部编九年级下数学专项训练六 圆
- 格式:doc
- 大小:1.12 MB
- 文档页数:7
专题24.5 圆(满分100)学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(本大题共10小题,每小题3分,满分30分)1.(2022·重庆忠县·九年级期中)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是( )A.50°B.60°C.80°D.100°【思路点拨】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD 的度数,再根据圆周角的性质,即可求得答案.【解题过程】解:在圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.2.(2022·江苏·九年级专题练习)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( )A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)【思路点拨】根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可。
【解题过程】解:∵过格点A,B,C作一圆弧,∴三点组成的圆的圆心为:O(2,0),∵只有∠OBD+∠EBF=90°时,BF与圆相切,∴当△BOD≌△FBE时,EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选C.3.(2022·全国·九年级课时练习)如图,在⊙О中,点C在弦AB上移动,连接OC,过点C作CD⊥OC交⊙О于点D.若AB=2,则CD的最大值是()A.4B.2C D.1【思路点拨】连接OD,如图,利用勾股定理得CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出CD即可.【解题过程】4.(2022·浙江丽水·模拟预测)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为( )A.B.cm C.或D.或【思路点拨】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解题过程】解:连接AC,AO,∵O的直径CD=10cm,AB⊥CD,AB=8cm,5.(2022·江苏·九年级)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A B.C.1D.2【思路点拨】【解题过程】解:如图:过D作DE⊥AB,垂足为E∵AB是直径∴∠ACB=90°∵∠ABC的角平分线BD∴DE=DC=1在Rt△DEB和Rt△DCB中6.(2022·全国·九年级课时练习)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则S1的值是()S2A.5π2B.3πC.5πD.11π2【思路点拨】【解题过程】7.(2022·全国·九年级专题练习)如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为()A B C D.【思路点拨】如图,作过A、B、F作⊙O,AFB为点F的轨迹,然后计算出AFB的长度即可.【解题过程】解:如图:作过A、B、F作⊙O,过O作OG⊥AB∵等边ΔABC∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△BCE≌△ABC∴∠BAD=∠CBE∵∠ABC=∠ABE+∠EBC=60°∴∠ABE+∠BAD=60°∴∠AFB=120°∵∠AFB是弦AB同侧的圆周角∴∠AOB=120°8.(2022·全国·九年级课时练习)如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D.若⊙O AB=4,则BC的长是( )A.B.C D【思路点拨】【解题过程】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,9.(2022·全国·九年级课时练习)如图,△ABC的内切圆⊙O与AB,BC,AC相切于点D,E,F,已知AB =6,AC=5,BC=7,则DE的长是()A B C D【思路点拨】【解题过程】10.(2022·江苏无锡·九年级期中)我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形,根据定义:①等边三角形一定是奇异三角形;②在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,则a:b:c=12;③如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆ADB的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.则△ACE是奇异三角形;④在③的条件下,当△ACE是直角三角形时,∠AOC=120°,其中,说法正确的有()A.①②B.①③C.②④D.③④【答案】B【思路点拨】【解题过程】解:设等边三角形的边长为a,则a2+a2=2a2,满足奇异三角形的定义,∴等边三角形一定是奇异三角形,故①正确;在RtΔABC中,a2+b2=c2,∵c>b>a>0,∴2c2>a2+b2,2a2<b2+c2,若△ABC是奇异三角形,一定有2b2=a2+c2,∴2b2=a2+(a2+b2),∴b2=2a2,得b=.∵c2=b2+a2=3a2,∴c,∴a:b:c=1故②错误;在RtΔABC中,a2+b2=c2,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在RtΔACB中,AC2+BC2=AB2;在RtΔADB中,AD2+BD2=AB2.∵D是半圆ADB的中点,∴AD=BD,∴AD=BD,∴AB2=AD2+BD2=2AD2,又∵CB=CE,AE=AD,∴AC2+CE2=2AE2.∴ΔACE是奇异三角形,故③正确;由③可得ΔACE是奇异三角形,∴AC2+CE2=2AE2.当ΔACE是直角三角形时,由②可得AC:AE:CE=1AC:AE:CE=1,(Ⅰ)当AC:AE:CE=1AC:CE=1AC:CB=1∵∠ACB=90∘,∴∠ABC=30°,∴∠AOC=2∠ABC=60°.(Ⅱ)当AC:AE:CE=1时,AC:CE=1,即AC:CB=1,∵∠ACB=90°,∴∠ABC=60°,∴∠AOC=2∠ABC=120°,∴∠AOC的度数为60°或120°,故④错误;故选:B.评卷人得分二.填空题(本大题共5小题,每小题3分,满分15分)11.(2022·全国·九年级课时练习)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为____mm.【思路点拨】先根据钢珠的直径求出其半径,再构造直角三角形,求出小圆孔的宽口AB的长度的一半,最后乘以2即为所求.【解题过程】12.(2022·全国·九年级课时练习)已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB//CD,AB=8cm,CD=6cm,则AB与CD之间的距离为________cm.【思路点拨】分两种情况考虑:当两条弦位于圆心O同一侧时,当两条弦位于圆心O两侧时;利用垂径定理和勾股定理分别求出OE和OF的长度,即可得到答案.【解题过程】解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,13.(2022·山东菏泽·九年级期中)如图,正方形ABCD内接于⊙O,PA,PD分别与⊙O相切于点A和点D,PD的延长线与BC的延长线交于点E.已知AB=2,则图中阴影部分的面积为___________.【思路点拨】【解题过程】14.(2022·全国·九年级课时练习)如图,⊙O是等边△ABC的外接圆,已知D是⊙O上一动点,连接AD、CD,若圆的半径r=2,则以A、B、C、D为顶点的四边形的最大面积为_____.【思路点拨】连接BO并延长交AC于E,交AC于D,根据垂径定理得到点D到AC的距离最大,根据直角三角形的性质、三角形的面积公式计算,得到答案.【解题过程】15.(2022·全国·九年级课时练习)如图,在矩形ABCD中,AB=6,BC=8,E为AD上一点,且AE=2,F为BC边上的动点,以为EF直径作⊙O,当⊙O与矩形的边相切时,BF的长为______.【思路点拨】⊙O与矩形的边相切,但没有具体说与哪个边相切,所以该题有三种情况:第一种情况是圆与边AD、BC 相切,此时BF=AE;第二种情况是圆与边AB相切,利用中位线定理以及勾股定理可求出BF的长;第三种是圆与边CD相切,同样利用中位线定理以及勾股定理求得BF.【解题过程】解:①当圆与边AD、BC相切时,如图1所示此时∠AEO=BFO=90°所以四边形AEFB为矩形即BF=AE=2;②当圆与边AB相切时,设圆的半径为R,切点为H,圆与边AD交于E、N两点,与边BC交于M、F两点,连接EM、HO,如图2所示此时OE=OF=OH=R,点O、H分别是EF、AB的中点∴2OH=AE+BF即BF=2R-2∵BM=AE=2∴MF=2R-4在Rt△EFM中,EM2+MF2=EF2∴BF=13.2评卷人得分三.解答题(本大题共9小题,满分55分)16.(2022·全国·九年级课时练习)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知AB,C是弦AB上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法):①作线段AC的垂直平分线DE,分别交AB于点D,AC于点E,连接AD,CD;②以点D为圆心,DA长为半径作弧,交AB于点F(F,A两点不重合),连接DF,BD,BF.(2)直接写出引理的结论:线段BC,BF的数量关系.【思路点拨】【解题过程】解:(1)作出线段AC的垂直平分线DE,连接AD,CD;以D为圆心,DA长为半径作弧,交AB于点F,连接DF,BD,BF,如图示:(2)结论:BC=BF.理由如下:由作图可得:DE是AC的垂直平分线,DA=DF,∴DA=DC=DF,∴∠DAC=∠DCA,AD=FD,∴∠DBC=∠DBF,∵四边形ABFD是圆的内接四边形,∴∠DAB+∠DFB=180°,∵∠DCA+∠DCB=180°,∴∠DFB=∠DCB,∵DB=DB,∴△DCB≌△DFB,∴BC=BF.17.(2022·江西上饶·九年级期末)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°.点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当DE与⊙O相切时,求∠CFB的度数;(2)如图2,当点F是CD的中点时,求△CDE的面积.【思路点拨】(1)由题意可求∠AOD=90°,即可求∠C=45°,即可求∠CFB的度数;(2)连接OC,根据垂径定理可得AB⊥CD,利用勾股定理.以及直角三角形30度性质求出CD、DE即可.【解题过程】解:(1)如图:连接OD∵DE与⊙O相切∴∠ODE=90°∵AB∥DE18.(2022·全国·九年级专题练习)如图,AB是半圆O的直径,点D是半圆O上一点,点C是AD的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.(1)求证:GP=GD;(2)求证:P是线段AQ的中点;(3)连接CD,若CD=2,BC=4,求⊙O的半径和CE的长.【思路点拨】(1)结合切线的性质以及已知得出∠GPD=∠GDP,进而得出答案;(2)利用圆周角定理得出PA,PC,PQ的数量关系进而得出答案;(3)直接利用勾股定理结合三角形面积得出答案.【解题过程】(1)证明:连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90°,∠EAP+∠GPD=∠EPA+∠EAP=90°,∴∠GPD=∠GDP;∴GP=GD;(2)证明:∵AB为直径,∴∠ACB=90°,∵CE⊥AB于E,∴∠CEB=90°,∴∠ACE+∠ECB=∠ABC+∠ECB=90°,∴∠ACE=∠ABC=∠CAP,∴PC=PA,∵∠ACB=90°,∴∠CQA+∠CAP=∠ACE+∠PCQ=90°,∴∠PCQ=∠CQA,∴PC=PQ,∴PA=PQ,即P为Rt△ACQ斜边AQ的中点;(3)连接CD,∵弧AC=弧CD,∴CD=AC,∵CD=2,∴AC=2,19.(2022·全国·九年级课时练习)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P 上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q 间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.【思路点拨】(1)理解题意后直接利用垂线段最短即可求解.(2)先理解当⊙O与线段有交点时,d(⊙O,AB)=0,利用⊙O与线段相切和⊙O经过A点即可求解.(3)①先确定A′位于x轴上,再求出OA′的长即可求解;②先确定A′的轨迹,再利用存在两个α使d(⊙O,A')=0,确定并求出两个界点值,即可求解.【解题过程】∴∠A′NB=90°,由旋转知BA′=BA=2−(−2)=4,∵∠ABA′=30°,BA′=2,∴A′N=12∴A′位于x轴上,BN=42−22=23,∴A′M=23,∴A′O=23−2,∵对于取定的r值,若存在两个α使d(⊙O,A')=0,∴⊙O与以AH为直径的半圆有两个交点(A点和H点除外),此时有两个界点值,分别是⊙O与该半圆内切时和⊙O由B(2,2),得OB=22+22=22,当⊙O与该半圆内切时,r=4−22,当⊙O经过A点时,r=22,∴4−22<r<22.20.(2022·四川德阳·九年级阶段练习)如图1,四边形ABCD内接于⊙O,AD为直径,过点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与CD围成阴影部分的面积.【思路点拨】【解题过程】解:(1)证明:∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,∵∠EBC+∠ABC=180°,∴∠D=∠EBC,∵AD为⊙O直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵CE⊥AB,∴∠ECB+∠EBC=90°,∴∠CAD=∠ECB;(2)①四边形ABCO是菱形,理由如下:∵CE是⊙O的切线,∴OC⊥EC,∵AB⊥EC,∴∠OCE=∠E=90°,∴∠OCE+∠E=180°,∴OC∥AE,∴∠ACO=∠BAC,∴CF=3,21.(2022·全国·九年级专题练习)如图,以AB为直径的⊙O上有一动点C,⊙O的切线CD交AB的延长线于点D,过点B作BM∥OC交⊙O于点M,连接AM,OM,BC.(1)求证:AM∥CD(2)若OA=5,填空:①当AM=时,四边形OCBM为菱形;②连接MD,过点O作ON⊥MD于点N,若BD=,则ON=.【思路点拨】(1)首先根据圆周角定理可得∠MAB+∠ABM=90°,由切线的性质可得∠DOC+∠CDO=90°,再根据平行线的性质即可证得∠MAB=∠CDO,据此即可证得结论;(2)①根据菱形性质可得OM= OA=MB= 5,即可求得AB,再根据勾股定理即可求得;②首先可证得△ODC 是等腰直角三角形,再根据勾股定理及三角形的面积,即可求解.【解题过程】(1)证明:∵AB是⊙O的直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵CD是⊙O的切线,∴OC⊥CD,∴∠DOC+∠CDO=90°,又∵BM∥OC,∴∠ABM=∠DOC,∴∠MAB=∠CDO,∴AM∥CD;(2)解:①若四边形OCBM为菱形,则OM=OA=MB =5,∵AB是⊙O的直径,∴∠AMB=90°,∵BD=52−5,OB=5,∴OD=OB+BD=5+5∵CD是⊙O的切线,∴∠OCD=90°,22.(2022·全国·九年级课时练习)如图,AB是⊙O的直径,P为AB上一点,弦CD与弦EF交于点P,PB平分∠DPF,连DF交AB于点G.(1)求证:CD=EF;(2)若∠DPF=60°,PE∶PF=1∶3,AB=OG的长.【思路点拨】【解题过程】(1)证明:如图,过点O作OM⊥EF于点M,ON⊥CD于点N,连接OF、OD,则∠OMF=∠OND=90°,∵PB平分∠DPF,OM⊥EF,ON⊥CD,∴OM=ON,在Rt△OFM和Rt△ODN中,∵OF=OD OM=ON,∴Rt△OFM≌Rt△ODN(HL),∴FM=DN,∵OM⊥EF,ON⊥CD,23.(2022·全国·九年级课时练习)问题提出:(1)如图1,已知△ABC是边长为2的等边三角形,则△ABC 的面积为______.问题探究:(2)如图2,在△ABC中,已知∠BAC=120°,BC=△ABC的最大面积.问题解决:(3)如图3,某校学生礼堂的平面示意图为矩形ABCD,其宽AB=20米,长BC=24米,为了能够监控到礼堂内部情况,现需要在礼堂最尾端墙面CD上安装一台摄像头M进行观测,并且要求能观测到礼堂前端墙面AB区域,同时为了观测效果达到最佳,还需要从点M出发的观测角∠AMB=45°.请你通过所学的知识进行分析,在墙面CD区域上是否存在点M满足要求?若存在,求出MC的长度;若不存在,请说明理由.【思路点拨】(1)作AD⊥BC于D,由勾股定理求出AD的长,即可求出面积;(2)作△ABC的外接圆⊙O,可知点A在BC上运动,当A'O⊥BC时,△ABC的面积最大,求出A'H的长,从而得出答案;(3)以AB为边,在矩形ABCD的内部作一个等腰直角三角形AOB,且∠AOB=90°,过O作HG⊥AB于H,交CD于G,利用等腰直角三角形的性质求出OA,OG的长,则以O为圆心,OA为半径的圆与CD相交,从而⊙O上存在点M,满足∠AMB=45°,此时满足条件的有两个点M,过M1作M1F⊥AB于F,作EO⊥M1F 于E,连接OF,利用勾股定理求出OE的长,从而解决问题.【解题过程】24.(2022·江苏·苏州中学九年级阶段练习)在Rt△ABC中,∠BCA=90°,CA=CB,点D是△ABC外一动点(点B,点D位于AC两侧),连接CD,AD.(1)如图1,点O是AB的中点,连接OC,OD,当△AOD为等边三角形时,∠ADC的度数是;(2)如图2,连接BD,当∠ADC=135°时,探究线段BD,CD,DA之间的数量关系,并说明理由;(3)如图3,⊙O是△ABC的外接圆,点D在AC上,点E为AB上一点,连接CE,DE,当AE=1,BE=7时,直接写出△CDE面积的最大值及此时线段BD的长.【思路点拨】【解题过程】即△CDE面积的面积最大值为4,此时,BD。
【期末专项复习】第24章:圆压轴题专项训练1.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.2.如图,AB是⊙O的直径,AC平分∠DAB交⊙O于点C,过点C的直线垂直于AD 交AB的延长线于点P,弦CE交AB于点F,连接BE.(1)求证:PD是⊙O的切线;(2)若PC=PF,试证明CE平分∠ACB.3.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离.4.在直角三角形ABC中,∠C=90°,∠BAC的角平分线AD交BC于D,作AD的中垂线交AB于O,以O为圆心,OA为半径画圆,则BC与⊙O的位置关系为证明你的猜想.5.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.6.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,∠D =2∠A.(1)求证:CD是⊙O的切线;(2)求证:DE=DC;(3)若OD=5,CD=3,求AC的长.7.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E 的坐标.8.如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD.(2)求证:DE为⊙O的切线.(3)若∠C=60°,DE=,求⊙O半径的长.9.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.10.已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.12.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB 的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.13.已知:AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.(1)求证:DE为⊙O的切线;(2)连接BE交圆于F,连AF并延长ED于G,若GE=2,AF=3,求∠EAF的度数.14.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.15.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.16.已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.17.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证: DE是⊙O的切线;(2)若AB=2,BC=,求DE的长.18.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.参考答案1.(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.2.证明:(1)连接OC,如图,∵AC平分∠DAB,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴PD是⊙O的切线;(2)∵OC⊥PC,∴∠PCB+∠BCO=90°,∵AB为直径,∴∠ACB=90°,即∠3+∠BCO,∴∠3=∠PCB,而∠1=∠3,∴∠1=∠PCB,∵PC=PF,∴∠PCF=∠PFC,而∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,∴∠BCF=∠ACF,即CE平分∠ACB.3.