高二数学系统抽样
- 格式:ppt
- 大小:268.00 KB
- 文档页数:14
高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。
高二数学知识点难点总结高二数学知识点总结1考点一:向量的概念、向量的基本定理了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。
重点考查定义和公式,主要以选择题或填空题型出现,难度一般。
由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与三角函数的综合问题向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.命题多以解答题为主,属中等偏难的试题。
高中数学涉及的统计学知识典型例题分析一、基础知识:(一)随机抽样:1、抽签法:把总体中的N 个个体编号,把号码写在号签上,将号签放在一个容器中搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到容量为n 的样本2、系统抽样:也称为等间隔抽样,大致分为以下几个步骤:(1)先将总体的N 个个体编号(2)确定分段间隔k ,设样本容量为n ,若N n 为整数,则N k n= (3)在第一段中用简单随机抽样确定第一个个体编号l ,则后面每段所确定的个体编号与前一段确定的个体编号差距为k ,例如:第2段所确定的个体编号为l k +,第m 段所确定的个体编号为()1l m k +−,直至完成样本注:(1)若N n不是整数,则先用简单随机抽样剔除若干个个体,使得剩下的个体数能被n 整除,再进行系统抽样。
例如501名学生所抽取的样本容量为10,则先随机抽去1个,剩下的500个个体参加系统抽样(2)利用系统抽样所抽出的个体编号排成等差数列,其公差为k3、分层抽样:也称为按比例抽样,是指在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本。
分层抽样后样本中各层的比例与总体中各个层次的比例相等,这条结论会经常用到(二)频率分布直方图:1、频数与频率(1)频数:指一组数据中个别数据重复出现的次数或一组数据在某个确定的范围内出现的数据的个数.(2)频率:是频数与数据组中所含数据的个数的比,即频率=频数/总数(3)各试验结果的频率之和等于12、频率分布直方图:若要统计每个小组数据在样本容量所占比例大小,则可通过频率分布表(表格形式)和频率分布直方图(图像形式)直观的列出(1)极差:一组数据中最大值与最小值的差(2)组距:将一组数据平均分成若干组(通常5-12组),则组内数据的极差称为组距,所以有组距=极差/组数(3)统计每组的频数,计算出每组的频率,便可根据频率作出频率分布直方图(4)在频率分布直方图中:横轴按组距分段,纵轴为“频率/组距”(5)频率分布直方图的特点:②因为各试验结果的频率之和等于1,所以可得在频率分布直方图中,各个矩形的面积和为1 (三)茎叶图:通常可用于统计和比较两组数据,其中茎是指中间的一列数,通常体现数据中除了末位数前面的其他数位,叶通常代表每个数据的末位数。
高二数学抽样试题1.某市有大型超市家、中型超市家、小型超市家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为的样本,应抽取中型超市__________家.【答案】16【解析】根据分层抽样的知识,设应抽取中型超市t家,得,解得t=16.【考点】分层抽样.2.某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)请补全频率分布直方图,并求n、a、p的值;(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.【答案】(1),a=60,;(2)随机变量X的分布列为X0123∴数学期望.【解析】(1)由已知条件求出第二组的频率,从而补全频率分布直方图,由此能求出n、a、p的值.(2)[35,40)岁年龄段的“环保族”人数与[40,45)年龄段的“环保族”人数的比值为100:60=5:3,由题意,随机变量X的所有可能的取值为0,1,2,3,分别求出P(X=0),P(X=1),P(X=2),P(X=3),由此能求出随机变量X的分布列和数学期望EX.试题解析:(Ⅰ)第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为.频率直方图如下:3第一组的人数为,频率为0.04×5=0.2,所以.由题可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以.第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60.(Ⅱ)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.随机变量X服从超几何分布.,,,.所以随机变量X的分布列为∴数学期望.【考点】离散型随机变量的期望与方差;分层抽样方法.3.我校15届高二有名学生, 现采用系统抽样方法, 抽取人做问卷调查, 将人按随机编号, 则抽取的人中, 编号落入区间的人数为().A.11B.12C.13D.14【答案】C【解析】由题意得,从840名学生中按系统抽样方法抽取42名,则应把840名学生分成42段,每段20人,从每段20人中抽取1人;编号落入区间的人数是.【考点】系统抽样.4.某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(1)应收集多少位女生样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.P(K2≥k)0.100.050.0100.005附:K2=【答案】(1)90(2)0.75(3)有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.