下的坐标为()A.(4,0,3)B.(1,2,3)C.(3,1,3)D.(2,1,3)16.如图所示,AF,DE分别是⊙O,⊙O1的直径,AD与两圆所在的平面均垂直,OE//AD,AD=8,BC是⊙O的直径,AB=AC=6,试建立适当的空间直角坐标系,求出点A,B,C,D,E,F的坐标.参考答案1.【答案】:D【解析】:根据中点坐标公式得所求中点坐标为(2,0,−1).故选 D.2.【答案】:C【解析】:解:根据题意,可得∵正方体ABCD−A1B1C1D1的棱长为1,∴点B1在x轴上的射影点为A(1,0,0),可得B1的横坐标为1;点B1在y轴上的射影点为C(0,1,0),可得B1的纵坐标为1;点B1在z轴上的射影点为D1(0,0,1),可得B1的竖坐标为1.由此可得点B1的坐标是(1,1,1).故选:C.由正方体的棱长为1,结合题中的坐标系求出点B1在x轴、y轴、z轴上射影点的坐标,即可得到点B1的坐标.本题给出坐标系和正方体的棱长,求定点B1的坐标.着重考查了空间坐标系的定义和正方体的性质等知识,属于基础题.3.【答案】:B【解析】:在空间直角坐标系中,点P(1,5,6)关于Oxy平面的对称点Q的坐标是(1,5,−6).故选B.4.【答案】:D【解析】:∵点P(−4,−2,3)关于坐标平面xOy的对称点为(−4,−2,−3),点P(−4,−2,3)关于y轴的对称点的坐标为(4,−2,−3),∴c=−3,e=4,∴c+e=1,故选D.5.【答案】:C【解析】:因为过点P作Oxz平面的垂线PQ,垂足为Q,所以可得P,Q两点的横坐标与竖坐标相同,纵坐标不同,又在Oxz平面中所有点的纵坐标都是0,P(−2,1,3),所以Q(−2,0,3).故选 C.6.【答案】:D【解析】:连接BD,易知点P在xDy平面内的射影在BD上,∵BP=13BD′,∴P x=P y=23,P z=13,故P(23,23,13).7.【答案】:C【解析】:由题意知,{DA →,DC →,DD 1→}为空间的一个单位正交基底,且BE →=BB 1→+B 1E →=BB 1→+14B 1A 1→=−14DC →+DD 1→,故BE → =(0,−14,1).故选C.8.【答案】:A【解析】:点P(1,y,2)的集合为横、竖坐标不变,而纵坐标变化的点的集合,由空间直角坐标的意义知,点P(1,y,2)的集合为垂直于Oxz 平面的一条直线,故选A.9.【答案】:(2,0,8)【解析】:设所求的点为Q(x,y,z),则P,Q 两点的横坐标和竖坐标相同,且点Q 的纵坐标为0,即x =2,y =0,z =8,所以点Q 的坐标为(2,0,8).10.【答案】:6【解析】:由题意知B(−2,3,5),故a +b +c =−2+3+5=6.11.【答案】:(2a,3a,3a)【解析】:∵C ′M =2MB ′,∴C ′M =23B ′C ′=2a , ∴点M 的坐标为(2a,3a,3a).12.【答案】:(−4,0,0)【解析】:由题意知A 1(4,−2,−3),则A 1关于Oxz 平面的对称点A 2的坐标为(4,2,−3),则A 2关于z 轴的对称点A 3的坐标为(−4,−2,−3).易得M(−4,0,0).13(1)【答案】由题意知,A(0,0,0).由于点B 在x 轴的正半轴上,且AB =4,所以B(4,0,0). 同理可得D(0,3,0),A 1(0,0,5).由于点C 在坐标平面Oxy 内,且BC ⊥AB ,CD ⊥AD ,所以C(4,3,0). 同理可得B 1(4,0,5),D 1(0,3,5).与点C 的坐标相比,点C 1的坐标只有竖坐标与点C 不同,且CC 1=AA 1=5,所以C 1(4,3,5).(2)【答案】由题意知14A ,→13A ,→15AA 1→为单位正交基底, ND →=NC →+CD →=−AB →−12AA 1→=−4×14AB →−52×15AA 1→, 所以ND →=(−4,0,−52).14.【答案】:由题意知,点P 的坐标为(0,0,2),点B 的坐标为(1,1,0). 由点A 与点B 关于x 轴对称,得A(1,−1,0), 由点C 与点B 关于y 轴对称,得C(−1,1,0), 由点D 与点C 关于x 轴对称,得D(−1,−1,0).15.【答案】:C【解析】:设向量p 在基底{a +b ,a −b ,c}下的坐标为(x ,y ,z), 则4a +2b +3c=(x +y)a +(x −y)b +zc ,p =4a +2b +3c=x(a +b)+y(a −b)+zc ,整理得∴{x +y =4,x −y =2,z =3,解得{x =3,y =1,z =3,∴向量p 在基底{a +b ,a −b ,c}下的坐标是(3,1,3).故选C.16.【答案】:因为AD 与两圆所在的平面均垂直,OE//AD ,所以OE 与两圆所在的平面也都垂直.因为AB =AC =6,BC 是⊙O 的直径,所以△BAC 为等腰直角三角形,则AF ⊥BC ,AF =BC =6√2. 以O 为原点,O ,→O ,→OE →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则A ,B ,C ,D ,E ,F 各个点的坐标分别为A(0,−3√2,0), B(3√2,0,0),C(−3√2,0,0),D(0,−3√2,8),E(0,0,8),F(0,3√2,0).。