(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,又∵∠C=90°,∴∠ODB=∠C=90°,∴OD⊥BC,(2)过O作OF⊥AD于F,由勾股定理得:AD==2,∴DF=AD=,∵∠OFD=∠C=90°,∠ODA=∠CAD,∴△ACD∽△DFO,∴,∴,∴FO=,即圆心O到AD的距离是.4.解:BC与⊙O相切.理由如下:连接OD,如图,∵AD平分∠CAB,∴∠1=∠2,∵AD的中垂线交AB于O,∴OA=OD,∴∠2=∠3,∴∠1=∠3,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故答案为相切.5.(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)解:在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴=,即=,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,而BO=AO,∴OF为△ABD的中位线,∴OF=AD=.6.(1)证明:连接OC,如图,∵OA=OC,∴∠ACO=∠A,∴∠COB=∠A+∠ACO=2∠A,又∵∠D=2∠A,∴∠D=∠COB.又∵OD⊥AB,∴∠COB+∠COD=90°.∴∠D+∠COD=90°.即∠DCO=90°,∴OC⊥DC,又点C在⊙O上,∴CD是⊙O的切线;(2)证明:∵∠DCO=90°,∴∠DCE+∠ACO=90°.又∵OD⊥AB,∴∠AEO+∠A=90°,又∵∠A=∠ACO,∠DEC=∠AEO,∴∠DEC=∠DCE,∴DE=DC;(3)解:∵∠DCO=90°,OD=5,DC=3,∴AB=2OC=8,又DE=DC=3,∴OE=OD﹣DE=2,∵∠A=∠A,∠AOE=∠ACB=90°,∴△AOE∽△ACB,∴=,即===,∴BC=AC,在△ABC中,∵AC2+BC2=AB2,∴AC2+AC2=82,∴AC=.7.解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt△ACB中,tan∠OAB===,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB•tan30°=1×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴点E的坐标为(,1).8.(1)证明:∵AB为直径,∴∠ADB=90°,∵BA=BC,∴AD=CD;(2)证明:连接OD,如图,∵AD=CD,AO=OB,∴OD为△BAC的中位线,∴OD∥BC,∴DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:在Rt△CDE中,∠C=60°,DE=,∴CE=DE=×2=2,∴CD=2CE=4,∵∠A=∠C=60°,AD=CD=4,在Rt△ADB中,AB=2AD=8,即⊙O半径的长为4.9.(1)解:连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∴OM=OA==,AM=OM=,∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;(2)证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD,∵DF⊥AC,∴DF⊥OD,∵OD过O,∴DF是⊙O的切线;(3)证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC,∵∠EBC=∠DAC,∴∠FDC=∠DAC,∵A、B、D、E四点共圆,∴∠DEF=∠ABC,∵∠ABC=∠C,∴∠DEC=∠C,∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.10.证明:(1)连接OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵OB=OC,∴∠B=∠3,而∠1=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM=90°,∴OC⊥CM,∴MC是⊙O的切线;(2)∵EG⊥AB,∴∠B+∠BFH=90°,而∠BFH=∠4,∴∠4+∠B=90°,∵MD为切线,∴OC⊥CD,∴∠5+∠3=90°,而∠3=∠B,∴∠4=∠5,∴△DCF是等腰三角形.11.解:(1)如图,连接OE,∵FG=EG,∴∠GEF=∠GFE=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵CD⊥AB,∴∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AH=3、CH=4,∴OH=r﹣3,OC=r,则(r﹣3)2+42=r2,解得:r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,即=,解得:EM=.12.(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠ADB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.13.(1)证明:连接OD,如图,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE为⊙O的切线;(2)解:∵AB为直径,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴=,即=,整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG===,∴∠EAG=30°,即∠EAF的度数为30°.14.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67。
2020年九年级数学典型中考压轴题综合专项训练:《圆的综合》1.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM 的值.2.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC平分∠BAD,过C点作CE⊥AD 延长线于E点.(1)求证:CE是⊙O的切线;(2)若AB=10,AC=8,求AD的长.3.已知,如图1,AB为⊙O直径,△ACD内接于⊙O,∠D+∠ACE=90°,点E在线段AD上,连接CE.(1)若CE⊥AD,求证:CA=CD;(2)如图2,连接BD,若AE=DE,求证:BD平行CE;(3)如图,在(2)的条件下,过点C作AB的垂线交AB于点K,交AD于点L,4AK =9BK,若OL=,求BD的值.4.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,点D在⊙O上,BD=BC,DE⊥AC,垂足为点E,DE与⊙O和AB分别交于点M、F.连接BO、DO、AM.(1)证明:BD是⊙O的切线;(2)若tan∠AMD=,AD=2,求⊙O的半径长;(3)在(2)的条件下,求DF的长.5.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.6.如图,在△ABC中,I是内心,AB=AC,O是AB边上一点,以点O为圆心,OB为半径的⊙O经过点I.(1)求证:AI是⊙O的切线;(2)已知⊙O的半径是5.①若E是BI的中点,OE=,则BI=;②若BC=16,求AI的长.7.[教材呈现]图是华师版九年级上册数学教材第103页的部分内容.已知:如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.通过该问题的证明,得出了直角三角形的一条性质:直角三角形斜边上的中线等于斜边的一半.请根据教材内容,结合图①,写出完整的解题过程.[结论应用](1)如图②,在Rt△ABC中,F是AD中点,∠ACB=90°,∠BAC=60°,点D在BC上(点D不与B、C重合),DE⊥AB于点E,连结CE、CF、EF.当AD=4时,S=.△CEF(2)如图③,AD是⊙O直径,点C、E在⊙O上(点C、E位于直径AD两侧),在⊙O 上,且sin∠DAC=,CD=2.当四边形OCDE有一组对边平行时,直接写出AE的长.8.已知正方形ABCD内接于⊙O,点E为上一点,连接BE、CE、DE.(1)如图1,求证:∠DEC+∠BEC=180°;(2)如图2,过点C作CF⊥CE交BE于点F,连接AF,M为AE的中点,连接DM并延长交AF于点N,求证:DN⊥AF;(3)如图3,在(2)的条件下,连接OM,若AB=10,tan∠DCE=,求OM的长.9.如图,AB为⊙O的直径,点C、D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线.(2)若∠CAB=36°,⊙O的半径为12,求的长.10.如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是⊙O的切线;(2)若EA=EF=2,求⊙O的半径;11.已知AB是⊙O的直径,C为⊙O上一点,∠OAC=58°.(Ⅰ)如图①,过点C作⊙O的切线,与BA的延长线交于点P,求∠P的大小;(Ⅱ)如图②,P为AB上一点,CP延长线与⊙O交于点Q.若AQ=CQ,求∠APC的大小.12.已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F.(1)如图1,求证:BD平分∠ADF;(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3,DN=9.求sin∠ADB的值.13.如图,已知AB为⊙O的直径,AD、BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA、CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.(3)在(2)中的条件下,∠ABD=30°,将△ABD以点A为中心逆时针旋转120°,求BD扫过的图形的面积(结果用π表示).14.如图,△AOB中,A(﹣8,0),B(0,),AC平分∠OAB,交y轴于点C,点P 是x轴上一点,⊙P经过点A、C,与x轴交于点D,过点C作CE⊥AB,垂足为E,EC 的延长线交x轴于点F.(1)求证:EF为⊙P的切线;(2)求⊙P的半径.15.已知,AB为⊙O的直径,弦BC、AF相交于点E,过点E作ED⊥AB,∠AEC=∠BED.(1)如图1,求证:=;(2)如图2,当∠BAF=45°时,OC交AF于点H,作FG⊥BH于点Q,交AB于点G,连接GH,求证:∠AGH=∠BGF;(3)如图3,在(2)的条件下,射线BG与⊙O交于点P,过点P作PK⊥BH交AB于点M,垂足为点K,点N为B的中点,MN=,求⊙O的半径.参考答案1.解:(1)连接OE,则∠OCB=∠OBC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.2.解:(1)连接OC,∵OC=OA,∴∠OAC=∠OCA,又∵AC平分∠BAD,∴∠CAD=∠CAO=∠OCA,∴OC∥AE,∵CE⊥AD,即可得OC⊥CE,∴CE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴BC===6,∵∠BAC=∠DAC,∴=,∴BC=CD=6,延长BC交AE的延长线于F,∵∠BAC=∠FAC,AC=AC,∠ACB=∠ACF=90°,∴△ACB≌△ACF(ASA),∴FC=BC=6,AF=AB=10,∵∠CDF=180°﹣∠ADC,∠ABF=180°﹣∠ADC,∴∠CDF=∠ABF,∵∠CFD=∠AFB,∴△CFD∽△AFB,∴=,∴=,∴AD=.3.解:(1)∵CE⊥AD,∴∠D+∠ECD=90°,∠AEC=∠DEC=90°,∵∠D+∠ACE=90°,∴∠ACE=∠DCE,在△ACE和△DCE中,,∴△ACE≌△DCE(ASA),∴CA=CD;(2)∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠BDC=90°,∵∠ADC+∠ACE=90°,∴∠BDC=∠ACE,∵∠BDC=∠BAC,∴∠BAC=∠ACE,设AB与CE的交点为M,则MA=MC,∴M在AC的垂直平分线上,∵弦的垂直平分线过圆心O,即弦的垂直平分线与直径的交点是圆心,∴M与点O重合,即CE过圆心O,∵AE=DE,∴CE⊥AD,∴∠AEC=∠ADB=90°,∴CE∥BD;(3)∵4AK=9BK,∴AK:BK=9:4,设BK=4m,则AK=9m,∴AB=13m,∴OA=OB=6.5m,∴OK=OB﹣BK=2.5m,∵AK⊥CL,∴∠AKC=90°=∠AEO,在△OAE和△OCK中,,∴△OAE≌△OCK(AAS),∴OE=OK=2.5m,∵OA=OB,AE=DE,∴BD=2OE=5m,∴AD=,∵∠AKL=∠ADB=90°,∠LAK=∠BAD,∴△AKL∽△ADB,∴,即,∴LK=,∵OK2+LK2=OL2,∴,解得,m=0.8,∴BD=5m=4.4.解:(1)在△BDO和△BCO中,BD=BC,OD=OC,BO=BO,故△BDO≌△BCO(SSS),∴∠BDO=∠ABC=90°,BD是⊙O的切线;(2)连接CD,则∠AMD=∠ACD,AB是直径,故∠ADC=90°,在Rt△ADC中,tan∠ACD=tan∠AMD==,∵AD=2,∴CD=4,故圆的半径为5;(3)在Rt△ADC中,DE⊥AC,则DE==4,则AE=2,由(1)知△BDO≌△BCO,∴∠BOC=∠BOD=∠DOC,∵∠DAE=∠DOC,∴∠DAE=∠BOC,∵ED⊥AC,∴∠AED=∠OCB=90°,∴△DAE∽△BOC,∴,即,解得:BC=10,∴∠BAC=∠ABC=45°,∴∠FAE=∠AFE=45°,∴FE=AE=2,DF=DE﹣EF=2.5.(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.6.(1)证明:延长AI交BC于D,连接OI.∵I是△ABC的内心,∴BI平分∠ABC,AI平分∠BAC.∴∠1=∠3.∵AB=AC,∴AD⊥BC.又∵OB=OI,∴∠3=∠2.∴∠1=∠2.∴OI∥BD.∴OI⊥AI.∴AI为⊙O的切线.(2)①解:∵E是BI的中点,∴OE⊥BI.在直角△OBE中,OB=5,OE=,则由勾股定理知:BE===2.∴BI=2BE=.故答案是:;②解:由(1)知OI∥BC,∴△AOI~△ABD.∴,∴=.∴.∴.∴AI=•AD=×=.7.解:[教材呈现]已知:△ABC中,∠ACB=90°,CD是中线,求证:CD=AB.证明:作DE⊥BC于E,DF⊥AC于F,则DF∥BC,DE∥AC,∵CD是中线,∴AF=FC,BE=EC,∴直线DE是线段AC的垂直平分线,直线DE是线段BC的垂直平分线,∴DA=DC,DB=DC,∴CD=DA=DB=AB;[结论应用](1)CF、FE分别是Rt△ACD、Rt△ADE的中线,则CF=EF=AD=2,设:∠CAF=α=∠ACF,∠FAE=β=∠AEF,∠CAB=α+β=60°,∠CFE=∠FCA+∠FAC+∠FEA+∠FAE=2α+2β=120°,故△CEF为腰长为2,顶角为120°的等腰三角形,过点F作FH⊥CE,则S=×CE×FH=2×1=,△CEF故答案为:;(2)设sin∠DAC==sinα,CD=2,则AD=6,OC=OE=AD=3,①当CD∥OE时,如图③(左侧图),则∠ADC=∠DOE=∠β,sin=cosβ,过点D作DH⊥OE交OE于点H,OH=OD cosβ=3×=1,则HE=3﹣1=2,同理DH=2,DE==2,AE===2;②当OC∥DE时,如图③(右侧图),则∠COD=∠ODE=2α,过点O作ON⊥DE于点N,则DN=EN,DE=2DN=2×OD cos2α=2×3×=(注:cos2α的求法见备注),AE===;综上,AE=2或;备注:等腰三角形ABC,AB=AC,作AD⊥BC于点D,过点C作CE⊥AB于点E,设∠BAD=∠CAD=α,设sin,设BD=CD=a,则AB=AC=3a,则AD=2a,S=AD×BC=AB×CE,△ABC即2a×2a=3a×CE,则CE=,sin2α==,则cos2α=.8.(1)证明:连接BD,OC,∵四边形ABCD为正方形,∴∠A=90°,BC=CD,∴BD为⊙O的直径,∵OB=OD,∴OC⊥BD,∴∠BOC=90°,∴∠BEC=∠BOC=45°,∵正方形ABED是圆O的内接四边形,∴∠A+∠DEB=180°,∴∠DEB=90°,∴∠DEC+∠BEC=∠DEB+∠BEC+∠BEC=180°;(2)证明:如图2,延长ED至G,使ED=DG,连接AG,∵CE⊥CF,∴∠ECF=90°,∵∠CEF=45°,∴∠CEF=∠CFE=45°,∴CE=CF,∵∠BCD=∠ECF=90°,∴∠BCF=∠DCF,∵BC=CD,∴△BFC≌△DEC(SAS),∴BF=DE,∵DE=DG,∴BF=DG,∵四边形ABED为圆O的内接四边形,∴∠ABE+∠ADE=180°,∵∠ADE+∠ADG=180°,∴∠ABE=∠ADG,∵AB=AD,∴△ABF≌△ADG(SAS),∴∠BAF=∠DAC,∵∠BAF+∠FAD=∠BAD=90°,∴∠DAG+∠FAD=90°,∴∠FAG=90°,∵M为AE的中点,∴DM为△AEG的中位线,∴DM∥AG,∴∠DNF=∠FAG=90°,∴DN⊥AF,(3)解:如图3,连接BD,OC,过点B作BK⊥CF交CF的延长线于点K,过点B作BT⊥AE于点T,由(1)知∠BOC=90°,∴OB=OC=,由(1)知BD为⊙O的直径,在Rt△ABD中,BD=AB=10,∵,∴∠DBE=∠DCE,∴tan∠DCE=tan∠DBE=,∴,设DE=x,则BE=7x,在Rt△BDE中,BD==5x,∴,∴x=2,∴DE=2,∴BF=2,∵∠EFC=45°,∴∠BFK=∠EFC=45°,∴∠KBF=∠BFK=45°,∴,由(2)知∠BCF=∠DCE,∴tan∠BCF=tan∠DCE=,∴,∴,∴,在Rt△ECF中,EF=CF=12,∴BE=EF+BF=14,∵∠AEB=∠AEC﹣∠BEC=90°﹣45°=45°,∴∠TBE=∠TEB,∴TB=TE=,∴=,∴,∴,∵M为AE的中点,∴OM⊥AE,在Rt△OME中,OM==3.9.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;(2)连接OD,∵∠BOC=2∠CAB=2×36°=72°,∵,∴∠BOD=2∠BOC=144°,∴的长==π.10.解:(1)连接OD,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是⊙O的切线;(2)设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+2,∴BD=CD=DE=r+2,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+2,∴AF=AB﹣BF=2OB﹣BF=2r﹣(2+r)=r﹣2,∵∠BFD=∠EFA,∠B=∠E,∴△BFD∽△EFA,∴,即=解得:r1=1+,r2=1﹣(舍),综上所述,⊙O的半径为1+.11.解:(I)如图①,∵OA=OC,∠OAC=58°,∴∠OCA=58°∴∠COA=180°﹣2×58°=64°∵PC是⊙O的切线,∴∠OCP=90°,∴∠P=90°﹣64°=26°;(II)∵∠AOC=64°,∴∠Q=∠AOC=32°,∵AQ=CQ,∴∠QAC=∠QCA=74°,∵∠OCA=58°,∴∠PCO=74°﹣58°=16°,∵∠AOC=∠QCO+∠APC,∴∠APC=64°﹣16°=48°.12.(1)证明:如图1,∵AC⊥BD,DE⊥BC,∴∠AHD=∠BED=90°,∴∠DAH+∠ADH=90°,∠DBE+∠BDE=90°,∵∠DAC=∠DBC,∴∠ADH=∠BDE,∴BD平分∠ADF.(2)证明:连接OA、OB.∵OB=OC=OA,AC=BC∴△OCB≌△OCA(SSS),∴OBC=∠OCA,∴OC平分∠ACB;(3)如图3中,连接BN,过点O作OP⊥BD于点P,过点O作OQ⊥AC于点Q.则四边形OPHQ是矩形,∵DN∥AC,∴∠BDN=∠BHC=90°,∴BN是直径,则OP=DN=,∴HQ=OP=,设AH=x,则AQ=x+,AC=2AQ=2x+9,BC=AC=2x+9,∴CH=AC﹣AH=2x+9﹣x=x+9在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2,即(2x+9)2=()2﹣x2+(x+9)2,整理得2x2+9x﹣45=0,(x﹣3)(2x+15)=0解得x=3(负值舍去),BC=2x+9=15,CH=x+9=12∵∠ADB=∠BCH,∴sin∠ADB=sin∠BCH===.即sin∠ADB的值为.13.证明:(1)连接DO,如图,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切线,∴∠CDO=90°,∴OD⊥CE,又∵点D在⊙O上,∴CD是⊙O的切线;(2)设圆O的半径为R,则OD=R,OE=R+1,∵CD是圆O的切线,∴∠EDO=90°,∴ED2+OD2=OE2,∴9+R2=(R+1)2,∴R=4,∴圆O的半径为4;(3)∵∠ABD=30°,AB=2R=8,∴AD=4,∴BD扫过的图形的面积==16π.14.(1)证明:连接CP,∵AP=CP,∴∠PAC=∠PCA,∵AC平分∠OAB,∴∠PAC=∠EAC,∴∠PCA=∠EAC,∴PC∥AE,∵CE⊥AB,∴CP⊥EF,即EF是⊙P的切线;(2)∵AC平分∠OAB,∴∠BAC=∠OAC,∵PA=PC,∴∠BAC=∠ACP,∴PC∥AB,∴△OPC∽△OAB,∴=,∵A(﹣8,0),B(0,),∴OA=8,OB=,∴AB=,∴=,∴PC=5,∴⊙P的半径为5.15.(1)证明:如图1,连接AC、BF、CF,∵AB为⊙O的直径,∴∠AFB=90°,∵∠AEC=∠BED,∠AEC=∠BEF,∴∠BEF=∠BED,∵ED⊥AB,∴∠BDE=∠AFB=90°,又∵BE=BE,∴△BDE≌△BFE(AAS),∴∠ABC=∠FBC,∵,∴∠ABC=∠AFC,∵,∴∠CAF=∠FBC,∴∠CAF=∠AFC,∴AC=CF,∴;(2)证明:如图2,连接OF、BF,作AS⊥AF于点A,交FG的延长线于点S,∵,∴AOC=∠FOC,∵AO=OF,∴OC⊥AF,∴AH=HF=AF,∵∠BAF=45°,∴AF=BF,∵FG⊥BH,AS⊥AF,∴∠S=∠BHF,又∵∠SAF=∠HFB=90°,∴△FSA≌△BHF(AAS),∴AS=HF=AH,∵∠SAG=∠GAH=45°,AG=AG,∴△SAG≌△HAG(SAS),∴∠SGA=∠AGH,∴∠AGH=∠BGF;(3)解:如图3,过点O作OR⊥HP于点R,OT⊥BH于点T,∵△SAG≌△HAG,∴∠AHG=∠S=∠BHF,∵OH⊥AF,∴∠OHG=∠OHB,∵∠ORH=∠OTH=90°,OH=OH,∴△ORH≌△OTH(AAS),∴RH=TH,OR=OT,又∵OP=OB,∠ORP=∠OTB=90°,∴Rt△ORP≌Rt△OTB(HL),∴PR=BT,∴PR+RH=BT+TH,即PH=BH,∴∠HPB=∠HBP,设∠OPR=∠OBT=α,∵∠AOH=∠A=45°,∴∠PHO=∠BHO=∠AOH﹣∠OBH=45°﹣α,∴∠PHB=90°﹣2α,∴∠HPB=∠HBP=45°+α,∴∠PBO=45°,∵PO=BO,∴∠OPB=∠OBP=45°,∴PO⊥AB,∵PK⊥BH,GF⊥BH,∴PK∥GF,∴∠PMG=∠BGF,∵∠PGM=∠AGH,∴∠PGM=∠PMG,∴PG=PM,∴OG=OM,过点M作ML⊥BP于点L,∵∠PBH=∠BHF=45°+α,∴tan∠PBH=tan∠BHF==2,∵∠MPL=∠BPK,∴∠PML=∠PBH,∴tan∠PML=tan∠PBH=2,设BM=4a,则BL=ML=2a,∴PL=4a,∴PB=6a,∴PO=BO=6a,∴OM=OG=2a,∴GM=4a,∴GM=BM,∵N为BH的中点,∴MN为中位线,∴GH=2MN=,过点G作GU⊥OH于点U,则tan∠GHO=tan∠OHB=tan∠FBH=,在Rt△GUH中,设GU=b,则UH=2b,GH=b,∴GU=,∴GO=2=2a,∴a=1,∴OB=6a=6,即⊙O的半径为6.。