【解析】(1)由题知,抽样比例为50:1,根据分层抽样是按比例抽样和女生人数即可计算出女生应抽取的人数;(2)观察频率分布直方图,找出每周平均体育运动不超过4小时的所有小矩形高即为频率/组距,这些小矩形的面积和即为每周平均体育运动不超过4小时的频率,1减去这个频率就是每周运动时间超过4小时的概率;(3)根据频率分布直方图计算出这300位男生和女生中每周运动时超过4小时和不超过4小时的人数,列出2×2列联表,代入K2公式,计算出样本观测值,将该值与表中概率为95%值比较即可得出是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.试题解析:(1)300×=90,所以应收集90位女生的样本数据. 3分(2)由频率分布直方图得每周平均体育运动超过4小时的频率为1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75. 7分(3)由(2)知,300位学生中有300×0.75=225(位)的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:男生女生总计结合列联表可算得K2==≈4.762>3.841.所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”. 12分【考点】分层抽样方法,总体估计,独立性检验5.2013年第三季度,国家电网决定对城镇居民民用电计费标准做出调整,并根据用电情况将居民分为三类: 第一类的用电区间在,第二类在,第三类在(单位:千瓦时).某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示.(1)求该小区居民用电量的中位数与平均数;(2)利用分层抽样的方法从该小区内选出5户居民代表,若从该5户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率.【答案】(1)平均数为156.8,中位数为155;(2).【解析】(1)先利用所给的频率分布直方图求出每一组的频率,再利用频率求出平均数,找出中位数;(2)按照所给题目的意思可知第一类 4户,第二类1户,那么两户居民用电资费属于不同类型的概率为.试题解析:解:(1)第一组频率为20×0.005=0.1第二组频率为20×0.015=0.3第三组频率为20×0.02=0.4第四组频率为20×0.005=0.1第五组频率为20×0.003=0.06第六组频率为20×0.002=0.04 -2分平均数为0.1×120+0.3×140+0.4×160+0.1×180+0.06×200+0.04×220=156.8 -4分中位数为150+20×0.25=155 -6分(2)第一类 4户第二类1户 -8分两户居民用电资费属于不同类型的概率为 -----12分考点:频率分布直方图,中位数,分层抽样.6.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2, (960)分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷,则抽到的人中,做问卷的人数为()A.7B.9C.10D.15【答案】C【解析】由系统抽样方法可知从从960人中抽取32人,则每组人数为960/32 =30,就是每30人中抽取一人做问卷,那么共用有人,中共有人,故选C.【考点】系统抽样.7.某学校共有师生2400人,现用分层抽样方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是。
高二数学第7周第2次学案(二级部)§2.1.2 系统抽样制作人:张巨霞学习目标:(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;基础梳理:1、简单随机抽样的方法:2、简单随机抽样的特点:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特证:(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又N].称等距抽样,这时间隔一般为k=[n(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。
问题:如果个体总数不能被样本容量整除时该怎么办?解:(1)随机将这1003个个体进行编号1,2,3,……1003。
(2)利用简单随机抽样,先从总体中剔除3个个体(可以随机数表法),剩下的个体数1000能被100整除,然后按系统抽样的方法进行。
问题2:系统抽样与简单随机抽样比较,有何优、缺点?1、系统抽样比简单随机抽样更容易实施;2、系统抽样的效果会受个体编号的影响,而简单随机抽样的效果不受个体编号的影响;3、系统抽样比简单随机抽样的应用范围广。
思考?(1)你能举几个系统抽样的例子吗?(2)下列抽样中不是系统抽样的是()A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈【评价设计】1、从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为(C)A.99 B、99.5C.100 D、100.52、从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是(B)A.1,2,3,4,5 B、5,16,27,38,49C.2, 4, 6, 8, 10 D、4,13,22,31,40【例题精析】例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。