浙教版九年级数学上册期末综合检测试卷(有答案)
- 格式:docx
- 大小:215.42 KB
- 文档页数:11
浙教版九年级数学学上册期末综合检测试卷一、单选题(共10题;共30分)1.把标有1~10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是()A. B. C. D.2.已知圆锥侧面积为10πcm2,侧面展开图的圆心角为36º,圆锥的母线长为()A. 100cmB. 10cmC. cmD. cm3.已知⊙O的半径是10cm,是120°,那么弦AB的弦心距是()A. 5cmB. cmC. cmD. cm4.某中学周末有40人去体育场观看足球赛,40张票分别为A区第2排1号到40号,小明同学从40张票中随机抽取一张,则他抽取的座位号为10号的概率是A. B. C. D.5.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是A. B. C. D.6.如图,在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,如果要在AB上找一点E,使△ADE 与△ABC相似,则AE的长为()A. B. C. 3 D. 或7.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,∠APD=30°,则∠ADP的度数为()A. 45°B. 40°C. 35°D. 30°8.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁9.若△ABC∽△DEF,且AB:DE=1:3,则S△ABC:S△DEF=()A. 1:3B. 1:9C. 1:D. 1:1.510.已知如图,圆锥的母线长6cm,底面半径是3cm,在B处有一只蚂蚁,在AC中点P处有一颗米粒,蚂蚁从B爬到P处的最短距离是()A. 3 cmB. 3 cmC. 9cmD. 6cm二、填空题(共10题;共30分)11.将抛物线y=x2-2向上平移一个单位后,得一新的抛物线,那么新的抛物线的表达式是________.12.质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是________13.若A(,),B(,),C(1,)为二次函数y= +4x﹣5的图象上的三点,则、、的大小关系是________.14.(2015•上海)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于________ .(只需写出一个符合要求的数)15.如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m<360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为________16.已知抛物线C1:y=﹣x2+4x﹣3,把抛物线C1先向右平移3个单位长度,再向上平移3个单位长度,得到抛物线C2,将抛物线C1和抛物线C2这两个图象在x轴及其上方的部分记作图象M.若直线y=kx+ 与图象M至少有2个不同的交点,则k的取值范围是________.17.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为________.18.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于________.19.如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=________°.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12,求⊙O的半径.22.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?23.一个口袋中有黑球10个,白球若干个,小明从袋中随机一次摸出10只球,记下其中黑球的数目,再把它们放回,搅均匀后重复上述过程20次,发现共有黑球18个,由此你能估计出袋中的白球是多少个吗?24.已知一抛物线与抛物线y=- x2+3形状相同,开口方向相反,顶点坐标是(-5,0),根据以上特点,试写出该抛物线的解析式.25.如图,在△ABC中,EF∥CD ,DE∥BC .求证:AF:FD=AD:DB .26.如图,在平面直角坐标系中,点O为坐标原点,平移抛物线y=x2﹣2x+3,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A,O,B为顶点的三角形是等腰直角三角形,求平移后的抛物线的解析式.27.如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。