专题24.1 圆【七大题型】【人教版】【题型1 圆的概念】 (1)【题型2 圆的有关概念】 (4)【题型3 确定圆的条件】 (6)【题型4 点与圆的位置关系】 (9)【题型5 圆中角度的计算】 (12)【题型6 圆中线段长度的计算】 (15)【题型7 圆相关概念的应用】 (18)定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.【题型1 圆的概念】【例1】(2022•金沙县一模)下列说法中,不正确的是( )A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心【分析】利用圆的对称性质逐一求解可得.【解答】解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆有无数条对称轴,正确;C.圆的每一条直径所在直线都是它的对称轴,此选项错误;D.圆的对称中心是它的圆心,正确;故选:C.【变式1-1】(2022•武昌区校级期末)由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为( )A .4πB .9πC .5πD .13π【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O 的距离大于或等于2,并且小于或等于3的点组成的图形的面积为以3为半径的圆与以2为半径的圆组成的圆环的面积,即π×32﹣π×22=5π,故选:C .【变式1-2】(2022•杭州模拟)现有两个圆,⊙O 1的半径等于篮球的半径,⊙O 2的半径等于一个乒乓球的半径,现将两个圆的周长都增加1米,则面积增加较多的圆是( )A .⊙O 1B .⊙O 2C .两圆增加的面积是相同的D .无法确定【分析】先由L =2πR 计算出两个圆半径的伸长量,然后再计算两个圆增加的面积,然后进行比较大小即可.【解答】解:设⊙O 1的半径等于R ,变大后的半径等于R ′;⊙O 2的半径等于r ,变大后的半径等于r ′,其中R >r .由题意得,2πR+1=2πR ′,2πr +1=2πr ′,解得R ′=R +12π,r ′=r +12π;所以R ′﹣R =12π,r ′﹣r =12π,所以,两圆的半径伸长是相同的,且两圆的半径都伸长12π.∴⊙O 1的面积=πR 2,变大后的面积=π(R +12π)2,面积增加了π(R +12π)2−πR 2=R +14π,⊙O 2的面积=πr 2,变大后的面积=π(r +12π)2,面积增加了π(r +12π)2−πr 2=r +14π,∵R >r ,∴R +14π>r +14π,∴⊙O 1的面积增加的多.故选:A .【变式1-3】(2022•浙江)如图,AB 是⊙O 的直径,把AB 分成几条相等的线段,以每条线段为直径分别画小圆,设AB =a ,那么⊙O 的周长l =πa .计算:(1)把AB 分成两条相等的线段,每个小圆的周长l 2=12πa =12l ;(2)把AB 分成三条相等的线段,每个小圆的周长l 3= 13l ;(3)把AB 分成四条相等的线段,每个小圆的周长l 4= 14l ;(4)把AB 分成n 条相等的线段,每个小圆的周长l n = 1n l .结论:把大圆的直径分成n 条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是大圆周长的 1n .请仿照上面的探索方法和步骤,计算推导出每个小圆面积与大圆面积的关系.【分析】把大圆的直径分成n 条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是l n =π(1n a )=1n l ,即每个小圆周长是大圆周长的1n ;根据圆的面积公式求得每个小圆的面积和大圆的面积后比较.【解答】解:(2)13l ;(3)14l ;(4)1n l ;1n ;每个小圆面积=π(12•1n a )2=14•πa 2n 2,而大圆的面积=π(12•a )2=14πa 2即每个小圆的面积是大圆的面积的1.n2【题型2 圆的有关概念】【例2】(2022•远安县期末)下列说法:①弦是直线;②圆的直径被该圆的圆心平分;③过圆内一点P的直径仅有一条;④弧是圆的一部分.其中正确的有( )A.1个B.2个C.3个D.4个【分析】根据弦,直径,弧的定义一一判断即可.【解答】解:①弦是直线,错误,弦是线段.②圆的直径被该圆的圆心平分,正确.③过圆内一点P的直径仅有一条,错误,点P是圆心时,直径有无数条.④弧是圆的一部分,正确.故选:B.【变式2-1】(2022图木舒克月考)有一个圆的半径为5,则该圆的弦长不可能是( )A.1B.4C.10D.11【分析】根据直径是圆中最长的弦,判断即可.【解答】解:∵一个圆的半径为5,∴圆中最长的弦是10,∴弦长不可能为11,故选:D.【变式2-2】(2022•嘉鱼县期末)如右图中有 1 条直径,有 4 条弦,以点A为端点的优弧有 2 条,有劣弧 2 条.【分析】根据直径、弦、优弧及劣弧的概念解答即可得.【解答】解:图中直径只有AB这1条,弦有AC、AB、CD、BC这4条,以点A为端点的优弧有ACD、ADC 这2条,劣弧有AC、AD这2条,故答案为:1、4、2、2.【变式2-3】(2022仪征市期末)如图,⊙O的半径为6,△OAB的面积为18,点P为弦AB上一动点,当OP长为整数时,P点有 4 个.【分析】解法一:过点P最长的弦是12,根据已知条件,△OAB的面积为18,可以求出AB<12,根据三角形面积可得OC=OP的长有两个整数:5,6,且OP=6是P在A或B点时,每一个值都有两个点P,所以一共有4个.解法二:根据面积可知,OA上的高为6,也就是说OA与OB互相垂直,然后算出OC长度即可.【解答】解:解法一:过O作OC⊥AB于C,则AC=BC,设OC=x,AC=y,∵AB是⊙O的一条弦,⊙O的半径为6,∴AB≤12,∵△OAB的面积为18,+y2=362y⋅x=18,则y=18x,∴x2+(18x)2=36,解得x=∴OC=4,∴4<OP≤6,∵点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.解法二:设△AOB中OA边上的高为h,则12×OAℎ=18,即12×6ℎ=18,∴h=6,∵OB=6,∴OA⊥OB,即∠AOB=90°,∴AB=OC=同理得:点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.故答案为:4.【题型3 确定圆的条件】【例3】(2022•绥中县一模)小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是( )A.①B.②C.③D.均不可能【分析】要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.【变式3-1】(2022春•射阳县校级期末)平面直角坐标系内的三个点A(1,0)、B(0,﹣3)、C(2,﹣3) 能 确定一个圆(填“能”或“不能”).【分析】根据三个点的坐标特征得到它们不共线,于是根据确定圆的条件可判断它们能确定一个圆.【解答】解:∵B(0,﹣3)、C(2,﹣3),∴BC∥x轴,而点A(1,0)在x轴上,∴点A、B、C不共线,∴三个点A(1,0)、B(0,﹣3)、C(2,﹣3)能确定一个圆.故答案为:能.【变式3-2】(2022•西城区期末)如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为 (2,1) .【分析】根据图形得出A、B、C的坐标,再连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,最后求出点Q的坐标即可.【解答】解:从图形可知:A点的坐标是(0,2),B点的坐标是(1,3),C点的坐标是(3,3),连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,如图,∴Q点的坐标是(2,1),故答案为:(2,1).【变式3-3】(2022•任城区校级月考)将图中的破轮子复原,已知弧上三点A,B,C.(1)画出该轮的圆心;(2)若△ABC是等腰三角形,底边BC=16cm,腰AB=10cm,求圆片的半径R.【分析】(1)根据垂径定理,分别作弦AB和AC的垂直平分线交点即为所求;(2)连接AO,OB,利用垂径定理和勾股定理可求出圆片的半径R.【解答】解:(1)如图所示:分别作弦AB和AC的垂直平分线交点O即为所求的圆心;(2)连接AO,OB,BC,BC交OA于D.∵BC=16cm,∴BD=8cm,∵AB=10cm,∴AD=6cm,设圆片的半径为R,在Rt△BOD中,OD=(R﹣6)cm,∴R2=82+(R﹣6)2,cm,解得:R=253cm.∴圆片的半径R为253【题型4 点与圆的位置关系】【例4】(2022秋•宜州区期末)如已知:如图,△ABC中,∠C=90°,AC=2cm,BC=4cm,CM是中线,以C长为半径画圆,则点A、B、M与⊙C的关系如何?【分析】点与圆的位置关系由三种情况:设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内.【解答】解:根据勾股定理,有AB=cm);∵CA=2cm,∴点A在⊙O内,∵BC=4cm,∴点B在⊙C外;由中线定理得:CM=∴M点在⊙C上.【变式4-1】(2022春•龙湖区校级月考)⊙O的面积为25πcm2,⊙O所在的平面内有一点P,当PO =5cm 时,点P在⊙O上;当PO <5cm 时,点P在⊙O内;当PO >5cm 时,点P在⊙O外.【分析】根据圆的面积求出圆的半径,然后确定圆上点,圆内点以及圆外的到圆心的距离.【解答】解:因为圆的面积为25πcm2,所以圆的半径为5cm.当点P到圆心的距离等于5cm时,点P在⊙O上,此时OP=5cm.当点P到圆心的距离小于5cm时,点P在⊙O内,此时OP<5cm.当点P到圆心的距离大于5cm时,点P在⊙O外,此时OP>5cm.故答案分别是:PO=5cm,PO<5cm,PO>5cm.【变式4-2】(2022•广东模拟)如图,已知⊙A的半径为1,圆心的坐标为(4,3).点P(m,n)是⊙A 上的一个动点,则m2+n2的最大值为 36 .【分析】由于圆心A的坐标为(4,3),点P的坐标为(m,n),利用勾股定理可计算出OA=5,OP=这样把m2+n2理解为点P与原点的距离的平方,利用图形可得到当点P运动到射线OA上时,点P离圆点最远,即m2+n2有最大值,然后求出此时的PO长即可.【解答】解:作射线OA交⊙O于P′点,如图,∵圆心A的坐标为(4,3),点P的坐标为(m,n),∴OA5,OP=∴m2+n2是点P点圆点的距离的平方,∴当点P运动到P′处,点P离圆点最远,即m2+n2有最大值,此时OP=OA+AP′=5+1=6,则m2+n2=36.故答案为:36.【变式4-3】(2022秋•金牛区期末)如图.A(3,0).动点B到点M(3,4)的距离为1,连接BO,BO 的中点为C,则线段AC的最小值为 2 .【分析】先确定AC最小值时点B的位置:过B作BD∥AC交x轴于D,由图可知:当BD经过M时,线段BD的长最小,此时AC有最小值,根据勾股定理和三角形中位线定理可得AC的长.【解答】解:过B作BD∥AC交x轴于D,∵C是OB的中点,∴OA=AD,BD,∴AC=12∴当BD取最小值时,AC最小,由图可知:当BD经过M时,线段BD的长最小,此时AC有最小值,∵A(3,0),∴D(6,0),∵M(3,4),∴DM==5,∴BD=5﹣1=4,BD=2,即线段AC的最小值为2;∴AC=12故答案为:2.【题型5 圆中角度的计算】【例5】(2022•江宁区校级期中)如图,BD=OD,∠AOC=114°,求∠AOD的度数.【分析】设∠B=x,根据等腰三角形的性质,由BD=OD得∠DOB=∠B=x,再根据三角形外角性质得∠ADO=2x,则∠A=∠ADO=2x,然后根据三角形外角性质得2x+x=114°,解得x=38°,最后利用三角形内角和定理计算∠AOD的度数.【解答】解:设∠B=x,∵BD=OD,∴∠DOB=∠B=x,∴∠ADO=∠DOB+∠B=2x,∵OA=OD,∴∠A=∠ADO=2x,∵∠AOC=∠A+∠B,∴2x+x=114°,解得x=38°,∴∠AOD=180°﹣∠OAD﹣∠ADO=180°﹣4x=180°﹣4×38°=28°.【变式5-1】(2022•汉阳区校级月考)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠AEC=25°,求∠AOC的度数.【分析】求∠AOC的度数,可以转化为求∠C与∠E的问题.【解答】解:连接OD,∵AB=2DE=2OD,∴OD=DE,又∵∠E=25°,∴∠DOE=∠E=25°,∴∠ODC=50°,同理∠C=∠ODC=50°∴∠AOC=∠E+∠OCE=75°.【变式5-2】(2022•金牛区期末)如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC= 48° .【分析】根据半径相等和等腰三角形的性质得到∠D=∠A,利用三角形内角和定理可计算出∠A,然后根据平行线的性质即可得到∠BOC的度数.【解答】解:∵OD=OC,∴∠D=∠A,∵∠AOD=84°,(180°﹣84°)=48°,∴∠A=12又∵AD∥OC,∴∠BOC=∠A=48°.故答案为:48°.【变式5-3】(2022•大丰市月考)如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O 上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.是否存在点P,使得QP=QO;若存在,求出相应的∠OCP的大小;若不存在,请简要说明理由.【分析】点P是直线l上的一个动点,因而点P与线段AO有三种位置关系,在线段AO上,点P在OB 上,点P在OA的延长线上.分这三种情况进行讨论即可.【解答】解:①根据题意,画出图(1),在△QOC中,OC=OQ,∴∠OQC=∠OCP,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠AOC=30°,∴∠QPO=∠OCP+∠AOC=∠OCP+30°,在△OPQ中,∠QOP+∠QPO+∠OQC=180°,即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,整理得,3∠OCP=120°,∴∠OCP=40°.②当P在线段OA的延长线上(如图2)∵OC=OQ,∴∠OQP=(180°﹣∠QOC)×1①,2∵OQ=PQ,∴∠OPQ=(180°﹣∠OQP)×1②,2在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,把①②代入③得∠QOC=20°,则∠OQP=80°∴∠OCP=100°;③当P在线段OA的反向延长线上(如图3),∵OC=OQ,∴∠OCP=∠OQC=(180°﹣∠COQ)×1①,2∵OQ=PQ,∴∠P=(180°﹣∠OQP)×1②,2∵∠AOC=30°,∴∠COQ+∠POQ=150°③,∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,①②③④联立得∠P=10°,∴∠OCP=180°﹣150°﹣10°=20°.故答案为:40°、20°、100°.【题型6 圆中线段长度的计算】【例6】(2022•潮安区模拟)如图,在△ABC中,∠C=90°,AB=10.若以点C为圆心,CA长为半径的圆恰好经过AB的中点D,则⊙C的半径为( )A .B .8C .6D .5【分析】连结CD ,根据直角三角形斜边中线定理求解即可.【解答】解:如图,连结CD ,∵CD 是直角三角形斜边上的中线,∴CD =12AB =12×10=5.故选:D .【变式6-1】(2022•海港区校级自主招生)如图,圆O 的周长为4π,B 是弦CD 上任意一点(与C ,D 不重合),过B 作OC 的平行线交OD 于点E ,则EO +EB = 2 .(用数字表示)【分析】根据圆的周长公式得到OD =2,根据等腰三角形的判定和性质定理即可得到结论.【解答】解:∵⊙O 的周长为4π,∴OD =2,∵OC =OD ,∴∠C =∠D ,∵BE ∥OC ,∴∠EBD =∠C ,∴∠EBD =∠D ,∴BE =DE ,∴EO +EB =OD =2,故答案为:2.【变式6-2】(2022•龙湖区校级开学)如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,CD ⊥AB 于D ,AD <BD ,若CD =2cm ,AB =5cm ,求AD 、AC 的长.【分析】由直径AB =5cm ,可得半径OC =OA =12AB =52cm ,分别利用勾股定理计算AD 、AC 的长.【解答】解:连接OC ,∵AB =5cm ,∴OC =OA =12AB =52cm ,Rt △CDO 中,由勾股定理得:DO =32cm ,∴AD =52−32=1cm ,由勾股定理得:AC ==则AD 的长为1cm ,AC .【变式6-3】(2022秋•邗江区期中)如图,半圆O 的直径AB =8,半径OC ⊥AB ,D 为弧AC 上一点,DE ⊥OC ,DF ⊥OA ,垂足分别为E 、F ,求EF 的长.【分析】连接OD ,利用三个角是直角的四边形是矩形判定四边形DEOF 是矩形,利用矩形的对角线相等即可得到所求结论.【解答】解:连接OD .∵OC ⊥AB DE ⊥OC ,DF ⊥OA ,∴∠AOC =∠DEO =∠DFO =90°,∴四边形DEOF是矩形,∴EF=OD.∵OD=OA∴EF=OA=4.【题型7 圆相关概念的应用】【例7】(2022秋•南岗区校级期中)某中学原计划修一个半径为10米的圆形花坛,为使花坛修得更加美观,决定向全校征集方案,在众多方案中最后选出两种方案:方案A如图1所示,先画一条直径,再分别以两条半径为直径修两个圆形花坛;方案B如图2所示,先画一条直径,然后在直径上取一点,把直径分成2:3的两部分,再以这两条线段为直径修两个圆形花坛;(花坛指的是图中实线部分)(1)如果按照方案A修,修的花坛的周长是 .(保留π)(2)如果按照方案B修,与方案A比,省材料吗?为什么?(保留π)(3)如果按照方案B修,学校要求在5天内完成,甲工人承包了此项工程,甲每天能完成工程的1,他15做了1天后,发现不能完成任务,就请乙来帮忙,乙的速度是甲的2倍,乙加入后,甲的速度也提高了1,结果正好按时完成任务,若修1米花坛可得到10元钱,修完花坛后,甲,乙各得到多少钱?(π取23)【分析】(l)根据圆的周长公式:c=xd,把数据代入公式求此直径是10米的两个圆的周长即可.(2)首先根据圆的周长公式:c=元d,求出直径是4米、和6米的圆的周长和,然后与图1进行比较.(3)求出乙的钱数,再用总钱数﹣乙是钱数,可得结论.【解答】解:(1)10÷2=5(米),2π×5×2=20π(米).故答案为:20π米.=8(米),8÷2=4(米),(2)10×2=20(米),20×223=12(米),12÷2=6(米),20×323方案B花坛周长:2π(4+6)=20π(米),20π=20π,方案B与A周长一样,用的材料一样.×2×(5﹣1)×20π×10=320(元).(3)乙的钱数=115甲的钱数=20π×10﹣320=280(元),答:修完花坛后,甲,乙分别得到320元和280元.【变式7-1】(2022•南岗区期末)一个压路机的前轮直径是1.7米,如果前轮每分钟转动6周,那么这台压路机10分钟前进( )米.A.51πB.102πC.153πD.204π【分析】首先根据圆的周长公式C=πd,求出前轮的底面圆周长,然后用前轮的底面周长乘每分钟转的周数(6周),求出1分钟前进多少米,再乘工作时间10分钟即可.【解答】解:前轮的底面圆周长:π×1.7=1.7π(米),1.7π×6×10=102π(米)故选:B.【变式7-2】(2022•罗田县校级模拟)一个塑料文具胶带如图所示,带宽为1cm,内径为4cm,外径为7cm,已知30层胶带厚1.5mm,则这卷胶带长 51.81 m.(π≈3.14,结果保留4位有效数字)【分析】首先求出胶带的体积,用胶带的体积除以一米长的胶带的体积即可求得.【解答】解:4÷2=2(cm),7÷2=3.5(cm),胶带的体积是:π(3.52﹣22)•1=8.25πcm3=8.25π×10﹣6(m3),一米长的胶带的体积是:0.01×1×5×10﹣5=5×10﹣7(m3),因而胶带长是:(8.25π×10﹣6)÷(5×10﹣7)≈51.81(m).故答案为:51.81.【变式7-3】(2022•张店区期末)如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010πcm后才停下来.则这只蚂蚁停在点 E .【分析】首先求得蚂蚁由点A开始ABCDEFCGA的顺序走一周的路线长,然后确定走2010πcm是走了多少周,即可确定.【解答】解:A开始ABCDEFCGA的顺序转一周的路径长是:8π+4π=12πcm,蚂蚁直到行走2010πcm所转的周数是:2010π÷12π=167…6π.即转167周以后又走了6πcm.从A到B得路长是:2π,再到C的路线长也是2π,从C到D,到E的路线长是2π,则从A行走6πcm 到E点.故答案是:E.。