高 中 数 学 空 间 直 角 坐 标 系 试 题一、选择题(每小题5分,共60分) 1.以棱长为1的正方体ABCD-A 1B 1C 1D 1的棱AB 、AD 、AA 1所在的直线为坐标轴,建立空间直角坐标系,则平面AA 1B 1B 对角线交点的坐标为( )A .(0,0.5,0.5)B .(0.5,0,0.5)C .(0.5,0.5,0)D .(0.5,0.5,0.5)【解答】解:由题意如图,平面AA 1B 1B 对角线交点是横坐标为AB 的中点值,竖坐标为AA 1的中点值,纵坐标为0,所以平面AA 1B 1B 对角线交点的坐标为(0.5,0,0.5).故选B .2.设点B 是点A (2,-3,5)关于xOy 面的对称点,则A 、B 两点距离为( )A .10B .10C .38D .38【解答】解:点B 是A (2,-3,5)关于xoy 平面对称的点,∴B 点的横标和纵标与A 点相同,竖标相反,∴B (2,-3,-5)∴AB 的长度是5-(-5)=10,故选A .3.如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO-A′B′C′D′,A′C 的中点E 与AB 的中点F 的距离为( )A .a 2B .a22 C .a D .a 21 【解答】解:如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO-A′B′C′D′,∵A (a ,0,0),B (a ,a ,0),C (0,a ,0),A′(a ,0,a ),A′C 的中点E 与AB 的中点F ,∴F (a ,2a ,0),E (2a ,2a ,2a ), |EF|=222)0()2()(aa a a a a a -+-+-=22a .4.一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是( )A .37B .47C .33D .57【解答】解:点P (1,1,1)平面xoy 的对称点的M 坐标(1,1,-1),一束光线自点P (1,1,1)发出,遇到平面xoy 被反射,到达点Q (3,3,6)被吸收,那么光所走的路程是:222)16()13()13(++-+-=57.故选D .5.点P (x ,y ,z )满足222)1()1()1(++-+-z y x =2,则点P 在( )A .以点(1,1,-1)为圆心,以2为半径的圆上B .以点(1,1,-1)为中心,以2为棱长的正方体上C .以点(1,1,-1)为球心,以2为半径的球面上D .无法确定【解答】解:式子222)1()1()1(++-+-z y x =2的几何意义是动点P (x ,y ,z )到定点(1,1,-1)的距离为2的点的集合.故选C .6.若A 、B 两点的坐标是A (3cosα,3sinα),B (2cosθ,2sinθ),则|AB|的取值范围是( )A .[0,5]B .[1,5] C.(1,5) D .[1,25]【解答】解:由题意可得|AB|=22)sin 2sin 3()cos 2cos 3(βαβα-+-=βαβαsin sin cos cos 1249+-+ =)cos(1213βα--.∵-1≤cos (α-β)≤1,∴1≤13-12cos (α-β)≤25,∴1≤)cos(1213βα--≤5,故选B . 7.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是( )C ①点P 关于x 轴对称点的坐标是P 1(x ,﹣y ,z );②点P 关于yOz 平面对称点的坐标是P 2(x ,﹣y ,﹣z );③点P 关于y 轴对称点的坐标是P 3(x ,﹣y ,z );④点P 关于原点对称的点的坐标是P 4(﹣x ,﹣y ,﹣z ).A . 3B . 2C . 1D . 08.设A (3,3,1)、B (1,0,5)、C (0,1,0),则AB 中点M 到C 点的距离为( )CA .B .C .D .9.点B 是点A (1,2,3)在坐标平面yOz 内的正投影,则|OB|等于( )BA .B .C .D .10.已知ABCD 为平行四边形,且A (4,1,3),B (2,﹣5,1),C (3,7,﹣5),则点D 的坐标为( )DA . (3.5,4,﹣1)B . (2,3,1)C . (﹣3,1,5)D . (5,13,﹣3)11.已知点A (1,﹣2,11),B (4,2,3),C (x ,y ,15)三点共线,那么x ,y 的值分别是( )CA . 0.5,4B . 1,8C . -0.5,﹣4D . ﹣1,﹣812.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( A )A .B .C .D . 二、填空题(每小题5分,共20分) 13.