【期末专题复习】浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A. 3B. 6C.D. 102.△ABC∽△A′B′C′,且∠A=68°,则∠A′=().A. 22°B. 44°C. 68°D. 80°3.如图,将△ABC绕点C顺时针方向旋转40°,得△A′B′C,若AC⊥A′B′,则∠A等于()A. 50°B. 60°C. 70°D. 80°4.随机掷一枚均匀的硬币20次,其中有8次出现正面,12次出现反面,则掷这枚均匀硬币出现正面的概率是()A. B. C. D.5.已知抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A. t>-5B. -5<t<3C. 3<t≤4D. -5<t≤4=()6.如图,在平行四边形ABCD中,E是BC延长线上一点,AE交CD于点F,且CE=BC,则 △△A. B. C. D.7.如图,已知矩形ABCD中,AB=3,BE=2,EF⊥BC.若四边形EFDC与四边形BEFA相似而不全等,则CE=()A.3B.3.5C.4D.4.58.如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD相交于点F,DE:EC=2:3,则S△DEF:S△ABF等于()A. 4:25B. 4:9C. 9:25D. 2:39.一条排水管的截面如图.已知排水管的截面圆半径OB=10,水面宽AB是16,则截面水深CD是()A. 3B. 4C. 5D. 610.如图,二次函数y=ax2+bx+c的图象过(1,-1)和(3,0),则下列关于这个二次函数的描述,正确的是()A. y的最小值大于-1B. 当x=0时,y的值大于0C. 当x=2时,y的值等于-1D. 当x>3时,y的值大于0二、填空题(共10题;共33分)11.若抛物线的开口向上,则的取值范围是________.12.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为________cm13.一个不透明的盒子中有一定数量的完全相同的小球,分别标号为1,2,3,其中标号为1的小球有3个,标号为2的小球2个,标号为3的小球有m个,若随机摸出一个小球,其标号为偶数的概率为,则m 的值为________.14.如图,在平面直角坐标系xOy中,△ABC外接圆的圆心坐标是 ________,半径是 ________.15.抛物线y=﹣2x2+4x﹣1的对称轴是直线________ .16.如图,是半圆的直径,是一条弦,是的中点,于点且交于点,交于点.若,则________.17.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为________.18.(2017•无锡)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于________.19.如图,在扇形AOB中,∠AOB=900,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积是________.20.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D,E分别是AB,AC的中点,点G,F在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是________.三、解答题(共9题;共57分)21.如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).①画出△ABC关于y轴对称的△A1B1C1;②将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留)22.甲、乙两人做摸球游戏,在不透明的口袋里放入大小相同的两个黑球和两个白球,甲摸出两个球后放回,乙再摸出两个球,若摸出一黑一白甲赢,若摸出两个相同颜色的乙赢.这个游戏公平吗?为什么?23.已知函数y=(k﹣2)x k2﹣4k+5+2x是关于x的二次函数.求:(1)满足条件的k的值;(2)当k为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?24.某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x 元.(1)根据题意,完成下表:(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?25.亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?26.如图,在□ABCD中,AB=4,AD=6,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=.[MISSING IMAGE: , ](1)求AE的长;(2)求ΔCEF的周长和面积.27.某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.(1)求所获利润y (元)与售价x(元)之间的函数关系式;(2)为获利最大,商店应将价格定为多少元?(3)为了让利顾客,且获利最大,商店应将价格定为多少元?28.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).29.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A.D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】A4.