2020年九年级中考数学压轴题专项训练:圆的综合卷(含答案)1.如图,点O为Rt△ABC斜边AB上的一点,∠C=90°,以OA为半径的⊙O与BC交于点D,与AC交于点E,连接AD且AD平分∠BAC.(1)求证:BC是⊙O的切线;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π)(1)证明:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵∠ACD=90°,∴OD⊥BC,∴BC与⊙O相切;(2)解:连接OE,ED,∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°,又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴四边形OAED是菱形,∴OE⊥AD,且AM=DM,EM=OM,∴S△AED =S△AOD,∴阴影部分的面积=S扇形ODE==π.2.如图,已知AB是⊙O的直径,AC是⊙O的弦,点E在⊙O外,连接CE,∠ACB的平分线交⊙O于点D.(1)若∠BCE=∠BAC,求证:CE是⊙O的切线;(2)若AD=4,BC=3,求弦AC的长.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∴∠OAC=∠OCA,∵∠BAC=∠BCE,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切线;(2)解:连接BD,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∴=,∴AD=BD,∵AB是⊙O的直径,∴∠ADB=90°,∴△ADB是等腰直角三角形,∴AB=AD=4,∵BC=3,∴AC===.3.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.(1)证明:连接OE .∵OA =OE ,∴∠OAE =∠OEA ,又∵∠DAE =∠OAE ,∴∠OEA =∠DAE ,∴OE ∥AD ,∴∠ADC =∠OEC ,∵AD ⊥CD ,∴∠ADC =90°,故∠OEC =90°.∴OE ⊥CD ,∴CD 是⊙O 的切线;(2)解:∵∠C =45°,∴△OCE 是等腰直角三角形,∴CE =OE =2,∠COE =45°,∴阴影部分面积=S △OCE ﹣S 扇形OBE =2×2﹣=2﹣.4.如图①,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC 垂足为D ,弧AE =弧AB ,BE 分别交AD 、AC 于点F 、G .(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.解:(1)△FAG等腰三角形;理由:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(2)成立;∵BC为直径,∴∠BAC=90°∴∠ABE+∠AGB=90°∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵弧AE=弧AB,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形;(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,又∵AF=FG,∴F为BG的中点∵△BAG为直角三角形,∴AF=BF=BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD==12,∴在Rt△BDA中,AB==4,∵∠ABC=∠DBA,∠BAC=∠ADB=90°∴△ABC∽△DBA,∴=,∴=,∴BC=,∴⊙O的直径BC=.5.如图,已知矩形ABCD的边AB=6,BC=4,点P、Q分别是AB、BC边上的动点.(1)连接AQ、PQ,以PQ为直径的⊙O交AQ于点E.①若点E恰好是AQ的中点,则∠QPB与∠AQP的数量关系是∠QPB=2∠AQP;②若BE=BQ=3,求BP的长;(2)已知AP=3,BQ=1,⊙O是以PQ为弦的圆.①若圆心O恰好在CB边的延长线上,求⊙O的半径;②若⊙O与矩形ABCD的一边相切,求⊙O的半径.解:(1)①∵点E恰好是AQ的中点,∠ABQ=90°,∴BE=AE=EQ,∴∠EAB=∠EBA,∴∠QEB=2∠EBP,∵以PQ为直径的⊙O交AQ于点E,∴∠QPB=∠QEB,∠PBE=∠PQA,∴∠QPB=2∠AQP,故答案为:∠QPB=2∠AQP;②∵BE=BQ,∴∠BEQ=∠BQE,且∠BPQ=∠BEQ,∴∠BPQ=∠BQE,∴tan∠BPQ=tan∠BPQ,∴,∴,∴BP=(2)①如图1,过点O作OE⊥PQ,∵AP=3,AB=6,∴BP=3,∴PQ===,∵OE⊥PQ,∴QE=PE=,∵cos∠PQB==,∴=∴OQ=5,∴⊙O的半径为5;②如图2,若⊙O与BC相切于点Q,连接OQ,过点O作OE⊥PQ于E,∴EQ=PE=,∵BC是⊙O切线,∴OQ⊥BC,且AB⊥BC,∴OQ∥AB,∴∠OQP=∠BPQ,∴cos∠OQP=cos∠BPQ,∴,∴∴OQ=;如图3,若⊙O与AB相切于点P,连接OP,过点O作OE⊥PQ于E,∴EQ=PE=,∵AB是⊙O切线,∴OP⊥AB,且AB⊥BC,∴OP∥BC,∴∠OPQ=∠PQB,∴cos∠OPQ=cos∠PQB,∴∴,∴OP=5;如图4,若⊙O与AD相切于点M,连接OM,OQ,OP,延长MO交BC于F,作OH⊥AB于H 点,∴OM⊥AD,且BC∥AD,∴OF⊥BC,∵∠A=∠B=∠AMO=∠OFB=∠OHB=90°,∴四边形AHOM,OHBF是矩形,∴OM=AH,OH=BF,∵OQ2=OF2+FQ2,OP2=OH2+PH2,∴OQ2=(6﹣OQ)2+(BF﹣1)2,OQ2=BF2+(OQ﹣3)2,∴OQ=5﹣若图5,若⊙O与CD相切于点N,连接ON,OQ,OP,延长NO交BC于E,作OH⊥BC于H 点,同理可得:OP2=PE2+OE2,OQ2=OH2+QH2,∴OQ2=(3﹣OH)2+(4﹣OQ)2,OQ2=OH2+(4﹣OQ﹣1)2,∴OQ=35﹣6.6.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB =6,BC=,(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.(1)证明:由折叠的性质可知,AF=AB=6,在Rt△ADF中,DF===3,∴CF=DC﹣DF=3,∴DF=FC,即F是CD的中点;(2)证明:在Rt△ADF中,DF=3,AF=6,∴∠DAF=30◦,∴∠BAF=60◦,由折叠的性质可知,∠EAF=∠EAB,∠AFE=∠B=90°,∴∠EAF=∠EAB=30°,∴AE=2EF,∠EFC=180°﹣∠AFD﹣∠AFE=30◦,∴EF=2CE,∴AE=4CE;(3)解:连接OP、OH、PH,∵⊙O与AD相切于点P,∴OP⊥AD,∴OP∥DF,∵∠DAF=30°,∴∠AOP=90°﹣∠DAF=60°,OF=OP=OA,∴∠OFH=∠AOP=60°,OP=OF=2,∴AP==2,∴DP=AD﹣AP=,∵∠OFH=60°,OH=OF,∴△OHF为等边三角形,∴∠FOH=∠OHF=60°,HF=OF=2,∴DH=DF﹣HF=1,∵OP∥DF,∴∠POH=∠OHF=60°,∴∠POH=∠HOF,∴=,∴阴影部分的面积=△PDH的面积=×DH×DP=.7.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.(1)求证:∠A=∠CBD.(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O 相切,并说明理由.(1)证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如图,连接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中点M,连接DM、OD,如图,∵DM为Rt△BCD斜边BC的中线,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM为⊙O的切线,此时BM=BC=.8.如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点A作MC的垂线,垂足为D,线段AD与⊙O相交于点E.(1)求证:AC是∠DAB的平分线;(2)若AB=10,AC=4,求AE的长.(1)证明:连接OC,∵直线MC与⊙O相切于点C,∴∠OCM=90°,∵AD⊥CD,∴∠ADM=90°,∴∠OCM=∠ADM,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAB,即AC是∠DAB的平分线;(2)解:连接BC,连接BE交OC于点F,∵AB是⊙O的直径,∴∠ACB=∠AEB=90°,∵AB=10,AC=4,∴BC===2,∵OC∥AD,∴∠BFO=∠AEB=90°,∴∠CFB=90°,F为线段BE中点,∵∠CBE=∠EAC=∠CAB,∠CFB=∠ACB,∴△CFB∽△BCA.∴=,即=,解得,CF=2,∴OF=OC﹣CF=3.∵O为直径AB中点,F为线段BE中点,∴AE=2OF=6.9.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.(1)证明:如图,连接OD.∵点D是半圆的中点,∴∠AOD=∠BOD=90°,∴∠ODC+∠OED=90°,∵OD=OC,∴∠ODC=∠OCD.又∵CF=EF,∴∠FCE=∠FEC.∵∠FEC=∠OED,∴∠FCE=∠OED.∴∠FCE+∠OCD=∠OED+∠ODC=90°,即FC⊥OC,∴FC是⊙O的切线;(2)解:∵tan A=,∴在Rt△ABC中,=,∵∠ACB=∠OCF=90°,∴∠ACO=∠BCF=∠A,∵△ACF∽△CBF,∴===.∴AF=10,∴CF2=BF•AF.∴BF=.∴AO==.10.如图,AB是⊙O的直径,弦DE垂直半径OA,C为垂足,DE=6,连接DB,∠B=30°,过点E作EM∥BD,交BA的延长线于点M.(1)求的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.解:(1)连结OE,∵DE垂直OA,∠B=30°,∴CE=DE=3,,∴∠AOE=2∠B=60°,∴∠CEO=30°,OC=OE,由勾股定理得OE=2;(2)∵EM∥BD,∴∠M=∠B=30°,∠M+∠AOE=90°,∴∠OEM=90°,即OE⊥ME,∴EM是⊙O的切线;(3)再连结OF,当∠APD=45°时,∠EDF=45°,∴∠EOF=90°,S=π(2)2﹣(2)2=3π﹣6.阴影11.如图,Rt△ABC中,∠C=90°.BE平分∠ABC交AC于点D,交△ABC的外接圆于点E,过点E作EF⊥BC交BC的延长线于点F.请补全图形后完成下面的问题:(1)求证:EF是△ABC外接圆的切线;(2)若BC=5,sin∠ABC=,求EF的长.(1)证明:补全图形如图所示,∵△ABC是直角三角形,∴△ABC的外接圆圆心O是斜边AB的中点.连接OE,∴OE=OB.∴∠2=∠3,∵BE平分∠ABC,∴∠1=∠2,∴∠1=∠3.∴OE∥BF.∵EF⊥BF,∴EF⊥OE,∴EF是△ABC外接圆的切线;(2)解:在Rt△ABC中,BC=5,sin∠ABC=,∴=.∵AC2+BC2=AB2,∴AC=12.∵∠ACF=∠CFE=∠FEH=90°,∴四边形C FEH是矩形.∴EF=HC,∠EHC=90°.∴EF=HC=AC=6.12.我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知⊙O的两条弦AB⊥CD,则AB、CD互为“十字弦”,AB是CD的“十字弦”,CD也是AB的“十字弦”.(1)若⊙O的半径为5,一条弦AB=8,则弦AB的“十字弦”CD的最大值为10 ,最小值为 6 .(2)如图1,若⊙O的弦CD恰好是⊙O的直径,弦AB与CD相交于H,连接AC,若AC=12,DH=7,CH=9,求证:AB、CD互为“十字弦”;(3)如图2,若⊙O的半径为5,一条弦AB=8,弦CD是AB的“十字弦”,连接AD,若∠ADC=60°,求弦CD的长.解:(1)如图a,当CD是直径时,CD的长最大,则CD的最大值为10;如图b,当点D与点A重合时,CD有最小值,过点O作OE⊥CD于E,OF⊥AB于F,∴AF=BF=4,DE=CE,∴OF===3,∵OE⊥CD,OF⊥AB,∠CDB=90°,∴四边形CEOF是矩形,∴CE=OF=3,∴CD=6,∴CD最小值为6,故答案为:10,6;(2)如图1,连接AD,∵DH=7,CH=9,∴CD=16,∵CD是直径,∴∠CAD=90°,∴AD===4,∵,=,∴,∠ADH=∠ADC,∴△ADH∽△CDA,∴∠AHD=∠CAD=90°,∴AB⊥CD,∴AB、CD互为“十字弦”;(3)如图2,过点O作OE⊥CD于E,过点O作OF⊥AB于点F,连接AO,CO,过点O作ON⊥AC于N,∵∠ADC=60°,AB⊥CD,∴AF=DF,∵OE⊥CD,OF⊥AB,AB⊥CD,∴四边形OEHF是矩形,AF=BF=4,CE=ED,∴OF=EH,∵OF===3,∴EH=3,∴ED=CE=3+DH,∴CF=3+2DH,∵∠AOC=2∠ADC=120°,且AO=CO=5,ON⊥AC,∴∠CAO=30°,AN=CN,∴NO=,AN=,∴AC=5,∵AH2+CH2=AC2,∴75=3DH2+(3+2DH)2,∴DH=2﹣,∴CD=2CE=2(3+2﹣)=.13.如图,AB是⊙O的弦,AB=4,点P在上运动(点P不与点A、B重合),且∠APB =30°,设图中阴影部分的面积为y.(1)⊙O的半径为 4 ;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.解:(1)∵∠AOB=2∠APB=2×30°=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=4,即⊙O的半径为4;故答案为4;(2)过点O作OH⊥AB,垂足为H,如图,则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°,∵OA=OB,OH⊥AB,∴AH=BH=AB=2,在Rt△AHO中,∠AHO=90°,AO=4,AH=2,∴OH==2,∴y=﹣×4×2+×4×x=2x+π﹣4(0<x≤2+4).14.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=,AB=6,求⊙O的半径.(1)解:结论:DE与⊙O相切证:连接OD在⊙O中,∵D为的中点,∴=,∴AD=DC,∵AD=DC,点O是AC的中点,∴OD⊥AC,∴∠DOA=∠DOC=90°,∵DE∥AC,∴∠DOA=∠ODE=90°,∵∠ODE=90°,∴OD⊥DE,∵OD⊥DE,DE经过半径OD的外端点D,∴DE与⊙O相切.(2)解:连接BD.∵四边形ABCD是⊙O的内接四边形,∴∠DAB+∠DCB=180°,又∵∠DCE+∠DCB=180°,∴∠DAB=∠DCE,∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°,∵=,∴∠ABD=∠CBD=45°,∵AD=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∵DE∥AC,∴∠DCA=∠CDE=45°,在△ABD和△CDE中,∵∠DAB=∠DCE,∠ABD=∠CDE=45°,∴△ABD∽△CDE,∴=,∴=,∴AD=DC=4,在Rt△ADC中,∠ADC=90°,AD=DC=4,∴AC===8,∴⊙O的半径为4.15.(1)如图①,点A,B,C在⊙O上,点D在⊙O外,比较∠A与∠BDC的大小,并说明理由;(2)如图②,点A,B,C在⊙O上,点D在⊙O内,比较∠A与∠BDC的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点M(1,0),N(4,0),点P在y轴上,试求当∠MPN度数最大时点P的坐标.解:(1)∠A>∠BDC,理由如下:设CD交⊙O于E,连接BE,如图1所示:∠BEC=∠BDC+∠DBE,∴∠BEC>∠BDC,∵∠A=∠BEC,∴∠A>∠BDC;(2)∠A<∠BDC,理由如下:延长CD交⊙O于点F,连接BF,如图2所示:∵∠BDC=∠BFC+∠FBD,∴∠BDC>∠BFC,又∵∠A=∠BFC,∴∠A<∠BDC;(3)由(1)、(2)可得:当点P是经过M、N两点的圆和y轴相切的切点时,∠MPN度数最大,①当点P在y轴的正半轴上时,如图3所示:设⊙O′为点P是经过M、N两点的圆和y轴相切的切点的圆,连接O′P、O′M、O′N,作O′H⊥MN于H,则四边形OPO′H是矩形,MH=HN,∴OP=O′H,O′P=OH=O′M,∵M(1,0),N(4,0),∴OM=1,MN=3,∴MH=HN=MN=,设O′P=OH=O′M=x,MH=OH﹣OM=x﹣1,∴x﹣1=,∴x=,∴O′H===2,∴OP=2,∴点P的坐标为(0,2);②当点P在y轴的负半轴上时,如图4所示:同理可得O′H=OP=2,∴点P的坐标为(0,﹣2);综上所述,当∠MPN度数最大时点P的坐标为(0,2)或(0,﹣2).。
专项19 圆中利用转化思想求角度类型一 利用同弧或等弧转化圆周角与圆心角类型二 构造圆内接四边形转化角类型三 利用直径构造直角三角形转化角类型四 利用特殊数量关系构造特殊角转化角【考点1 利用同弧或等弧转化圆周角与圆心角】【典例1】(2021九上·无棣期末)如图,△ABC内接于⊙O,CD是⊙O的直径,∠BCD=56°,则∠A的度数是( )A.36ºB.34ºC.56ºD.78º【答案】B【解答】解:如图,连接BD,∵CD是⊙O的直径,∴∠DBC=90°,∵∠BCD=56°,∴∠BDC=90°−56°=34°,∵BC= BC,∴∠A=34°,故答案为:B【变式1-1】(2021九上·崂山期末)如图,点A ,B ,C 在⊙O 上,∠ACB=54°,则∠ABO 的度数是( )A .27°B .36°C .54°D .108°【答案】B 【解答】解:∵∠ACB =54°,AB =AB∴∠AOB =2∠ACB =108°,∵OB =OA ,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°,故答案为:B .【变式1-2】(2021九上·天桥期末)如图:点A ,B ,C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若∠AOB =72°,则∠ACB 的度数是( )A .18°B .30°C .36°D .72°【答案】C 【解答】∵圆心角∠AOB 与圆周角∠ACB 均对着AB∴∠ACB =12∠AOB =12×72°=36°故答案为:C【变式1-3】(2021九上·西城期末)如图,点A ,B ,C 在⊙O 上,△OAB 是等边三角形,则∠ACB 的大小为( )A .60°B .40°C .30°D .20°【答案】C【解答】解:∵ΔOAB 为等边三角形,∴∠AOB=60°,∴∠ACB =12∠AOB =12×60°=30°.故答案为:C .【变式1-4】(2021九上·休宁月考)如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( )A .24°B .30°C .50°D .60°【答案】A 【解答】解:∵AC ∥OB ,∴∠BOC =∠ACO =48°,∵OA =OC ,∴∠OAC =∠ACO =48°,∵∠CAB =12∠BOC =24°,∴∠BAO =∠OAC ﹣∠CAB =24°.故答案为:A .【变式1-5】(2021九上·衢江月考)如图,在⊙O 中,AB =BC ,点D 在⊙O 上,∠CDB =25°,则∠AOB =( )A .45°B .50°C .55°D .60°【答案】B【解答】解:∵在⊙O中,AB=BC,点D在⊙O上,∠CDB=25°,∴∠AOB=2∠CDB=50°.故答案为:B.【考点2 构造圆内接四边形转化角】【典例2】(2021九上·哈尔滨月考)如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD的度数为( )A.64°B.128°C.20°D.116°【答案】B【解答】∵四边形ABCD内接于⊙O∴∠BAD+∠DCB=180°∵∠DCE+∠DCB=180°∴∠BAD=∠DCE=64°∵∠BOD、∠BAD对着圆中同一段弧∴∠BOD=2∠BAD=2×64°=128°故答案为:B【变式2-1】(2021九上·南开期中)如图,四边形ABCD为⊙O的内接四边形,若∠A=60°,则∠C等于( )A.30°B.60°C.120°D.300°【答案】C【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°.∴∠C=180°-60°=120°.故答案为:C.【变式2-2】(2021九上·禹城期中)如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )A.55°B.65°C.60°D.75°【答案】B【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故答案为:B.【变式2-3】(2021九上·无棣期中)如图,PA,PB分别与⊙O相切于A,B两点,若∠C =65°,则∠P的度数为( )A.65°B.130°C.50°D.100°【解答】∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故答案为:C.【考点3 利用直径构造直角三角形转化角】【典例3】(2021九上·梅里斯期末)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( )A.32°B.58°C.64°D.116°【答案】A【解答】解:∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=58°,∴∠A=90°﹣58°=32°,∴∠BCD=∠A=32°.故答案为:A.