点P (1,2,3)关于y 轴的对称点为P 1,P 关于坐标平面xOz 的对称点为P 2,则|P 1P 2|= ____214【解答】解:∵点P (1,2,3)关于y 轴的对称点为P 1,所以P 1(-1,2,-3),P 关于坐标平面xOz 的对称点为P 2,所以P 2(1,-2,3),∴|P 1P 2|=222)33()22()11(--+++--=214.故答案为:21414.已知三角形的三个顶点为A (2,-1,4),B (3,2,-6),C (5,0,2),则BC 边上的中线长为 _____________211【解答】解:∵B (3,2,-6),C (5,0,2),∴BC 边上的中点坐标是D (4,1,-2)∴BC 边上的中线长为222)42()11()24(--+++-=22,故答案为:21115.已知x ,y ,z 满足(x-3)2+(y-4)2+z 2=2,那么x 2+y 2+z 2的最小值是 ____________27-102.【解答】解:由题意可得P (x ,y ,z ),在以M (3,4,0)为球心,2为半径的球面上, x 2+y 2+z 2表示原点与点P 的距离的平方,显然当O ,P ,M 共线且P 在O ,M 之间时,|OP|最小,此时|OP|=|OM|-2=432+-2=52,所以|OP|2=27-102.故答案为:27-102.16. 已知点A (﹣3,1,4),则点A 关于原点的对称点B 的坐标为 ;AB 的长为 .(3,-1,-4)2三、解答题(共70分)17.如图所示,过正方形ABCD 的中心O 作OP ⊥平面ABCD ,已知正方形的边长为2,OP=2,连接AP 、BP 、CP 、DP ,M 、N 分别是AB 、BC 的中点,以O 为原点,射线OM 、ON 、OP 分别为Ox 轴、Oy 轴、Oz 轴的正方向建立空间直角坐标系.若E 、F 分别为PA 、PB 的中点,求A 、B 、C 、D 、E 、F 的坐标.解:【解答】解:如图所示,B 点的坐标为(1,1,0),因为A 点关于x 轴对称,得A (1,-1,0),C 点与B 点关于y 轴对称,得C (-1,1,0), D 与C 关于x 轴对称,的D (-1,-1,0),又P (0,0,2),E 为AP 的中点,F 为PB 的中点,由中点坐标公式可得E (0.5,-0.5,1),F (0.5,0.5,1).18.在空间直角坐标系中,解答下列各题:(1)在x 轴上求一点P ,使它与点P 0(4,1,2)的距离为30;(2)在xOy 平面内的直线x+y=1上确定一点M ,使它到点N (6,5,1)的距离最小.解:【解答】解:(1)设点P 的坐标是(x ,0,0),由题意|P0P|=30,即22221)4(++-x =30,∴(x-4)2=25.解得x=9或x=-1.∴点P 坐标为(9,0,0)或(-1,0,0).先设点M (x ,1-x ,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.(2)设点M (x ,1-x ,0)则|MN|=51)1(22+-x ∴当x=1时,|MN|min=51.∴点M的坐标为(1,0,0)时到点N (6,5,1)的距离最小.19.已知空间直角坐标系O-xyz 中点A (1,1,1),平面α过点A 且与直线OA 垂直,动点P (x ,y ,z )是平面α内的任一点.(1)求点P 的坐标满足的条件;(2)求平面α与坐标平面围成的几何体的体积.解:【解答】解:(1)因为OA ⊥α,所以OA ⊥AP ,由勾股定理可得:|OA|2+|AP|2=|OP|2,即3+(x-1)2+(y-1)2+(z-1)2=x 2+y 2+z 2,化简得:x+y+z=3.(2)设平面α与x 轴、y 轴、z 轴的点分别为M 、N 、H ,则M (3,0,0)、N (0,3,0)、H (0,0,3).所以|MN|=|NH|=|MH|=32, 所以等边三角形MNH 的面积为:3/4×(32)2=93/2.又|OA|=3,故三棱锥0-MNH 的体积为:31×93/2×3=4.5.20.如图,已知正方体ABCD ﹣A′B′C′D′的棱长为a ,M 为BD′的中点,点N 在A′C′上,且 |A′N|=3|NC′|,试求MN 的长.【解答】解:以D 为原点,建立如图空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),C'(0,a ,a ),D'(0,0,a ).由于M 为BD'的中点,取A'C'中点O',所以M (2a ,2a ,2a ),O'(2a ,2a ,a ).因为|A'N|=3|NC'|,所以N 为A'C'的四等分,从而N 为O'C'的中点,故N (4a ,43a ,a ).根据空间两点距离公式,可得|MN |=222)2()432()42(a a a a a a -+-+-=46a21.在空间直角坐标系中,已知A (3,0,1)和B (1,0,﹣3),试问(1)在y轴上是否存在点M,满足|MA|=|MB|?友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。