【答案】B5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】B10.【答案】D二、填空题11.【答案】a>212.【答案】513.【答案】714.【答案】(5,2);15.【答案】x=116.【答案】17.【答案】18.【答案】3﹣﹣19.【答案】π20.【答案】≤l<13三、解答题21.【答案】①△A1B1C1如图所示②△A2BC2如图所示线段BC旋转过程中所扫过得面积S= = .22.【答案】解:画树状图如下:由树状图知,P(一黑一白), P(颜色相同),∵∴不公平23.【答案】解:(1)函数y=(k﹣2)x k2﹣4k+5+2x是关于x的二次函数,得,解得k=1或k=3;(2)当k=1时,函数y=﹣x2+2x有最高点;y=﹣(x﹣1)2+1,最高点的坐标为(1,1),当x<1时,y随x的增大而增大.24.【答案】解:(1)(2)设批发商可获得利润元,=当时,售价为:50-5=45(元),答:T恤的销售单价定为45元时该批发商可获得最大利润,最大利润为2250元.25.【答案】过A作CN的平行线交BD于E,交MN于F.由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,∠AEB=∠AFM=90°.又∵∠BAE=∠MAF,∴△ABE∽△AMF.∴,即:,解得MF=20m.∴MN=MF+FN=20+0.8=20.8m.∴住宅楼的高度为20.8m.26.【答案】27.【答案】解:(1)当x>120时,y1=﹣10x2+2500x﹣150000;当100<x<120时,y2=﹣30x2+6900x﹣390000;(2)y1=﹣10x2+2500x﹣150000=﹣10(x﹣125)2+6250;y2=﹣30x2+6900x﹣390000=﹣30(x﹣115)2+6750;6750>6250,所以当售价定为115元获得最大为6750元;(3)当涨价x=5(元)时,所获利润y1的最大值=6250(元);当降价x=5(元)时,所获利润y2的最大值=6750(元).∴为获利最大,应降价5元,即将价格定为115元.28.【答案】解:根据题意得:AB⊥BH,CD⊥BH,FG⊥BH,在Rt△ABE和Rt△CDE中,∵AB⊥BH,CD⊥BH,∴CD∥AB,可证得:△CDE∽△ABE∴①,同理:②,又CD=FG=1.7m,由①、②可得:,即,解之得:BD=7.5m,将BD=7.5代入①得:AB=5.95m≈6.0m.答:路灯杆AB的高度约为6.0m.29.【答案】(1)解:由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3(2)解:∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A.点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3 ,BC=∴△PBC的周长最小是:.(3)解:①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2)第11 页共11 页。
浙教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.在平面直角坐标系中,下列二次函数的图象开口向上的是()A .2y =B .221y x x =-++C .22y x x=-+D .20.5y x x=-+2.下列属于随机事件的是()A .从装满红球的口袋随意摸一个球是红球B .抛一个硬币,正好反面朝上C .从一副扑克牌任抽2张都是红心5D .抛一枚骰子两次出现点数之和为133.已知34x y =,则下列结论一定成立的是()A .3x =,4y =B .1y x -=C .34x y=D .74x y y +=4.Rt ABC ∆中,斜边12AB =,其重心与外心之间的距离为()A .2B .3C .4D .65.若点A 在⊙O 内,点B 在⊙O 外,OA =3,OB =5,则⊙O 的半径r 的取值范围是()A .0<r <3B .2<r <8C .3<r <5D .r >56.在平面直角坐标系中,将抛物线()21y x =+向右平移2个单位,再向下平移4个单位,得到的抛物线解析式是()A .()234y x =+-B .()214y x =--C .()234y x =++D .()214y x =-+7.角α,β满足045αβ<<<︒︒,下列是关于角α,β的命题,其中错误..的是()A .0sin α<<B .0tan 1β<<C .cos sin βα<D .sin cos βα<8.已知二次函数()()20y a x m a =->的图象经过点()1,A p -,()3,B q ,且p q <,则m 的值不可能...是()A .2-B .C .0D .529.如图,30MAN ∠=︒,O 是MAN ∠内部一点,O 与MAN ∠的边AN 相切于点B ,与边AM相交于点C ,D ,AB =OE CD ⊥于E ,OB =,则弦CD 的长是()A .B .C .4D .10.如图,E ,F ,G ,H 分别是矩形ABCD 四条边上的点,连结EG ,HF 相交于点O ,//EG AD ,//FH AB ,矩形BFOE ∽矩形OGDH ,连结AC 交EG ,FH 于点P ,Q .下列一定能求出BPQ ∆面积的条件是()A .矩形BFOE 和矩形OGDH 的面积之差B .