【变式3-1】(2021九上·荆州月考)如图,AB是⊙O的直径,∠D=48°,则∠CAB=( )A.52°B.58°C.42°D.48°【答案】C【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠D=48°,∴∠ABC=48°,∴∠CAB=90°−48°=42°,故答案为:C.【变式3-2】(2021九上·越城期中)如图,已知AB是⊙O的直径,CD是弦,若∠BCD=24°,则∠ABD=( )A.54°B.56°C.64°D.66°【答案】D【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∠A=∠BCD=24°,∴∠ABD=90°﹣∠A=90°﹣24°=66°.故答案为:D.【变式3-3】(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是的中点,则∠ABE= .【答案】13°【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.【考点4利用特殊数量关系构造特殊角转化角】【典例4】(2018•石家庄模拟)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5,则∠B的度数是( )A.30°B.45°C.50°D.60°【答案】D【解答】解:∵AD是⊙O的直径,∴∠ACD=90°.Rt△ACD中,AD=2r=10,AC=5.根据勾股定理,得:CD==5,∴CD=AD,∴∠DAC=30°,∴∠B=∠D=90°﹣30°=60°;故选:D.【变式4】(2021秋•无为市期中)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P 是优弧AMB上一点,则∠APB的度数为( )A.45°B.30°C.75°D.60°【答案】D【解答】解:连接OA,OB,过O作OD⊥AB于D,延长OD交⊙O于C,则∠ODA=∠ODB=90°,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD=OC=OA=OB,∴∠OAB=∠OBA=30°,∴∠AOB=180°﹣∠OAB﹣∠OBA=120°,∴∠APB=AOB=60°,故选:D.1.(2021九上·禹城期中)如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )A.55°B.65°C.60°D.75°【答案】B【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故答案为:B.2.(2021九上·温州月考)如图,点A,B,C在⊙O上,若∠ACB=40°,则∠AOB的度数为( )A.40°B.45°C.50°D.80°【答案】D【解答】解:∵∠ACB=40°,∴∠AOB=2∠ACB=80°.故答案为:D3.(2021九上·东阳月考)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )A.75°B.60°C.45°D.30°【答案】B【解答】解:连接OC,∵OB=OC=OA,∠CBO=45°,∠CAO=15°,∴∠OCB=∠OBC=45°,∠OCA=∠OAC=15°,∴∠ACB=∠OCB﹣∠OCA=30°,∴∠AOB=2∠ACB=60°.故答案为:B.4.(2021九上·天门月考)如图,⊙O中,弦AB,CD相交于点P,∠A=40°,∠APD=75°,则∠B=( ).A.15°B.40°C.75°D.35°【答案】D【解答】解:∵∠A=40°,∠APD=75°,∴∠C=∠APD−∠A=35,∴∠B=∠C=35°.故答案为:D.5.(2021九上·鹿城期末)如图所示,A,B,C是⊙O上的三点,若∠O=58°,则∠C的度数为( )A.23°B.26°C.29°D.32°【答案】C【解答】解:∵∠AOB和∠C都对AB,∴∠C=12∠AOB=12×58°=29°.故答案为:C6.(2021九上·重庆月考)如图,已知在⊙O中,CD是⊙O的直径,点A、B在⊙O上,且AC=AB,若∠BCD=26°,则∠ABC的度数为( )A.26°B.27°C.28°D.32°【答案】D【解答】解:∵CD是直径,∴∠CAD=90°,∴∠ACD+∠ADC=90°,∵AC=AB,∴∠ACB=∠B,∵∠D=∠B,∴∠ACB=∠D,∴∠ACB+26°+∠D=90°,∴∠ACB=32°,∴∠ABC=∠ACB=32°,故答案为:D.7.(2021九上·龙沙期中)如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为( )A.60°B.50°C.40°D.30°【答案】A∠AOC=∠ADC【解答】∵12∴∠AOC=2∠ADC=2×30°=60°∵OC⊥AB∴AC=BC∴∠AOC=∠BOC∴∠BOC=∠AOC=60°故答案为:A.8.(2021九上·泰山期末)如图,ABCD是⊙O的内接四边形,且∠ABC=125°,那么∠AOC 等于( )A.125°B.120°C.110°D.130°【答案】C【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠ABC=180°∵∠ABC=125°∴∠D=180°-∠A=180°-125°=55°,由圆周角定理得,∠AOC=2∠D=110°,故答案为:C.9.(2021九上·宜春期末)如图,AE是四边形ABCD外接圆⊙O的直径,AD=CD,∠B=50°,则∠DAE的度数为( )A.50°B.55°C.60°D.65°【答案】D【解答】解:连接OC、OD,∵∠B=50°,∴∠AOC=2∠B=100°,∵AD=CD,∴AD=CD,∠AOC=50°,∴∠AOD=∠COD= 12∵OA=OD,∴∠OAD=∠ODA,∴∠DAE=(180°-50°)÷2=65°,故答案为:D.10.(2021九上·石景山期末)如图,四边形ABCD内接于⊙O,若四边形ABCO是菱形,则∠D的度数为( )A.45°B.60°C.90°D.120°【答案】B【解答】解:设∠ADC=α,∠ABC=β;∵四边形ABCO是菱形,∴∠ABC=∠AOC=β;∴∠ADC=12β;∵四边形ABCD为圆的内接四边形,∴α+β=180°,∴α+β=180°α=12β,解得:β=120°,α=60°,则∠ADC=60°,故答案为:B.11.(2021秋•泰安期末)如图,圆内接四边形ABCD的两组对边的延长线分别相交于点E,F,若∠E=30°,∠F=40°,则∠A=( )A.25°B.30°C.40°D.55°【答案】D【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠FBC,∵∠ADC=180°﹣∠A﹣∠F,∠FBC=∠A+∠E,∴180°﹣∠A﹣∠F=∠A+∠E,则2∠A=180°﹣(∠F+∠E)=110°,解得,∠A=55°,故选:D.12.(2021•汉台区一模)如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A等于( )A.33°B.57°C.67°D.66°【答案】B【解答】解:连接CD,如图,∵BD是⊙O的直径,∴∠BCD=90°,而∠DBC=33°,∴∠D=90°﹣33°=57°,∴∠A=∠D=57°.故选:B.13.(2022•凤山县模拟)如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )A.50°B.55°C.60°D.65°【答案】D【解答】解:连接AD,∵OA=OD,∠AOD=50°,∴∠ADO==65°.∵AO∥DC,∴∠ODC=∠AOC=50°,∴∠ADC=∠ADO+∠ODC=115°,∴∠B=180°﹣∠ADC=65°.故选:D.14.(2022•南宁一模)如图,A、B、C是⊙O上的三个点,若∠AOC=100°,则∠ABC=( )A.100°B.110°C.120°D.130°【答案】D【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选:D.15.(2022•曲周县模拟)如图,AB是⊙O的直径,点C在⊙O上,CD平分∠ACB交⊙O于点D,若∠ABC=30°,则∠CAD的度数为( )A.100°B.105°C.110°D.120°【答案】B【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠ABC=90°﹣30°=60°,∵CD平分∠ACB,∴∠BCD=45°,∵∠BAD=∠BCD=45°,∴∠CAD=∠BAC+∠BAD=60°+45°=105°.故选:B.。
九年级数学上册第二十四章圆专项训练题单选题1、如图,△ABC内接于⊙O,CD是⊙O的直径,∠ACD=40°,则∠B=()A.70°B.60°C.50°D.40°答案:C分析:由CD是⊙O的直径,根据直径所对的圆周角是直角,得出∠CAD=90°,根据直角三角形两锐角互余得到∠ACD与∠D互余,即可求得∠D的度数,继而求得∠B的度数.解:∵CD是⊙O的直径,∴∠CAD=90°,∴∠ACD+∠D=90°,∵∠ACD=40°,∴∠ADC=∠B=50°.故选:C.小提示:本题考查了圆周角定理,直角三角形的性质,注意掌握数形结合思想是解题的关键.2、用一张半圆形铁皮,围成一个底面半径为4cm的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为()A.4cm B.8cm C.12cm D.16cm答案:B分析:设圆锥的母线长为l,根据圆锥的底面圆周长为半圆形铁皮的周长(不包括直径)列式求解即可.解:设圆锥的母线长为l,由题意得:2×4π=180×π⋅l,180∴l=8cm,故选B.小提示:本题主要考查了求圆锥的母线长,熟知圆锥的底面圆周长为半圆形铁皮的周长(不包括直径)是解题的关键.3、下列说法正确的是()A.等弧所对的圆周角相等B.平分弦的直径垂直于弦C.相等的圆心角所对的弧相等D.过弦的中点的直线必过圆心答案:A分析:根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可.解:A. 同弧或等弧所对的圆周角相等,所以A选项正确;B.平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;C、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C选项错误;D.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D选项错误.故选A.小提示:本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点.灵活运用相关知识成为解答本题的关键.4、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD 的长,再根据中位线求出BC =2OD 即可.设OD =x ,则OE =OA =DE -OD =4-x .∵AB 是⊙O 的直径,OD 垂直于弦AC 于点,AC =4√2∴AD =DC =12AC =2√2∴OD 是△ABC 的中位线∴BC =2OD∵OA 2=OD 2+AD 2∴(4−x)2=x 2+(2√2)2,解得x =1∴BC =2OD =2x =2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD 的长是解题的关键.5、如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,则下列结论不一定成立的是( )A .AE =BEB .OE =DEC .AC⌢=BC ⌢D .AD ⌢=BD ⌢ 答案:B分析:根据垂径定理即可判断.解:∵CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∴AE =EB ,AC⌢=BC ⌢, AD ⌢=BD ⌢. 故选:B .小提示:本题主要考查垂径定理,掌握垂径定理是解题的关键.6、如图,在RtΔABC中,∠ACB=90,AC=6、BC=4,点F为射线CB上一动点,过点C作CM⊥AF于M交AB于E,D是AB的中点,则DM长度的最小值是( )A.√3B.√2C.1D.√6-2答案:C分析:取AC的中点T,连接DT,MT.利用三角形的中位线定理求出DT,利用直角三角形的中线的性质求出MT,再根据DM≥MT−DT,可得结论.解:如图,取AC的中点T,连接DT,MT.∵AD=DB,AT=TC,∴DT=1BC=2.2∵CE⊥AF,∴∠AMC=90°,∴TM=1AC=3,2∴点M的运动轨迹是以T为圆心,TM为半径的圆,∴DM≥TM−DT=3−2=1,∴DM的最小值为1,故选:C.小提示:本题考查点与圆的位置关系,三角形中位线定理,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,构造三角形中位线,直角三角形斜边中线解决问题.7、如图,点A是⊙O上一点,AB切⊙O于点A,连接OB交⊙O于点C,若∠OAC=65°,则∠B的度数是()A.40°B.50°C.45°D.55°答案:A分析:由切线的性质得到直角,再利用等腰三角形的性质求解∠O,利用直角三角形两锐角互余可得答案.解:∵AB切⊙O于点A,∴OA⊥AB,∵OA=OC,∠OAC=65°,∴∠AOC=180°−65°×2=50°,∵OA⊥AB,∴∠B=90°-∠O=40°,故选A.小提示:本题考查圆的切线的性质,等腰三角形的性质,熟悉这些性质是解题关键.8、连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.△CEH是等边三角形答案:D分析:根据正八边形和圆的性质进行解答即可.解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH与四边形EFGH 全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=360°=45°8∵OE=OH∠DOE=22.5°∴∠OEH=∠OHE=12∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=1(180°-∠CHE)=67.5°2∴△CEH不是等边三角形,故选项错误,符合题意.故选:D.小提示:本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.9、如图,斗笠是一种遮挡阳光和蔽雨的编结帽,它可近似看成一个圆锥,已知该斗笠的侧面积为550πcm2,AB是斗笠的母线,长为25cm,AO为斗笠的高,BC为斗笠末端各点所在圆的直径,则OC的值为()A.22B.23C.24D.25答案:A分析:根据圆锥的侧面积和母线可得底面圆的周长,进而可得底面圆的半径.解:∵侧面积为550π cm2,母线长为25cm,∴1×l×25=550π解得l=44π,2∵2πr=44π,∴OC=r=22,故选:A.小提示:本题考查圆锥的计算,根据侧面积和母线得到底面圆的半径是解题关键.10、如图,AB是⊙O的直径,BC是⊙O的切线,若∠ACB=55°,则∠BAC的大小为()A.25°B.35°C.45°D.55°答案:B分析:先根据切线的性质得到∠ABC=90°,然后利用直角三角形两锐角互余计算出∠BAC的度数即可.解:∵BC是⊙O的切线,AB是⊙O的直径,∠ACB=55°,∴AB⊥BC,∴∠ABC=90°,∴∠BAC=90°−∠ACB=90°−55°=35°.故选:B小提示:本题考查了切线的性质和直角三角形的性质.注意:圆的切线垂直于经过切点的半径.正解理解和应用切线的性质是解题的关键.填空题11、如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是AD⌢所对的圆周角,则∠APD的度数是______.答案:30°##30度∠AOD=30°.分析:根据垂径定理得出∠AOB=∠BOD,进而求出∠AOD=60°,再根据圆周角定理可得∠APD=12∵OC⊥AB,OD为直径,∴BD⌢=AD⌢,∴∠AOB=∠BOD,∵∠AOB=120°,∴∠AOD=60°,∠AOD=30°,∴∠APD=12所以答案是:30°.小提示:本题考查了圆周角定理、垂径定理等知识,掌握垂径定理是解答本题的关键.12、如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为___________.答案:7分析:根据垂径定理可得OC垂直平分AB,根据题意可得AB平方OC,可得四边形AOBC是菱形,进而根据菱形的性质即可求解.解:如图,连接OB,CA,∵A、B、C是⊙O上的点,OC⊥AB,∴AD=DB,∵D为OC的中点,∴OD=DC,∴四边形AOBC是菱形,OA=7,∴BC=AO=7.所以答案是:7.小提示:本题考查了垂径定理,菱形的性质与判定,掌握垂径定理是解题的关键.13、如图,点P为⊙O外一点,PA,PB分别与⊙O相切于点A,B,∠APB=90°,若⊙O半径为3,则图中阴影部分的面积为__________(结果保留π)答案:9−9π4分析:连接OA,OB,先根据圆的切线的性质可得OA⊥PA,OB⊥PB,再根据正方形的判定可得四边形OAPB是正方形,根据正方形的性质可得∠AOB=90°,然后利用正方形OAPB的面积减去扇形OAB的面积即可得.解:如图,连接OA,OB,∵PA,PB分别与⊙O相切于点A,B,∴OA⊥PA,OB⊥PB,又∵OA=OB=3,∠APB=90°,∴四边形OAPB是正方形,∴∠AOB=90°,则图中阴影部分的面积为S正方形OAPB −S扇形OAB=3×3−90π×32360=9−9π4,所以答案是:9−9π4.小提示:本题考查了圆的切线的性质、扇形的面积、正方形的判定与性质,熟练掌握圆的切线的性质是解题关键.14、如图,⊙O与△OAB的边AB相切,切点为B.将△OAB绕点B按顺时针方向旋转得到△O′A′B′,使点O′落在⊙O上,边A′B交线段AO于点C.若∠A′=25°,则∠OCB=______度.答案:85分析:连结OO′,先证△BOO′为等边三角形,求出∠AOB=∠OBO′=60°,由⊙O与△OAB的边AB相切,可求∠CBO==30°,利用三角形内角和公式即可求解.解:连结OO′,∵将△OAB绕点B按顺时针方向旋转得到△O′A′B′,∴BO′=BO=OO′,∴△BOO′为等边三角形,∴∠OBO′=60°,∵⊙O与△OAB的边AB相切,∴∠OBA=∠O′BA′=90°,∴∠CBO=90°-∠OBO′=90°-60°=30°,∵∠A′=25°∴∠A′O′B=90°-∠A′=90°-25°=65°∴∠AOB=∠A′O′B=65°,∴∠OCB=180°-∠COB-∠OBC=180°-65°-30°=85°.故答案为85.小提示:本题考查图形旋转性质,切线性质,等边三角形判定与性质,直角三角形性质,掌握图形旋转性质,切线性质,等边三角形判定与性质,直角三角形性质是解题关键.15、若一条弦把圆周分成2∶3的两段弧,则劣弧所对圆心角的度数是________.答案:144°分析:根据圆心角、弧、弦的关系求出劣弧所对圆心角的度数即可.解:∵一条弦把圆周分成2∶3的两段弧,∴劣弧所对圆心角的度数为2×360°=144°,5所以答案是:144°.小提示:本题考查的是圆心角、弧、弦的关系,以及优弧与劣弧的概念,本题的关键找到隐藏条件,圆的中心角360°.解答题16、如图,AB是⊙O的直径,过点A作⊙O的切线AC,点P是射线AC上的动点,连接OP,过点B作BD//OP,交⊙O于点D,连接PD.(1)求证:PD是⊙O的切线;(2)当∠APO的度数为______时,四边形POBD是平行四边形.答案:(1)见解析(2)45°分析:(1)连接OD,根据切线的性质求出∠PAO=90°,根据平行线的性质和等腰三角形的性质求出∠DOP=∠AOP,根据全等三角形的判定推出△AOP≌△DOP(SAS),根据全等三角形的性质得出∠PDO=∠PAO=90°,再根据切线的判定得出即可;(2)根据全等得出PA=PD,根据平行四边形的性质得出PD=OB,求出PA=OA,再求出答案即可.(1)解:证明:连接OD,∵PA切⊙O于A,∴PA⊥AB,即∠PAO=90°,∵OP∥BD,∴∠DBO=∠AOP,∠BDO=∠DOP,∵OD=OB,∴∠BDO=∠DBO,∴∠DOP=∠AOP,在△AOP和△DOP中,{AO=DO∠AOP=∠DOPPO=PO,∴△AOP≌△DOP(SAS),∴∠PDO=∠PAO,∵∠PAO=90°,∴∠PDO=90°,即OD⊥PD,∵OD过O,∴PD是⊙O的切线;(2)由(1)知:△AOP≌△DOP,∴PA=PD,∵四边形POBD是平行四边形,∴PD=OB,∵OB=OA,∴PA=OA,∴∠APO=∠AOP,∵∠PAO=90°,∴∠APO=∠AOP=45°.小提示:本题考查了平行四边形的性质,全等三角形的性质和判定,切线的性质,平行线的性质,等腰三角形的性质,等腰直角三角形等知识点,能熟记圆的切线垂直于过切点的半径是解此题的关键.17、如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,延长CA交⊙O于点E.连接ED交AB于点F.(1)求证:△CDE是等腰三角形.的值.(2)当CD:AC=2:√5时,求AEAC答案:(1)见解析;(2)35分析:(1)由等腰三角形的性质得出∠ABC=∠C,由圆周角定理得出∠AED=∠B,证出∠AED=∠C,即可得出结论;(2)连接AD,过点D作DH⊥AE于点H,设CD=2x,AC=√5x,则AD=x,由三角形ADC的面积可得出DH的长,求出AE,则可得出答案.解:(1)证明:∵AB=AC,∴∠ABC=∠C,∵∠AED=∠ABC,∴∠C=∠AED,∴△CDE是等腰三角形;(2)如图,连接AD ,过点D 作DH ⊥AE 于点H ,设CD =2x ,AC =√5x ,∵AB 是直径,∴∠ADC =90°,∴AD =√AC 2−CD 2=x ,∵S △ADC =12AD •DC =12AC •DH ,∴DH =AD⋅CD AC =2√55x , ∵DE =CD ,∴CH =EH =√DC 2−HD 2=4√55x , ∴AE =2CH ﹣AC =8√55x −√5x =3√55x . ∴AE AC =3√55x √5x =35. 小提示:本题考查了等腰三角形的判定与性质,圆周角定理,勾股定理,三角形的面积等知识,熟练掌握圆周角定理是解题的关键.18、如图,在Rt △ABC 中,∠ABC =90°,∠BAC 的平分线交BC 于点O ,D 为AB 上的一点,OD =OC ,以O 为圆心,OB 的长为半径作⊙O .(1)求证:AC 是⊙O 的切线;(2)若AB=6,BD=2,求线段AC的长.答案:(1)见解析(2)8分析:(1)过O作OE⊥AC于E,先证Rt△ABO≌Rt△AEO,OB=OE,即OE为圆的半径,即可求证;(2)利用切线的性质可得AB=AE,再证Rt△BOD≌Rt△COE,即有BD=CE=2,则AC可求.(1)证明:过O作OE⊥AC于E.∵AO平分∠BAC,且∠ABC=90°,OE⊥AC,∴OB=OE,即OE为圆的半径,∴AC是⊙O的切线;(2)∵∠ABC=90°,OB为⊙O半径,∴AB是⊙O的切线,又由(1)AC是⊙O的切线,∴AB=AE=6,在Rt△BOD和Rt△COE中,,{OB=OEOD=OC∴Rt△BOD≌Rt△COE,∴BD=CE=2,∴AC=AE+CE=8小提示:本题考查了切线的判定与性质,角平分线的性质定理,在OE⊥AC的条件下证得OE为圆的半径是解答本题的关键.。