矩形ABCD 与矩形BFOE 的面积之差C .矩形BFOE 和矩形FCGO 的面积之差D .矩形BFOE 和矩形EOHA 的面积之差二、填空题11.比例式453x=中x 的值等于___________.12.为估计种子的发芽率,做了10次试验.每次种了1000颗种子,发芽的种子都是950颗左右,预估该种子的发芽率是___________.13.如图,点D 在钝角ABC 的边BC 上,连接AD ,45B ∠=︒,CAD CDA ∠=∠,:5:7CA CB =,则CAD ∠的余弦值为__________.14.如图,直线AB 与抛物线2y ax bx c =++(0a >)相交于()2,5A -,()5,12B 两点,点P 是抛物线上位于直线AB 下方的点,则点P 的横坐标m 的取值范围是___________.15.如图,点A ,B ,C 都在O 上,2tan 3ABC ∠=,将圆O 沿BC 翻折后恰好经过弦AB 的中点D ,则BCAB的值是___________.16.如图,矩形OABC 中,3OA =,5AB =,抛物线2y x bx c =++的顶点为P ,且经过点(),M m n 和()4,N m n +,其中点M ,N 位于矩形OABC 的内部(不含边界),则MNP ∆的面积是___________,b c +的取值范围是___________.三、解答题17.计算:22sin 60cos 303tan 45︒+︒+︒.18.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得元购物券,最多可得元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.19.由36个边长为1的小正方形组成的66⨯网格中,线段AB 的两个端点在格点上.(1)如图1,C ,D 也在格点上,连结AB ,CD 相交于点O ,求AOBO的值和OC 的长;(2)如图2,仅用无刻度直尺在线段AB 上找一点M ,使得23AM MB =.20.如图,在东西方向的海岸线l 上有长为300米的码头海岸AB ,在码头的最西端A 处测得轮船M 在它的北偏东45︒方向上;同一时刻,在A 处正东方向距离A 处50米的C 处测得轮船M 在北偏东37︒方向上.(1)求轮船M 到海岸线l 的距离;(结果保留整数米)(2)如果轮船M 沿着南偏东22︒的方向就行,那么该轮船能否行至码头海岸AB 靠岸?请说明理由.(参考数据:sin 370.60︒≈,tan 370.75︒≈,sin 220.37︒≈,tan 220.40︒≈)21.如图,在锐角ABC ∆,4AB BC ==,以BC 为直径画O 交AC 于点D ,过点D 作DE AB ⊥于点E .(1)求证:DE 是O 的切线;(2)当4AC AE =时,求阴影部分弓形的面积.22.(1)抛物线y =ax 2+c 经过点A (2,3),点B (-1,-3)两点,求该抛物线的解析式.(2)如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?23.ABC ∆和ADE ∆均是等腰直角三角形,其中90ACB AED ∠=∠=︒.如图1,开始时,//DE AC ,现在固定ABC ∆将ADE ∆绕着点A 按顺时针方向旋转α(0180α︒<<︒).(1)当ADE ∆中的DE 边旋转到与ABC ∆的某条边平行时,旋转角α的度数是;(2)如图2,连结BD ,CE ,求证:ABD ACE ∆∆∽;(3)若2AB AD =,在ADE ∆的旋转过程中,当C ,D ,E 三点在同一条直线上时,请画出图形求DBC ∠的度数.24.定义:若一个三角形存在两个内角之差是第三个内角的两倍,则称这个三角形为关于第三个内角的“差倍角三角形”.例如,在ABC ∆中,100A ∠=︒,60B ∠=︒,20C ∠=︒,满足2A B C ∠-∠=∠,所以ABC ∆是关于C ∠的“差倍角三角形”.(1)若等腰ABC ∆是“差倍角三角形”,求等腰三角形的顶角A ∠的度数;(2)如图1,ABC ∆中,3AB =,8AC =,9BC =,小明发现这个ABC ∆是关于C ∠的“差倍角三角形”.他的证明方法如下:证明:在BC 上取点D ,使得1BD =,连结AD ,(请你完成接下去的证明)(3)如图2,五边形ABCDE 内接于圆,连结AC ,AD 与BE 相交于点F ,G , AB BCDE ==,ABE ∆是关于AEB ∠的“差倍角三角形”.①求证:四边形CDEF 是平行四边形;②若1BF =,设AB x =,CDEFAEGS y S ∆=四边形,求y 关于x的函数关系式.参考答案1.A 【分析】二次函数y =ax 2+bx +c (a ≠0),①当a >0时,抛物线y =ax 2+bx +c (a ≠0)的开口向上;②当a <0时,抛物线y =ax 2+bx +c (a ≠0)的开口向下,据此判断即可.【详解】解:A 、∵a0,∴2y =的图象开口向上,故本选项符合题意;B 、∵a =﹣1<0,∴y =﹣x 2+2x +1的图象开口向下,故本选项不符合题意;C 、∵a =﹣2<0,∴y =﹣2x 2+x 的图象开口向下,故本选项不符合题意;D、∵a=﹣0.5<0,∴y=﹣0.5x2+x的图象开口向下,故本选项不符合题意;故选:A.【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.2.B【分析】根据事件发生的可能性大小判断.【详解】解:A、从装满红球的口袋随意摸一个球是红球,是必然事件;B、抛一枚硬币,正好反面朝上,是随机事件;C、从一副扑克牌中任抽2张都是红心5,是不可能事件;D、抛一枚骰子两次出现点数之和为13,是不可能事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D【分析】根据比例的基本性质以及合比性质进行判断,即可得出结论.【详解】解:A.由34xy=,不能得到x=3,y=4,故本选项错误;B.由34xy=,不能得到y﹣x=1,故本选项错误;C.由34xy=,可得4x=3y;由34xy=,可得xy=12,故本选项错误;D.由34xy=,可得3114xy+=+,即74x yy+=,故本选项正确.故选:D.【点睛】本题主要考查了比例的性质.利用“两内项之积等于两外项之积”是解题的关键.4.A【分析】根据直角三角形的性质得到162CD AB==,根据重心的性质求解即可;【详解】∵直角三角形的外心是斜边的中点,∴162CD AB==,∵M是Rt ABC∆的重心,∴123DM DC==;故答案选A.【点睛】本题主要考查了直角三角形的性质,三角形的重心和三角形的外心,准确计算是解题的关键.5.C【分析】直接根据点与圆的位置关系的判定方法求解.【详解】解:∵点A在半径为r的⊙O内,点B在⊙O外,∴OA小于r,OB大于r,∵OA=3,OB=5,∴3<r<5.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.6.B 【分析】找出抛物线的顶点坐标,将其按要求平移后可得出新抛物线的顶点坐标,进而即可得出抛物线的解析式.【详解】解:∵抛物线y=(x+1)2的顶点坐标为(-1,0),∴平移后抛物线的顶点坐标为(1,-4),∴平移后抛物线的解析式为y=(x-1)2-4.故选:B .【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出平移后抛物线的解析式是解题的关键.7.C 【分析】由角α,β满足045αβ<<<︒︒,确定锐角三角函数的增减性,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,利用45°函数值的分点即可确定答案.【详解】解:角α,β满足045αβ<<<︒︒,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,A.∵sin 45=2︒,∴0<sin α<2,选项A 正确,不合题意;B .∵tan 45=1︒,∴0tan 1β<<,选项B 正确,不合题意;C .sin 45=2︒,cos 45=2︒,cos ,sin 22βα><,cos sin βα>,选项C 不正确,符合题意;D .sin 45=2︒,cos 45=2︒,cos 22αβ><,sin cos βα<,选项D 正确,不符合题意.【点睛】本题考查锐角三角函数值的大小比较问题,掌握函数的增减性质利用45°函数值的特殊关系是解题关键.8.D 【分析】根据二次函数图象上点的坐标特征得到m +1<3﹣m 或m ≤﹣1,解得即可.【详解】解:∵二次函数y =a (x ﹣m )2(a >0),∴抛物线的开口向上,对称轴为直线x =m ,∵图象经过点A (﹣1,p ),B (3,q ),且p <q ,∴m +1<3﹣m 或m ≤﹣1解得m <1,故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.9.C 【分析】延长BO 交AM 点F ,计算BF ,后计算OB ,OC ,OE ,最后,运用垂径定理计算即可.【详解】如图,延长BO 交AM 点F ,连接OC ,∵O 与MAN ∠的边AN 相切,∴∠ABF=90°,∵30MAN ∠=︒,AB =∴BF=3,∠AFB=60°,∠FOE=30°,设EF=x ,则OF=2x ,,∵OB =,∴OB=3x ,∴BF=OB+OF=5x ,∴,∴∴,⊥,∵OE CD∴在直角三角形OCE中,=,根据垂径定理,得CD=2CE=4,故选C.【点睛】本题考查了切线的性质,直角三角形的性质,垂径定理,会用延长线段BO构造特殊的直角三角形是解题的关键.10.A【分析】设BF=a,BE=b,BE=b,AE=kb,根据△AEP∽△ABC,△FQC∽△ABC,分别用含a、b、k的式子表示出EP、FQ,利用割补法表示出△BPQ面积,即可求解.【详解】解:设BF=a,BE=b,BE=b,AE=kb,∵EP∥BC,∠AEP=∠ABC=90°,∴△AEP∽△ABC,∴==1AE EP k AB BC k +,∴()111k k EP BC k a ka k k ==+=++ ,同理,△FQC ∽△ABC ,∴==1FQ FC k AB BC k +,∴()111k k FQ BA k b kb k k ==+=++ ,∵BPQ ABC ABP BQCS S S S =--△△△△()()()()1111111222k a k b k b ka k a kb =++-+-+ ()2112ab k =-,∵2BEOF HOGD S ab S k ab ==矩形矩形,,∴ BPQ S ()12BEOFHOGD S S =-矩形矩形.