2021年九年级数学中考复习—— 圆的专题:填空题专项训练(二)1.如图,在平面直角坐标系中,直线l 的函数表达式为y =x ,点O 1的坐标为(1,0),以O 1为圆心,O 1O 为半径画圆,交直线l 于点P 1,交x 轴正半轴于点O 2;以O 2为圆心,O 2O 为半径画圆,交直线l 于点P 2,交x 轴正半轴于点O 3;以O 3为圆心,O 3O 为半径画圆,交直线l 于点P 3,交x 轴正半轴于点O 4;…按此做法进行下去,其中弧的长 .2.如图,△ABC 的内切圆⊙O 分别与三角形三边相切于点D 、E 、F ,若∠DFE =55°,则∠A = °.3.如图,在Rt △ABC 中,点D 是AB 上的一点,将Rt △ABC 绕直角顶点C 逆时针旋转90°,使得点A 的对应点A ′落在BC 的延长线上,点B 的对应点B ′落在边AC 上,点D 的对应点D '落在边A ′B ′上,经过点B ′,若AC =2BC =2,则阴影部分的面积是 .4.如图,以半圆的一条弦AN为对称轴,将AN弧折叠过来和直径MN交于点B,如果MB:BN =2:3,若MN=10,那么弦AN的长为.5.如图,PA与⊙O切于点A,PO的延长线交⊙O于点B,若⊙O的半径为3,∠APB=54°,则弧AB的长度为.6.如图,△ABC内接于⊙O,AB是⊙O直径,∠ACB的平分线交⊙O于D,若AC=m,BC=n,则CD的长为(用含m、n的代数式表示).7.如图△ABC中,AC=BC=5,AB=6,以AB为直径的⊙O与AC交于点D,若E为的中点,则DE.8.在矩形ABCD中,AB=4,BC=6,若点P是矩形ABCD上一动点,要使得∠APB=60°,则AP的长为.9.如图,在⊙O中,,AB=3,则AC=.10.用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号).11.如图,⊙O是等边△ABC的外接圆,其半径为3.图中阴影部分的面积是.12.如图所示,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为D,如果CD=2,那么AB 的长是.13.过三点A(3,3)、B(7,3)、C(5,6)的圆的圆心坐标为.14.如图,在扇形OAB中,∠AOB=90°,OA=1,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则线段AC的长等于.15.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分=.面积S阴影16.如图,在边长为的正八边形ABCDEFGH中,点P在CD上,则△PGH的面积为.17.如图,已知⊙O的半径为6,C、D在直径AB的同侧半圆上,∠AOC=96°,∠BOD=36°,动点P在直径AB上,则CP+PD的最小值是.18.如图,四边形ABCD内接于以AC为直径的⊙O,AD=,CD=2,BC=BA,AC与BD 相交于点F,将△ABF沿AB翻折,得到△ABG,连接CG交AB于E,则BE长为.19.如图,⊙O的半径为5,弦AB的长为5,C为⊙O内一动点,且△ACB=90°,则△ABC的周长的最大值为.20.已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.如果∠ACB=75°,圆O的半径为2,则BD的长为.参考答案1.解:连接P1O1,P2O2,P3O3,P4Q4,…,如图所示:∵P1是⊙1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,P n O n垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO n=2n﹣1,∴=×2π•OO n=π×2n﹣1=2n﹣2π,∴n=2020时,=22020﹣2π=22018π,故答案为:22018π.2.解:连接OD,OE,如图所示:则∠ADO=∠AEO=90°;由圆周角定理知,∠DOE=2∠DFE=110°;∴∠A =360°﹣∠ADO ﹣∠AEO ﹣∠DOE =70°.故答案为:70.3.解:如图,连接CD 、CD ′,∵Rt △ABC 绕直角顶点C 逆时针旋转90°,使得点A 与点A ′落在BC 的延长线上,点B 的对应点B ′落在边AC 上,点D 的对应点D '落在边A ′B ′上,经过点B ′,∴∠DCD ′=∠ACA ′=∠BCB ′=90°,CB =CD =CB ′=CD ′=,AC =A ′C =2,∴∠BCD +∠DCB ′=∠B ′CD ′+∠DCB ′=90°,∴∠DCB =∠D ′CB ′,∴△DCB ≌△D ′CB ′(SAS ),由旋转可知:△ABC ≌△A ′CB ′,∴S △DCB =S △D ′CB ′,S △ABC =S △A ′CB ′,∴S △BCD +S △A ′CD ′=S △ABC∴S 阴影=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣S △BCD ﹣S △A ′CD ′=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣(S △BCD +S △A ′CD ′)=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣S △A ′CB ′=S 扇形ACA ′﹣S 扇形DCD ′=﹣=.故答案为.4.解:连接MA并延长至M',使AM'=AM,连接M'N,交半圆于D,连接AD,如图所示:∵MN是半圆的直径,∴∠MAN=90°,∴AN⊥AM,∵AM'=AM,∴M′N=MN=10,∵MB:BN=2:3,∴MB=4,BN=6,由折叠的性质得:AD=AB,BN=DN,∴DM'=BM=4,∵四边形AMND是圆内接四边形,∴∠M'AD=∠M'NM,∵∠M'=∠M',∴△M'AD∽△M'NM,∴=,∴M′A•M′M=M′D•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2﹣AN2,∴20=100﹣AN2,∴AN=4.故答案为:4.5.解:连接OA,∵PA与⊙O切于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APB=54°,∴∠AOB=∠APB+∠PAO=54°+90°=144°,∵⊙O的半径为3,∴弧AB的长度为=π.故答案为:π.6.解:如图,作DE⊥CA与E,DF⊥BC于F.∵AB是直径,∴∠ECF=∠CED=∠CFD=90°,∴四边形DECF是矩形,∵DC平分∠ACB,DE⊥CA,DF⊥CB,∴DE=DF,∴四边形DECF是正方形,∵∠DCA=∠DCB,∴=,∴AD=BD,∴Rt△ADE≌Rt△FDB(HL),∴AE=BF,∴CE+CF=AC+AE+CB﹣BF=AC+BC=m+n,∴CE=CF=DE=DF=(m+n),∴CD=(m+n),故答案为:(m+n).7.解:连接OC、OE、BD,OE与BD交于点F,如图所示:∵AC=BC=5,O为AB的中点,∴OA=OB=3,OC⊥AB,∴OC===4,∵AB为⊙O的直径,∴∠ADB=90°∴AD⊥BD,∴BD===,∴AD===,∵E为的中点,∴OE⊥BD,∴OE∥AD,∵OA=OB,∴OF为△ABD的中位线,∴DF=BF=BD=,OF=AD=,∴EF=OE﹣OF=3﹣=,∴DE===;故答案为:.8.解:如图,取CD中点P,连接AP,BP,∵四边形ABCD是矩形,∴AB=CD=4,AD=BC=6,∠D=∠C=90°,∵点P是CD中点,∴CP=DP=2,∴AP===4,BP===4,∴AP=PB=AB,∴△APB是等边三角形,∴∠APB=60°,过点A,点P,点B作圆与AD交于点P′,与BC交于点P″,连接BP′,AP″,此时∠AP′B=∠APB=60°,∠AP″B=60°,∴AP′==4,AP″==8,故答案为:4或4或8.9.解:∵在⊙O中,,∴AC=AB=3,故答案为:310.解:∵五边形ABCDE是正五边形,∴五边形ABCDE为圆内接正五边形,∴====,∴∠BAE==108°,∠HAN=∠AEH=∠BAC=∠DAE=∠ABE=∠BAE=×108°=36°,∴∠EAH=∠BAN=36°+36°=72°,∴∠AHE=180°﹣72°﹣36°=72°,∠ANB=180°﹣72°﹣36°=72°,∴∠EAH=∠EHA=72°,∠ANH=∠AHN=72°,∴AE=HE,∠EAH=∠EHA=∠ANH=∠AHN,∴△AEH∽△AHN,∴=,∵五角星的边框总长为40cm,∴AH=AN=EN==4,HN=HE﹣NE=AE﹣4,∴=,整理得:(AE﹣2)2=20,∴AE=2+2(cm),故答案为:2+2.11.解:∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积==3π,故答案为:3π.12.解:连接OA,∵半径OC⊥AB,∴AD=BD=AB,∵OC=5,CD=2,∴OE=3,在Rt△AOD中,AD===4,∴AB=2AD=8,故答案为8.13.解:如图,在平面直角坐标系中画出点A、B、C,连接AB、AC、BC,过C作CE⊥AB于E,设所求的圆的圆心为D,半径为r,连接AD∵A(3,3)、B(7,3)∴圆心D在直线x=5上∴D的横坐标为5∵C(5,6)∴CE=3∵CD=r∴DE=3﹣r在Rt△DAE中,由勾股定理得:AE2+DE2=AD2∴22+(3﹣r)2=r2解得r=∴点D的纵坐标为6﹣=∴D(5,)故答案为:(5,).14.解:连接OD,BC,AB,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,∴OB=BD=OD,∴△BOD是等边三角形,∴∠OBD=60°,即旋转角等于60°,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,∴AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=OB=,故答案为:15.解:连接OC.∵AB⊥CD,∴=,CE=DE=,∴∠COB=∠BOD,∵∠BOD=2∠BCD=60°,∴∠COB=60°,∵OC=OB=OD,∴△OBC,△OBD都是等边三角形,∴OC=BC=BD=OD,∴四边形OCBD是菱形,∴OC∥BD,∴S△BDC =S△BOD,∴S阴=S扇形OBD,∵OD==2,∴S阴==,故答案为.16.解:作正八边形的外接圆O,则∠HGD=×360°=90°,∠FGD=×360°=45°,在正八边形ABCDEFGH中,CD∥HG,∴S△HGP =S△CDH,过F作FM⊥DG于M,过E作EN⊥DG于N,在Rt△GMF中,∠FGD=45°,GF=,∴GM=GF=1,同理,DN=1,∵MN=EF=,∴GD=1++1=2+,∴S△HGP =S△HGD=HG•GD=.故答案为:+1.17.解:过D作DE⊥AB交⊙O于E,连接CE交AB于P,连接OE,作OF⊥CE于F,如图所示:此时CP+PD=CE最小.,∴∠BOE=∠BOD=36°,∵∠AOC=96°,∴∠BOC=84°,∴∠COE=∠BOC+∠BOE=120°,∵OC=OE=6,∴∠OCE=∠OEC=30°,∵OF⊥CE,∴CF=EF,OF=OC=3,CF=OF=3,∴CE=2CF=6.即CP+PD的最小值为6;故答案为:6.18.解:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵AD=,CD=2,∴AC==,∵AB=BC,∴∠1=∠2,过F作FM⊥AD于M,FN⊥CD于N,∴FM=FN,∴====2,∴AF=AC=,∵将△ABF沿AB翻折,得到△ABG,∴∠GAE=∠CAE,∴==3,∵AG=AF=,∵∠BAG=∠BAC=45°,∴∠GAC=90°,∴CG==,∴EG=CG=,∴tan∠CGA==3,过A作AH⊥EG于H,∴HG=AG•cos∠AGH=×=,AH=AG•sin∠AGH=×=1,∴EH=EG﹣HG=,∴AE==,∵AB=AC=,∴BE=AB﹣AE=.故答案为:.19.解:如图,连接OA、OB,∵OA=OB=5,AB=5,∵52+52=(5)2∴OA2+OB2=AB2,∴△AOB是直角三角形,∴∠AOB=90°,∵△ACB=90°,即当点C与点O重合时,△ABC的周长最大,因为AB是定值,AO+BO是直径最大,则△ABC的周长的最大值为:10+5.故答案为:10+5.20.解:如图,连接OB,∵∠DOC=2∠ACD=90°.∴∠ACD=45°,∵∠ACB=75°,∴∠BCD=∠ACB﹣∠ACD=30°,∵OC=OD,∠DOC=90°,∴∠DCO=45°,∴∠BCO=∠DCO﹣∠BCD=15°,∵OB=OC,∴∠CBO=∠BCO=15°,∴∠BOC=150°,∴∠DOB=∠BOC﹣∠DOC=150°﹣90°=60°,∵OB=OD,∴△BOD是等边三角形,∴BD=OD=2.故答案为2.。
专题24.1 圆的有关性质目录圆的认识 (1)圆的相关概念 (3)求相关角度 (4)求相关长度 (6)有关证明 (8)垂径定理的计算 (10)垂径定理的应用 (13)圆周角圆心角相关概念 (18)圆周角与圆心角求角度 (20)圆周角与圆心角求长度 (22)垂径定理的推论 (26)内接四边形 (28)证明综合....................................................................................................................................................31圆的认识【例1】下列结论正确的是( )A .半径相等的两条弧是等弧B .半圆是弧C .半径是弦D .弧是半圆【解答】解:A 、在等圆或同圆中,半径相等的两条弧是等弧,原结论不正确;B 、半圆是弧,原结论正确;C 、半径只有一个端点位于圆上,不是弦,原结论不正确;D、根据半圆的定义可知,半圆是弧,但弧不一定是半圆,原结论不正确;【变式训练1】数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是( )A.学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”B.车轮做成圆形,应用了“圆是中心对称图形”C.射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”D.地板砖可以做成矩形,应用了“矩形对边相等”【解答】解:A.学校门口的伸缩门由菱形而不是其他四边形组成,应用了“四边形的不稳定性”,故本选项错误,不合题意;B.车轮做成圆形,应用了“圆上各点到圆心的距离相等”,故本选项错误,不合题意;C.射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”,故本选项正确,符合题意D.地板砖可以做成矩形,应用了“矩形四个内角都是直角”的性质,故本选项错误,不合题意.故选:C.【变式训练2】下列说法错误的是( )A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.半圆是圆中最长的弧【解答】解:A、直径是圆中最长的弦,说法正确,不符合题意;B、半径相等的两个半圆是等弧,说法正确,不符合题意;C、面积相等的两个圆是等圆,说法正确,不符合题意;D、由于半圆小于优弧,所以半圆是圆中最长的弧说法错误,符合题意.【变式训练3】在平面内与点P的距离为1cm的点的个数为( )A.无数个B.3个C.2个D.1个【解答】解:在平面内与点P的距离为1cm的点的个数为为:所有到定点P的距离等于1cm的点的集合,故选:A.圆的相关概念【例2】已知⊙O的半径是3cm,则⊙O中最长的弦长是( )A.3cm B.6cm C.1.5cm D【解答】解:∵圆的直径为圆中最长的弦,∴⊙O中最长的弦长为2×3=6(cm).故选:B.【变式训练1】已知⊙O中最长的弦为12厘米,则此圆半径为 6 厘米.【解答】解:∵直径是圆中最长的弦,⊙O中最长的弦为12厘米,∴⊙O的直径是12厘米.∴⊙O的半径是6厘米.故答案为:【例3】下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.正确的说法有( )A.1个B.2个C.3个D.4个【解答】解:①直径是弦,正确,符合题意;②弦不一定是直径,错误,不符合题意;③半径相等的两个半圆是等弧,正确,符合题意;④能够完全重合的两条弧是等弧,故原命题错误,不符合题意;⑤根据半圆的定义可知,半圆是弧,但弧不一定是半圆,正确,符合题意,正确的有3个,故选:C.【变式训练1】下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A.1个B.2个C.3个D.4个【解答】解:(1)长度相等的弧不一定是等弧,弧的度数必须相同,故错误;(2)同圆或等圆中相等的圆心角所对的弧相等,故错误;(3)同圆或等圆中劣弧一定比优弧短,故错误;(4)直径是圆中最长的弦,正确,正确的只有1个,故选:A.求相关角度【例4】如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为( )A.38°B.52°C.76°D.104°【解答】解:∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°﹣2×52°=76°.故选:C.【变式训练1】如图,将一个含有60°角的三角板,按图所示的方式摆放在半圆形纸片上,O为圆心,则∠ACO的度数为( )A.150°B.120°C.100°D.60°【解答】解:∵OC=OB,∴∠OCB=∠B=60°,∴∠ACO=180°﹣60°=120°.故选:B.【例5】如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.若∠A=25°,求∠DCE的度数.【解答】解:∵∠C=90°,∠A=25°,∴∠B=90°﹣∠A=65°,∵CB=CD,∴∠CDB=∠B=65°,∵∠CDB=∠DCE+∠A,∴∠DCE=65°﹣25°=40°.【变式训练1】如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O 于点B,且AB=OC.(1)求∠AOB的度数.(2)求∠EOD的度数.【解答】解:(1)连OB,如图,∵AB=OC,OB=OC,∴AB=BO,∴∠AOB=∠1=∠A=20°;(2)∵∠2=∠A+∠1,∴∠2=2∠A,∵OB=OE,∴∠2=∠E ,∴∠E =2∠A ,∴∠DOE =∠A +∠E =3∠A =60°.求相关长度【例6】如图,在△ABC 中,∠C =90°,AB =若以点C 为圆心,CA 长为半径的圆恰好经过AB 的中点D ,则⊙C 的半径为( )A .B .8C .6D .5【解答】解:如图,连结CD ,∵CD 是直角三角形斜边上的中线,∴CD =12AB =12×10=5故选:D .【变式训练1】如图,AB 是⊙O 的弦,点C 是优弧AB 上的动点(C 不与A 、B 重合),CH ⊥AB ,垂足为H ,点M 是BC 的中点.若⊙O 的半径是3,则MH 长的最大值是( )A.3B.4C.5D.6【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=12 BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.【变式训练2】如图,OA是⊙O的半径,B为OA上一点(且不与点O、A重合),过点B作OA的垂线交⊙O于点C.以OB、BC为边作矩形OBCD,连结BD.若CD=6,BC=8,则AB的长为( )A.6B.5C.4D.2【解答】解:如图,连接OC.∵四边形OBCD是矩形,∴∠OBC=90°,OB=CD=6,∴OC=OA10,∴AB=OA﹣OB=4,故选:C .【变式训练3】如图,在矩形ABCD 中,已知AB =3,BC =4,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,则线段MC 的最小值为( )A .2B .52C .3D 【解答】解:连接AM ,∵点B 和M 关于AP 对称,∴AB =AM =3,∴M 在以A 圆心,3为半径的圆上,∴当A ,M ,C 三点共线时,CM 最短,∵AC =5,AM =AB =3,∴CM =5﹣3=2,故选:A .有关证明【例7】已知,如图,在⊙O 中,C 、D 分别是半径OA 、BO 的中点,求证:AD =BC .【解答】解:∵OA 、OB 是⊙O 的两条半径,∴AO =BO ,∵C、D分别是半径OA、BO的中点,∴OC=OD,在△OCB和△ODA中,AO=BO∠O=∠O,OD=OC∴△OCB≌△ODA(SAS),∴AD=BC.【变式训练1】已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB 于F,且AE=BF,AC与BD相等吗?为什么?【解答】解:AC与BD相等.理由如下:连接OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,OE=OFOC=OD,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴AC=BD,∴AC=BD.垂径定理的计算【例8】如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =AP =8,则⊙O 的半径为( )A .10B .8C .5D .3【解答】解:连接OC ,∵AB ⊥CD ,AB 过圆心O ,CD =8,∴CP =DP =4,设⊙O 的半径为R ,∵AP =8,∴OP =8﹣R ,在Rt △COP 中,由勾股定理得:CP 2+OP 2=OC 2,即(8﹣R )2+42=R 2,解得:R =5,∴⊙O 的半径为5,故选:C.【变式训练1】如图,CD 是圆O 的弦,直径AB ⊥CD ,垂足为E ,若AB =12,BE =3,则四边形ACBD 的面积为( )A .B .C .D .【解答】解:如图,连接OC ,∵AB =12,BE =3,∴OB =OC =6,OE =3,∵AB ⊥CD ,在Rt △COE 中,EC =∴CD =2CE =∴四边形ACBD 的面积=12AB ⋅CD =12×12×=故选:A .【变式训练2】如图,正方形ABCD 和正方形BEFG 的顶点分别在半圆O 的直径和圆周上,若BG =4,则半圆O 的半径是( )A.4+B.9C.D.【解答】解:连接OC,OF,设OB=x,∵四边形ABCD是正方形且顶点D和C在圆上,∴AB=BC=2x,∠OBC=90°,∵BG=4,四边形BEFG是正方形,∴OE=x+4,EF=BE=BG=4,∠FEB=90°,在Rt△BCO中,OC=,在Rt△FEO中,OF=∵OF=OC,∴5x2=x2+8x+32,解得x=4或x=﹣2(舍去)当x=4时,OC=则半圆O的半径是故选:C.【变式训练3】已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有( )A .1个B .3个C .6个D .7个【解答】解:∵CD 是直径,∴OC =OD =12CD =12×10=5,∵AB ⊥CD ,∴∠AMC =∠AMD =90°,∵AM =4.8,∴OM ==1.4,∴CM =5+1.4=6.4,MD =5﹣1.4=3.6,∴AC =8,AD ==6,∵AM =4.8,∴A 点到线段MD 的最小距离为4.8,最大距离为6,则A 点到线段MD 的整数距离有5,6,A 点到线段MC 的最小距离为4.8,最大距离为8,则A 点到线段MC 的整数距离有5,6,7,8,直径CD 上的点(包含端点)与A 点的距离为整数的点有6个,故选:C .垂径定理的应用【例9】往圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm ,水的最大深度为16cm ,则圆柱形容器的截面直径为( )cm .A .10B .14C .26D .52【解答】解:如图所示:由题意得,OC⊥AB于D,DC=16cm,∵AB=48cm,∴BD=12AB=12×48=24(cm),设半径为rcm,则OD=(r﹣16)cm,在Rt△OBD中,r2=242+(r﹣16)2,解得r=26,所以2r=52,故选:D.【变式训练1】一装有某种液体的圆柱形容器,半径为6cm,高为18cm.小强不小心碰倒,容器水平静置时其截面如图所示,其中圆心O到液面AB的距离为3cm,若把该容器扶正竖直,则容器中液体的高度为( )A.12πcm B.2πcm C.πcm D.2cm【解答】解:连接OA,OB,如图,根据题意得:OA=6cm,弦心距OC=3cm,∴cos∠AOC=OCOA=36=12,∴∠AOC =60°,则∠AOB =120°,∴AC =,AB =2AC =,∴S 阴影=S 扇形OAB ﹣S △OAB =120π×62360−12××3=cm 2).设把该容器扶正竖直后容器中液体的高度为h (cm ),依题意得:62πℎ=,∴ℎ故选:B .【变式训练2】往直径为78cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =72cm ,则水的最大深度为( )A .36cmB .27cmC .24cmD .15cm【解答】解:连接OA ,过点O 作OD ⊥AB 交AB 于点C 交⊙O 于D .∵OC ⊥AB ,∴AC =CB =36(cm ),∵OA =OB =39cm ,∴OC ==15(cm ),∴CD =39﹣15=24(cm ),故选:C .【变式训练3】如图,某同学测试一个球体在水中的下落速度,他测得截面圆的半径为5cm ,假设球的横截面与水面交于A ,B 两点,AB =8cm .若从目前所处位置到完全落入水中的时间为4s ,则球体下落的平均速度为( )A.0.5cm/s B.0.75cm/s C.1cm/s D.2cm/s 【解答】解:设圆心为O,连接OB,则OB=5,过点O作OC⊥AB,交⊙O于点C,交AB于点D,则BD=12AB=4cm,在Rt△BOD中,OD=3cm,∴CD=OC﹣OD=5﹣3=2cm,∴从目前所处位置到究全落入水中,球体下落的平均速度为2÷4=0.5cm/s.故选:A.【例10】如图所示,某地有一座圆弧形的拱桥,桥下的水面宽度AB为7.2m,拱顶高出水面(CD)2.4m,现有一艘宽EF为3m且船舱顶部为长方形并高出水面1.5m的货船要经过这里,则货船能顺利通过这座拱桥吗?请作出判断并说明理由.【解答】解:货船能顺利通过这座拱桥,理由如下:如图,连接ON、OA.∵OC⊥AB,AB=7.2m,∴AD=12AB=3.6(m),设OB=OC=ON=rm,则OD=(r﹣2.4)m,在Rt△AOD中,根据勾股定理得:r2=(r﹣2.4)2+3.62,解得:r=3.∵CD=2.4m,船舱顶部为正方形并高出水面1.5m,∴CH=2.4﹣1.5=0.9(m),∴OH=3.9﹣0.9=3(m),在Rt△OHN中,HN2=ON2﹣OH2=3.92﹣32=6.21(m2),∴HN=m),∴MN=2HN=m)>3m,∴货船能顺利通过这座拱桥.【变式训练1】诗句“君到姑苏见,人家尽枕河”所描绘的就是有东方威尼斯之称的水城苏州.小勇要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16m时,拱顶高出水平面4m,货船宽12m,船舱顶部为矩形并高出水面3m.(1)请你帮助小勇求此圆弧形拱桥的半径;(2)小勇在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.【解答】解:(1)如图,连接OB.∵OC⊥AB,∴D为AB中点,∵AB=16m,∴BD=12AB=8(m),又∵CD=4m,设OB=OC=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+82,解得r=答:此圆弧形拱桥的半径为10m.(2)此货船不能顺利通过这座拱桥,理由如下:连接ON,∵CD=4m,船舱顶部为长方形并高出水面3m,∴CE=4﹣3=1(m),∴OE=r﹣CE=10﹣1=9(m),在Rt△OEN中,由勾股定理得:EN=∴MN=2EN=<12m.∴此货船B不能顺利通过这座拱桥.圆周角圆心角相关概念【例11】下列说法中,正确的个数为( )(1)在同圆或等圆中,弦相等则所对的弧相等;(2)优弧一定比劣弧长;(3)弧相等则所对的圆心角相等;(4)在同圆或等圆中,圆心角相等则所对的弦相等.A.1个B.2个C.3个D.4个【解答】解:(1)在同圆或等圆中,弦相等则所对的弧相等,错误,弦所对的弧有优弧或劣弧,不一定相等.(2)优弧一定比劣弧长,错误,条件是同圆或等圆中;(3)弧相等则所对的圆心角相等.正确;(4)在同圆或等圆中,圆心角相等则所对的弦相等.正确;故选:B.【变式训练1】下列说法正确的是( )A.同弧或等弧所对的圆心角相等B.所对圆心角相等的弧是等弧C.弧长相等的弧一定是等弧D.平分弦的直径必垂直于弦【解答】解:A、同弧或等弧所对的圆心角相等,正确,本选项符合题意;B、所对圆心角相等的弧是等弧,错误,条件是同圆或等圆中,本选项不符合题意;C、弧长相等的弧一定是等弧,错误,条件是同圆或等圆中,本选项不符合题意;D、平分弦的直径必垂直于弦,错误此弦不能是直径,本选项不符合题意.故选:A.【变式训练2】下列说法中,正确的是( )A.同心圆的周长相等B.面积相等的圆是等圆C.相等的圆心角所对的弧相等D.平分弧的弦一定经过圆心【解答】解:A、错误,同心圆的周长不相等,本选项不符合题意.B、正确,本选项符合题意.C、错误,条件是同圆或等圆中,本选项不符合题意.D、错误,平分弧的弦不一定经过圆心,本选项不符合题意.故选:B.【变式训练3】下列说法中,正确的有( )①相等的圆心角所对的弧相等;②平分弦的直径也平分弦所对的弧;③长度相等的两条弧是等弧;④经过圆心的每一条直线将圆分成两条等弧A.1个B.2个C.3个D.4个【解答】解:①在同圆或等圆中,相等的圆心角所对的弧相等,本小题说法错误;②平分弦(不是直径)的直径也平分弦所对的弧,本小题说法错误;③能够重合的两条弧是等弧,本小题说法错误;④经过圆心的每一条直线将圆分成两条等弧,本小题说法正确;故选:A.圆周角与圆心角求角度【例12】如图,AB是⊙O的直径,∠D=32°,则∠AOC等于( )A.158°B.58°C.64°D.116°【解答】解:∵∠D=32°,∴∠BOC=2∠D=64°,∴∠AOC=180°﹣64°=116°.故选:D.【变式训练1】如图,在⊙O中,AB是弦,C是弧AB上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的度数为( )A.30°B.40°C.50°D.60°【解答】解:∵OA=OB,∠OAB=25°,∴∠OBA=∠OAB=25°,∴∠AOB=180°﹣∠OAB﹣∠OBA=130°,∵OA=OC,∠OCA=40°,∴∠OAC=∠OCA=40°,∴∠AOC=180°﹣∠OAC﹣∠OCA=100°,∴∠BOC=∠AOB﹣∠AOC=130°﹣100°=30°,故选:A.【变式训练2】如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是( )A.25°B.50°C.65°D.75°【解答】解:∵根据圆周角定理得:∠AOC=2∠ABC,∵∠ABC+∠AOC=75°,∴∠AOC=23×75°=50°,∵OA=OC,∴∠OAC=∠OCA=12(180°﹣∠AOC)=65°,故选:C.【变式训练3】如图,⊙O在△ABC三边上截得的弦长相等,即DE=FG=MN,∠A=50°,则∠BOC=( )A.100°B.110°C.115°D.120°【解答】解:如图,过点O作OP⊥AB于点P,OQ⊥AC于点Q,OK⊥BC于点K,∴∠APO=∠AQO=90°,∵∠A=50°,∴∠POQ=360°﹣90°﹣90°﹣50°=130°,∵DE=FG=MN,∴OP=OK=OQ,∴OB、OC平分∠ABC和∠ACB,∴∠BOC=12×(360°−130°)=115°.故选:C.圆周角与圆心角求长度【例13】如图,AB是⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AE=2,⊙O的直径为10,则AC长为( )A.5B.6C.7D.8【解答】解:连接OF,如图:∵DE⊥AB,AB过圆心O,∴DE=EF,AD=AF,∵D为弧AC的中点,∴AD=DC,∴ADC=DAF,∴AC=DF,∵⊙O的直径为10,∴OF=OA=5,∵AE=2,∴OE=OA﹣AE=5﹣2=3,在Rt△OEF中,由勾股定理得:EF==4,∴DE=EF=4,∴AC=DF=DE+EF=4+4=8,故选:D.【变式训练1】如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AE=3,⊙O的直径为15,则AC长为( )A.10B.13C.12D.11【解答】解:连接OF,∵DE⊥AB,AB过圆心O,∴DE=EF,AD=AF,∵D为弧AC的中点,∴AD=DC,∴ADC=DAF,∴AC=DF,∵⊙O的直径为15,∴OF=OA=15 2,∵AE=3,∴OE=OA﹣AE=9 2,在Rt△OEF中,由勾股定理得:EF==6,∴DE=EF=6,∴AC=DF=DE+EF=6+6=12,故选:C.【变式训练2】如图,在半径为⊙O中,弦AB,CD互相垂直,垂足为点P.若AB=CD=8,则OP的长为( )A.B.C.4D.2【解答】解:连接OA、OC,过O作OE⊥CD于E,OF⊥AB于F,则∠OFP=∠OEP=∠CEO=∠AFO=90°,∵AB⊥CD,∴∠EPF=90°,∴四边形OFPE是矩形,∴OE=FP,EP=OF,∵OF⊥AB,OF过O,AB=8,∴AF=BF=4,由勾股定理得:OF==2,同理OE=2,即FP=OE=2,在Rt△OFP中,由勾股定理得:OP==故选:B.【变式训练3】如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为( )A.10B.13C.15D.16【解答】解:如图,连接OF.∵DE ⊥AB ,∴DE =EF ,AD =AF ,∵点D 是弧AC 的中点,∴AD =CD ,∴AC =DF ,∴AC =DF =12,∴EF =12DF =6,设OA =OF =x ,在Rt △OEF 中,则有x 2=62+(x ﹣3)2,解得x =152,∴AB =2x =15,故选:C .垂径定理的推论【例14】如图,DC 是⊙O 的直径,弦AB ⊥CD 于M ,则下列结论不一定成立的是( )A .AM =BMB .CM =DMC .AC =BCD .AD =BD【解答】解:∵弦AB ⊥CD ,CD 过圆心O ,∴AM =BM ,AC =BC ,AD =BD,即选项A、C、D都正确,当根据已知条件不能推出CM和DM一定相等,故选:B.【变式训练1】如图,CD是⊙O的直径,弦AB⊥CD于点E,则下列结论不一定成立的是( )A.AE=BE B.OE=DE C.AC=BC D.AD=BD【解答】解:∵AB⊥CD,CD过圆心O,∴AE=BE,AC=BC,AD=BD,不能推出OE=DE,所以选项A、选项C、选项D都不符合题意,只有选项B符合题意;故选:B.【变式训练2】如图,AB是⊙O的直径,弦CD与AB相交于点E.不能推出CE=DE的条件是( )A.AB⊥CD B.AC=AD C.BC=BD D.OE=ED【解答】解:当AB⊥CD时,CE=DE.故A正确;当BC=BD或AC=AD时,CE=DE,故BC都正确;故选:D.【变式训练3】如图,CD是⊙O的弦,AB是⊙O的直径,AB⊥CD于点E,下列结论:①AC=AD;②BC=BD;③EO=EB;④EC=ED.其中一定成立的是( )A .①③B .①④C .①②④D .①②③④【解答】解:∵AB 是直径,AB ⊥CD ,∴AC =AD ,BC =BD ,EC =DE ,故①②④正确.故选:C .内接四边形【例15】如图,四边形ABCD 是⊙O 的内接四边形,连接OA ,OC .若∠ABC =108°,则∠AOC 的度数为( )A .72°B .108°C .144°D .150°【解答】解:∵四边形ABCD 是⊙O 的内接四边形,∴∠D +∠ABC =180°,∵∠ABC =108°,∴∠D =72°,∴∠BOC =2∠D =144°,故选:C .【变式训练1】如图,四边形ABCD 内接于⊙O ,对角线BD 垂直平分半径OC ,若∠ABD =50°,则∠ADC的大小为( )A.130°B.120°C.110°D.100°【解答】解:设BD交OC于E,连接OD,OA,∵BD垂直平分OC,∴OE=12OC=12OD,∠OED=90°,∴∠ODE=30°,∴∠DOC=90°﹣30°=60°,∵OC=OD,∴△OCD是等边三角形,∴∠ODC=60°,∵∠ABD=50°,∴∠AOD=2∠ABD=100°,∵OA=OD,∴∠ADO=∠OAD=12(180°﹣∠AOD)=40°,∴∠ADC=∠ADO+∠ODC=40°+60°=100°,故选:D.【变式训练2】如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=15°,则∠BDC=( )A.85°B.75°C.70°D.65°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=15°,∴∠CAB=75°,∴∠BDC=∠CAB=75°,故选:B.【变式训练3】如图,AB是⊙O的直径,弦CD垂直平分OB,P是AD上一点,则∠APD等于( )A.120°B.125°C.135°D.150°【解答】解:连接OC,AC.∵弦CD垂直平分OB,∴OE=12OB=12OC,∴∠OCD=30°,∴∠COB=60°,∵OA=OC,∴∠BAC=30°,∴∠ACD=60°.∴∠APD=180°﹣60°=120°,故选:A.证明综合【例16】如图,AB为⊙O的直径,CD为弦,CD⊥AB于点E,连接DO并延长交⊙O于点F,连接AF交CD于点G,连接AC,且AC∥DF.(1)求证:CG=AG;(2)若AB=12,求∠CAO和GD的长.【解答】(1)证明:∵AC∥DF,∴∠CDF=∠ACD,∵CF=CF,∴∠CAF=∠CDF,∴∠ACD=∠CAF,∴AG=CG;(2)解:如图,连接CO,∵AB⊥CD,∴AC=AD,CE=DE,∵∠DCA=∠CAF,∴AD=CF,∴AC=AD=CF,∴∠AOD=∠AOC=∠COF,∵DF是直径,∴∠AOD=∠AOC=∠COF=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=AO=6,∠CAO=60°,∵CE⊥AO,∴AE=EO=3,∠ACD=30°,∴CE=DE,∵AG2=GE2+AE2,∴AG2=(AG)2+9,∴AG=∴GE=∴DG=【变式训练1】如图,AB是⊙O的直径,点C在⊙O上,AC=BC,点D是BC的中点,连结OC,AD,交于点E,连结BE,BD.(1)求∠EBA的度数.(2)求证:AE=.(3)若DE=1,求⊙O的面积.【解答】解:(1)连接AC,∵AC=BC,∴∠AOC=∠BOC=90°∴∠CAB=45°,∵点D是BC的中点,∴CD=BD,∴∠CAD=∠EAB=22.5°;(2)由(1)知,OC垂直平分AB,∴AE=BE,∴∠DEB=2∠EAB=45°,∵AB是直径,∴∠D=90°,∴BD=sin45°BE,∴BE=,∴AE=;(3)∵DE=1∴BD=DE=1,∴AE=BE=∴AD=+1,在Rt△ABD中,AD2+BD2=(2OA)2,)2+1=4OA2,∴OA2∴圆的面积为πOA2=一.选择题(共8小题)1.下列说法正确的是( )A .直径是圆中最长的弦,有4条B .长度相等的弧是等弧C .如果A e 的周长是B e 周长的4倍,那么A e 的面积是B e 面积的8倍D .已知O e 的半径为8,A 为平面内的一点,且8OA =,那么点A 在O e 上【解答】解:A 、直径是圆中最长的弦,有无数条,故该选项不符合题意;B 、在同圆或等圆中长度相等的弧是等弧,故该选项不符合题意;C 、如果A e 的周长是B e 周长的4倍,那么A e 的面积是B e 面积的16倍,故该选项不符合题意;D 、已知O e 的半径为8,A 为平面内的一点,且8OA =,那么点A 在O e 上,故该选项符合题意.故选:D .2.小明在半径为5的圆中测量弦AB 的长度,下列测量结果中一定是错误的是( )A .4B .5C .10D .11【解答】解:Q 半径为5的圆,直径为10,\在半径为5的圆中测量弦AB 的长度,AB 的取值范围是:010AB <…,\弦AB 的长度可以是4,5,10,不可能为11.故选:D .3.如图,O e 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE OB =,已知72DOB Ð=°,则E Ð等于( )A .36°B .30°C .18°D .24°【解答】解:如图:CE OB CO ==,得1E Ð=Ð.由2Ð是EOC D 的外角,得212E E Ð=Ð+Ð=Ð.由OC OD =,得22D E Ð=Ð=Ð.由3Ð是三角形ODE D 的外角,得323E D E E E Ð=+Ð=Ð+Ð=Ð.由372Ð=°,得372E Ð=°.解得24E Ð=°.故选:D .4.如图,O e 的直径12AB =,弦CD 垂直AB 于点P .若2BP =,则CD 的长为()A .B .C .D .【解答】解:如图,连接OC ,12AB =Q ,6OC OB \==,2PB =Q ,4OP \=,在Rt OPC D 中,CP ==,CD AB ^Q ,CP DP \=,2CD PC\==.故选:C.5.已知Oe的半径为5,点O到弦AB的距离为3,则Oe上到弦AB所在直线的距离为2的点有( )A.4个B.3个C.2个D.1个【解答】解:过O点作OC AB^,交Oe于P,如图,3OC\=,而5OA=,2PC\=,即点P到直线AB的距离为2;在直线的另一边,圆上的点到直线的最远距离为8,而圆为对称图形,\在直线AB的这边,还有两个点M,N到直线AB的距离为2.故选:B.6.如图所示的是一圆弧形拱门,其中路面2AB m=,拱高3CD m=,则该拱门的半径为( )A.53m B.2m C.83m D.3m【解答】解:如图,取圆心为O ,连接OA ,设O e 的半径为r m ,则OC OA r ==m ,Q 拱高3CD m =,(3)OD r m \=-,OD AB ^,2AB m =Q ,112AD BD AB m \===,222OA AD OD =+Q ,2221(3)r r \=+-,解得:53r =,\该拱门的半径为53m ,故选:A .7.如图,在Rt ACB D 中60ACB Ð=°,以直角边AB 为直径的O e 交线段AC 于点E ,点M 是弧AE 的中点,OM 交AC 于点D ,O e 的半径是6,则MD 的长度为( )A B .32C .3D .【解答】解:90ABC Ð=°Q ,60ACB Ð=°,30A \Ð=°,M Q 为弧AE 的中点,OM 过圆心O ,OM AD \^,90ADO \Ð=°,116322OD OA \==´=,633MD OM OD \=-=-=,故选:C .8.如图,在O e 中,¶¶¶AB BCCD ==,连接AC ,CD ,则AC 与CD 的关系是( )A .2AC CD =B .2AC CD <C .2AC CD >D .无法比较【解答】解:如图,连接AB 、BC ,在O e 中,¶¶¶AB BCCD ==,AB BC CD \==,在ABC D 中,AB BC AC +>.2AC CD \<.故选:B .二.填空题(共4小题)9.运动场上的环形跑道的跑道宽都是相同的,若一条跑道的两个边缘所在的环形周长的差等于125p 米,则跑道的宽度为 65 米.【解答】解:设运动场上的小环半径为r 米,大环半径半径为R 米,根据题意得:122()5R r p p -=,解得:65R r -=,即跑道的宽度为65米.故答案为:65.10.大圆的半径是R ,小圆的半径是大圆半径的一半,则大圆面积比小圆面积大 234R p .【解答】解:由题意得,大圆面积为2R p ,小圆面积为21()24R R p p ×=,1344R R R p p p -=,\大圆面积比小圆面积大234R p ,故答案为:234R p .11.我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“等分线”,“等分线”被这个平面图形截得的线段叫做该图形的“等分线段”(例如圆的直径就是圆的“等分线段” ).已知等边三角形的边长为4,则它的“等分线段”长度x 的取值范围是 x …【解答】解:如图,①等边三角形的高AD 是最长的“等分线段”,4AD ==;②当//EF BC 时,EF 为最短“等分线段”,此时,21()2EF BC =,即4EF =,解得EF =.所以,它的“等分线段”长x …故答案为:x ….12.如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x 轴正方向滚动2022圈(滚动时在x 轴上不滑动),此时该圆圆心的坐标为 (40441,1)p + .【解答】解:如图,点(1,1)P ,点(1,0)A ,该圆向x 轴正方向滚动2022圈,点A 移动过的距离为2120224044p p ´´=,这点到原点O 的距离为40441p +,因此点P 的对应点的坐标为(40441,1)p +,故答案为:(40441,1)p +.三.解答题(共3小题)13.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于(r r 为常数),到点O 的距离等于r 的所有点组成图形G ,ABC Ð的平分线交图形G 于点D ,连接AD ,CD .求证:AD CD =.【解答】证明:根据题意作图如下:BD Q 是圆周角ABC 的角平分线,ABD CBD \Ð=Ð,\¶¶AD CD =,AD CD \=.14.如图,O e 的半径OC AB ^,D 为¶BC上一点,DE OC ^,DF AB ^,垂足分别为E 、F ,3EF =,求直径AB 的长.【解答】解:OC AB ^Q ,DE OC ^,DF AB ^,\四边形OFDE 是矩形,3OD EF \==,6AB \=.15.已知:如图,BD 、CE 是ABC D 的高,M 为BC 的中点.试说明点B 、C 、D 、E 在以点M 为圆心的同一个圆上.【解答】证明:连接ME 、MD ,BD Q 、CE 分别是ABC D 的高,M 为BC 的中点,12ME MD MC MB BC \====,\点B 、C 、D 、E 在以点M 为圆心的同一圆上.。
人教部编版初中九年级数学下册中考专项复习与圆有关的计算练习(含答案)一、选择题1.【2017·咸宁】如图K28-1,⊙O 的半径为3,四边形ABCD 内接于⊙O,连接OB 、OD ,若∠BOD=∠BCD,则BD ︵的长为( )A .πB .32π C .2π D .3πK28-12.【2017·丽水】如图K28-2,点C 是以AB 为直径的半圆O 的三等分点,AC =2,则图中阴影部分的面积是( )K28-2A .4π3- 3B .4π3-2 3C .2π3- 3D .2π3-323.【2016·南京】已知正六边形的边长为2,则它的内切圆的半径为( )A .1B . 3C .2D .2 3二、填空题 4.【2017·常州】已知圆锥的底面半径是1,母线长是3,则圆锥的侧面积是________.5.【2017·菏泽】一个扇形的圆心角为100°,面积为15π cm 2,则此扇形的半径长为________cm . 6.【2016·苏州】如图K28-3,AB 是⊙O 的直径,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D ,若∠A =∠D ,CD =3,则图中阴影部分的面积为________.图K28-37.【2015·遵义】如图K28-4,在圆心角为90°的扇形OAB 中,半径OA =2 cm ,C 为AB ︵的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为________cm2.图K28-4三、解答题8.【2017·湖州】如图K28-5,O为Rt△ABC的直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E.已知BC=3,AC=3.(1)求AD的长;(2)求图中阴影部分的面积.图K28-59.【2016·淮安】如图K28-6,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.图K28-610.【2016·盐城】如图K28-7,在四边形ABCD中,AD∥BC,AD=2,AB=2 2.以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F.(1)求∠ABE 的大小及DEF ︵的长度;(2)在BE 的延长线上取一点G ,使得DE ︵上的一个动点P 到点G 的最短距离为22-2,求BG 的长.图K28-7B 组·拓展提升11.【2015·吉林】如图K28-8①,半径为R ,圆心角为n °的扇形面积是S 扇形=n πR 2360.由弧长l =n πR180,得S 扇形=n πR 2360=12·n πR 180·R =12lR .通过观察,我们发现S 扇形=12lR 类似于S 三角形=12底×高. 类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得一部分叫做扇环)的面积公式及其应用. (1)设扇环的面积为S 扇环,AB ︵的长为l 1,CD ︵的长为l 2,线段AD 的长为h(即两个同心圆半径R 与r 的差),类比S 梯形=12×(上底+下底)×高,用含l 1,l 2,h 的代数式表示S 扇环,并证明;(2)用一段长为40 m 的篱笆围成一个如图②所示的扇环花园,线段AD 的长h 为多少时,花园的面积最大,最大面积是多少?图K28-812.【2016·镇江】如果三角形三边的长a 、b 、c 满足a +b +c3=b ,那么我们就把这样的三角形叫做“匀称三角形”.如三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.图K28-9(1)如图K28-9①,已知两条线段的长分别为a 、c(a <c).用直尺和圆规作一个最短边、最长边的边长分别为a 、c 的“匀称三角形”(不写作法,保留作图痕迹);(2)如图②,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 的延长线于点E ,交AC 于点F .若BE CF =53,判断△AEF 是否为“匀称三角形”?请说明理由.参考答案1.C 【解析】 ∵∠BAD=12∠BOD=12∠BCD,∠BAD +∠BCD=180°,∴∠BOD =120°.又∵⊙O 的半径为3,∴BD︵的长为120π·3180=2π.故选C.2.A 【解析】 如图,连接OC ,∵点C 是半圆的三等分点,∴∠AOC =60°,∴△AOC 是等边三角形,∠BOC =120°,由三角形面积公式求得S △BOC =3,由扇形的面积公式求得S 扇形BOC =120·π×22360=4π3,∴S 阴影=S 扇形BOC -S △BOC =4π3-3,故选A.3.B 【解析】 如图,连接OA 、OB ,OG.∵六边形ABCDEF 是边长为2的正六边形, ∴△OAB 是等边三角形, ∴OA =AB =2, ∴OG =OA·sin60°=2×32=3, ∴边长为2的正六边形的内切圆的半径为 3. 故选B.4.3π 【解析】 圆锥的侧面积为πrl =π×1×3=3π.5.3 6 【解析】 因为圆心角为100°,面积为15π cm 2,所以由扇形面积公式S =n πR2360得R =360Sn π=360×15π100π=3 6(cm).6.3 3-π2【解析】 连接OC ,∵过点C 的切线交AB 的延长线于点D , ∴OC ⊥CD ,∴∠OCD =90°, 即∠D+∠COD=90°,∵AO =CO ,∴∠A =∠ACO,∴∠COD =2∠A,∵∠A =∠D,∴∠COD =2∠D, ∴3∠D =90°,∴∠D =30°,∴∠COD =60°. ∵CD =3,∴OC =3×33=3, ∴阴影部分的面积=12×3×3-60·π×(3)2360=3 3-π2.7.π+2-12 【解析】 连接OC ,CE.由题意可得扇形OAB 关于直线OC 成轴对称,则S 空白ADC =S 阴影CEB =12(S 扇形OAB -S 四边形ODCE ).根据轴对称性可知,四边形ODCE 的对角线DE 与OC 互相垂直,则S 四边形ODCE =12OC·DE.∵D 、E 分别是OA 、OB 的中点, ∴OD =OE =12OA =1.又∵∠AOB=90°,∴DE =2,∴S 四边形ODCE =12OC·DE=12×2×2=2,S △ODE =12OD·OE=12×1×1=12,S 扇形OAB =14πr 2=14·π·22=π,∴S阴影=S阴影CEB+S △CDE =12(S扇形OAB-S四边形ODCE)+(S四边形ODCE-S △ODE )=12(S扇形OAB+S四边形ODCE)-S △ODE =12×(π+2)-12=π+2-12(cm 2). 故答案为π+2-12.8.解:(1)在Rt △ABC 中,AB =AC 2+BC 2=32+(3)2=2 3, ∵BC ⊥OC ,∴BC 是⊙O 的切线, ∵AB 是⊙O 的切线,∴BD =BC =3, ∴AD =AB -BD =2 3-3= 3.(2)在Rt △ABC 中,sinA =BC AB =32 3=12,∴∠A =30°,∵AB 切⊙O 于点D ,∴OD ⊥AB , ∴∠AOD =90°-∠A=60°, ∵ODAD =tanA =tan30°, ∴OD3=33,得OD =1, ∴S 阴影=60π×12360=π6.9.【解析】 (1)由图推测MN 是⊙O 的切线,连接OC ,只要证明∠OCM=90°即可.(2)求出∠AOC 以及BC ,根据S 阴影=S 扇形OAC -S △OAC 计算即可. 解:(1)MN 是⊙O 的切线. 理由:如图,连接OC.∵OA =OC ,∴∠OAC =∠OCA,∵∠BOC =∠A+∠OCA=2∠A,∠BCM =2∠A,∴∠BCM =∠BOC,∵∠B =90°,∴∠BOC +∠BCO=90°, ∴∠BCM +∠BCO=90°,∴OC ⊥MN ,∴MN 是⊙O 的切线. (2)由(1)可知∠BOC=∠BCM=60°, ∴∠AOC =120°,在Rt △BCO 中,OC =OA =4,∠BCO =30°, ∴BO =12OC =2,BC =2 3,∴S 阴影=S 扇形OAC -S △OAC =120π·42360-12×4×2 3=16π3-4 3.10.解:(1)连接AE ,∵圆与BC 相切于点E ,。
专项训练六 圆一、选择题1.如图,∠O =30°,C 为OB 上一点,且OC =6,以点C 为圆心,半径为3的圆与OA 的位置关系是( )A .相离B .相交C .相切D .均有可能第1题图 第3题图 第4题图2.(2016·贺州中考)已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为( )A .2B .4C .6D .83.(2016·兰州中考)如图,在⊙O 中,若点C 是AB ︵的中点,∠A =50°,则∠BOC 的度数为( ) A .40° B .45° C .50° D .60° 4.(2016·杭州中考)如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A 、C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB =3∠ADB ,则( )A .DE =EB B.2DE =EB C.3DE =DO D .DE =OB第5题图 第6题图 第7题图5.如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP ≤2,则弦AB 所对的圆周角的度数是( )A .60°B .120°C .60°或120°D .30°或150° 6.(2016·德州中考)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )A .3步B .5步C .6步D .8步 7.(2016·山西中考)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为( )A.π3B.π2C .πD .2π 8.(2016·滨州中考)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,且OC ∥BD ,AD分别与BC ,OC 相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ;③CB 平分∠ABD ;④AF =DF ;⑤BD =2OF ;⑥△CEF ≌△BED ,其中一定成立的是( )A .②④⑤⑥B .①③⑤⑥C .②③④⑥D .①③④⑤第8题图 第9题图 第10题图二、填空题 9.(2016·安顺中考)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,CD =6,则BE =________.10.(2016·齐齐哈尔中考)如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C =________度.11.(2016·贵港中考)如图,在Rt △ABC 中,∠C =90°,∠BAC =60°,将△ABC 绕点A 逆时针旋转60°后得到△ADE .若AC =1,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是________(结果保留π).12.(2016·呼和浩特中考)在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且AB ∥CD ,若AB 和CD 之间的距离为18,则弦CD 的长为________.13.(2016·成都中考)如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,则AB =________.第11题图 第13题图 第14题图14.如图,在扇形OAB 中,∠AOB =60°,扇形半径为r ,点C 在AB ︵上,CD ⊥OA ,垂足为D ,当△OCD 的面积最大时,AC ︵的长为________.三、解答题 15.(2016·宁夏中考)如图,已知△ABC ,以AB 为直径的⊙O 分别交AC 于D ,BC 于E ,连接ED ,若ED =EC .(1)求证:AB =AC ;(2)若AB =4,BC =23,求CD 的长.16.(2016·新疆中考)如图,在⊙O 中,半径OA ⊥OB ,过OA 的中点C 作FD ∥OB 交⊙O 于D 、F 两点,且CD =3,以O 为圆心,OC 为半径作弧CE ,交OB 于E 点.(1)求⊙O 的半径OA 的长; (2)计算阴影部分的面积.17.(2016·西宁中考)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA =∠CBD .(1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,BC =6,AD BD =23,求BE 的长.18.★如图,在平面直角坐标系xOy 中,直线y =3x -23与x 轴、y 轴分别交于A ,B 两点,P 是直线AB 上一动点,⊙P 的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.参考答案与解析1.C 2.D 3.A 4.D 5.C6.C 解析:根据勾股定理得斜边为82+152=17,则该直角三角形能容纳的圆形(内切圆)半径r =8+15-172=3(步),即直径为6步.7.C 解析:连接OE 、OF .∵CD 是⊙O 的切线,∴OE ⊥CD ,∴∠OED =90°.∵四边形ABCD 是平行四边形,∠C =60°,∴∠A =∠C =60°,∠D =120°.∵OA =OF ,∴∠A =∠OF A =60°,∴∠DFO =120°,∴∠EOF =360°-∠D -∠DFO -∠DEO =30°,∴FE ︵的长=30π·6180=π.8.D 解析:①∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD ⊥BD ,∴①正确;②∵∠AOC 是⊙O 的圆心角,∠AEC 是⊙O 的圆内部的角,∴∠AOC ≠∠AEC ,∴②错误;③∵OC ∥BD ,∴∠OCB =∠DBC .∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠DBC ,∴CB 平分∠ABD ,∴③正确;④∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD ⊥BD .∵OC ∥BD ,∴∠AFO =90°.∵点O 为圆心,∴AF =DF ,∴④正确;⑤由④有AF =DF ,∵点O 为AB 中点,∴OF 是△ABD 的中位线,∴BD =2OF ,∴⑤正确;⑥∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,∴⑥错误.9.4-7 解析:连接OC .∵弦CD ⊥AB 于点E ,CD =6,∴CE =ED =12CD =3.在Rt △OEC 中,∠OEC =90°,CE =3,OC =4,∴OE =42-32=7,∴BE =OB -OE =4-7.10.45 解析:连接OD .∵CD 是⊙O 的切线,∴OD ⊥CD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD =90°.∵OA =OD ,∴∠A =∠ADO =45°,∴∠C =∠A =45°.11.π2 解析:由题意可得△ABC ≌△ADE .∵∠C =90°,∠BAC =60°,AC =1,∴AB =2.∵∠DAE =∠BAC =60°,∴S 扇形BAD =60×π×22360=2π3,S扇形△CAE =60π×12360=π6,∴S 阴影=S扇形DAB+S △ABC -S △ADE -S 扇形ACE =2π3-π6=π2.12.24 解析:如图,设AB 与⊙O 相切于点F ,连接OF ,OD ,延长FO 交CD 于点E .∵2πR =26π,∴R =13,∴OF =OD =13.∵AB 是⊙O 的切线,∴OF ⊥AB .∵AB ∥CD ,∴EF ⊥CD ,即OE ⊥CD ,∴CE =ED .∵EF =18,OF =13,∴OE =5.在Rt △OED 中,∵∠OED =90°,OD =13,OE =5,∴ED =OD 2-OE 2=12,∴CD =2ED =24.13.392 解析:作直径AE ,连接CE ,∴∠ACE =90°.∵AH ⊥BC ,∴∠AHB =90°,∴∠ACE =∠AHB .又∵∠B =∠E ,∴△ABH ∽△AEC ,∴AB AE =AH AC ,∴AB =AH ·AEAC.∵AC =24,AH =18,AE =2OC =26,∴AB =392.14.14πr 解析:∵OC =r ,CD ⊥OA ,∴DC =OC 2-OD 2=r 2-OD 2,∴S △OCD =12OD ·r 2-OD 2,∴()S △OCD 2=14OD 2·(r 2-OD 2)=-14OD 4+14r 2OD 2=-14(OD 2-r 22)2+r 416,∴当OD 2=r 22,即OD =22r 时,△OCD 的面积最大,∴∠OCD =45°,∴∠COA =45°,∴AC ︵的长=45πr 180=14πr .15.(1)证明:∵ED =EC ,∴∠EDC =∠C .∵∠B +∠ADE =180°,∠EDC +∠ADE =180°,∴∠B =∠EDC ,∴∠B =∠C ,∴AB =AC ;(2)解:连接AE .∵AB 为直径,∴AE ⊥BC .由(1)知AB =AC ,∴AC =4,BE =CE =12BC= 3.∵∠C =∠C ,∠EDC =∠B ,∴△EDC ∽△ABC ,∴CE AC =CDBC,即CE ·BC =CD ·AC ,∴3·23=4CD ,∴CD =32.16.解:(1)连接OD .∵OA ⊥OB ,∴∠AOB =90°.∵CD ∥OB ,∴∠OCD =90°.在Rt △OCD 中,∵C 是AO 的中点,CD =3,∴OD =2OC .设OC =x ,∴x 2+(3)2=(2x )2,∴x =1,∴OD =2,∴⊙O 的半径为2;(2)∵sin ∠CDO =OC OD =12,∴∠CDO =30°.∵FD ∥OB ,∴∠DOB =∠CDO =30°,∴S 阴影=S △CDO +S 扇形OBD -S 扇形OCE =12×1×3+30π×22360-90π×12360=32+π12.17.(1)证明:连接OD .∵OB =OD ,∴∠OBD =∠BDO .∵∠CDA =∠CBD ,∴∠CDA =∠ODB .又∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠ADO +∠ODB =90°,∴∠ADO +∠CDA =90°,即∠CDO =90°,∴OD ⊥CD .∵OD 是⊙O 的半径,∴CD 是⊙O 的切线;(2)解:∵∠C =∠C ,∠CDA =∠CBD ,∴△CDA ∽△CBD ,∴CD BC =AD BD .∵AD BD =23,BC=6,∴CD =4.∵CE ,BE 是⊙O 的切线,∴BE =DE ,BE ⊥BC ,∴BE 2+BC 2=EC 2,即BE 2+62=(4+BE )2,解得BE =52.18.解:(1)原点O 在⊙P 外.理由如下:∵直线y =3x -23与x 轴、y 轴分别交于A ,B 两点,∴点A 的坐标为(2,0),点B 的坐标为(0,-23).在Rt △OAB 中,tan ∠OBA =OAOB =223=33,∴∠OBA =30°.如图①,过点O 作OH ⊥AB 于点H ,在Rt △OBH 中,OH =OB ·sin ∠OBA = 3.∵3>1,∴原点O 在⊙P 外;(2)如图②,当⊙P 过点B 时,点P 在y 轴右侧时,∵PB =PC ,∴∠PCB =∠OBA =30°,∴⊙P 被y 轴所截的劣弧所对的圆心角的度数为180°-30°-30°=120°,∴弧长为120°×π×1180=2π3;同理:当⊙P 过点B 时,点P 在y 轴左侧时,弧长同样为2π3.∴当⊙P 过点B 时,⊙P 被y 轴所截得的劣弧的长为2π3; (3)如图③,当⊙P 与x 轴相切时,且位于x 轴下方时,设切点为D ,作PD ⊥x 轴,∴PD ∥y 轴,∴∠APD =∠ABO =30°.在Rt △DAP 中,AD =DP ·tan ∠DP A =1×tan30°=33,∴OD =OA -AD =2-33,∴此时点D 的坐标为⎝⎛⎭⎫2-33,0;当⊙P 与x 轴相切时,且位于x 轴上方时,根据对称性可以求得此时切点的坐标为⎝⎛⎭⎫2+33,0.综上所述,当⊙P 与x 轴相切时,切点的坐标为⎝⎛⎭⎫2-33,0或⎝⎛⎭⎫2+33,0.。