故选:A【点睛】本题为三角形相似知识的综合,综合性较强,根据题意设出参数,根据相似表示出相关线段,恰当利用割补法进行转换是解题关键.11.154【分析】根据比例的性质列出方程,通过解方程求得x 的值即可.【详解】解:∵453x=,∴4x =15,解得x =154,故答案为:154.【点睛】本题主要考查了比例的性质.利用“两内项之积等于两外项之积”列出方程是解题的关键.12.95%【分析】根据发芽率的意义,求出发芽的种子数占实验种子总数的百分比即可.【详解】解:(950×10)÷(1000×10)×100%=95%,故答案为:95%.【点睛】本题考查频率估计概率,理解发芽率的意义是正确计算的前提.13【分析】作AH ⊥BC 于H ,设AC═CD=5k ,则BC=7k ,设AH=BH=x ,在Rt △ACH 中,利用勾股定理求得x 的值(x 用k 表示,求得的值需淘汰不构成钝角三角形的值),然后表示AD ,DH ,利用余弦的定义即可求得.【详解】解:如图作AH ⊥BC 于H ,∵CAD CDA ∠=∠,:5:7CA CB =,设AC═CD=5k ,BC=7k ,∵∠B=45°,∠AHB=90°,∴AH=BH ,设AH=BH=x ,在Rt △ACH 中,∵AH 2+HC 2=AC 2,∴x 2+(7k-x )2=(5k )2,解得x=3k 或4k ,当x=4k 时,即AH=4k ,HC=7k-4k=3k ,AH>HC ,此时根据大边对大角,∠HAC<∠HCA ,又∠HAC+∠HCA=90°,∴∠HAC<45°,∴∠BAC<90°,与△ABC 为钝角三角形矛盾,故x=4k 舍去,当x=3k 时,∴BH=AH=3k ,HC=7k-3k=4k ,DH=k ,∴AD ==,∴cos cosDH CAD ADH AD ∠=∠==【点睛】本题考查解直角三角形,等腰三角形的判定定理,勾股定理,一元二次方程的应用等.解决本题的关键是作辅助线构造直角三角形,注意作辅助线时尽量不要破坏已给的角.14.25m -<<【分析】先求出直线AB 的解析式为:7y x =+,点P 是抛物线上位于直线AB 下方的点,点P 的横坐标满足27x ax bx c +>++,由27x ax bx c +=++的两根为x 1=-2,x 2=5,不等式的解集是25x -<<,点P 的横坐标m 的取值范围即可求出.【详解】解:直线AB 与抛物线2y ax bx c =++(0a >)相交于()2,5A -,()5,12B 两点,设直线AB 的解析式为:y kx b =+,由直线过A 、B 代入解析式得25512k b k b -+=⎧⎨+=⎩,解得17k b =⎧⎨=⎩,直线AB 的解析式为:7y x =+,点P 是抛物线上位于直线AB 下方的点,点P 的横坐标满足27x ax bx c +>++,由27x ax bx c +=++的两根为x 1=-2,x 2=5,不等式的解集是25x -<<.∴点P 的横坐标m 的取值范围是25m -<<.故答案为:25m -<<.【点睛】本题考查直线解析式的求法,方程的解,利用图像解不等式,掌握直线解析式的求法,方程的解,利用图像解不等式,根据点P 的位置构造不等式27x ax bx c +>++是解题关键.15.4【分析】如图,连接AC ,CD ,过点C 作CE ⊥AB 于E .设AD =DB =2a .想办法用a 表示BC 即可解决问题.【详解】解:如图,连接AC ,CD ,过点C 作CE ⊥AB 于E .∵D 为AB 的中点,设AD =DB =2a∵∠ABC =∠CBD ,∴ AC CD=,∴CA =CD ,∵CE ⊥AD ,∴AE =ED =a ,∴BE =DE +DB =3a ,∵2tan 3∠==C EC EB AB ,∴EC =2a ,∴BC =,∴44BC AB a ==,【点睛】本题考查圆周角定理,圆心角、弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.842b c -<+<【分析】根据题意,先把抛物线的一次项系数和常数项用含,m n 的式子表示出来,从而表示出点P 的坐标,再利用两点间的距离求出MN 的长,和点P 到MN 的距离,即可求出三角形的面积;再根据点M ,N 在矩形内部求出,m n 的范围,进而可求b c +的范围【详解】点M 和点N 的纵坐标均为n 可知,M 与N 关于对称轴对称,点M (m 、n )点N (4m +、n )∴MN 的距离为:44m m +-=∴点P 的横坐标为:2m + 抛物线2y x bx c =++的对称轴为:2bx =-22b m ∴-=+24b m ∴=--将点M (m 、n )代入2y x bxc =++得:2m bm c n ++=,则24c m m n =++①,点P 为抛物线的顶点,则点P 的纵坐标为:22244416164444ac b c m m c m m a ----==---,将①式代入得P 点的坐标为(2m +、4n -)∴点P 到MN 的距离为:()44n n --=14482PMN S ∴=⨯⨯=△2224424b c m m m n m m n +=--+++=++- ②点M 在矩形的内部,045m m >⎧∴⎨+<⎩01m ∴<< 点N 在矩形的内部03n ∴<<代入②式有:42b c -<+<故答案为:①8;②42b c -<+<【点睛】本题考查了二次函数的性质以及二次函数图像上点的特征,解题关键是用含,m n 式子表示出点P 的坐标,结合题意求出,m n 的范围17.74【分析】分别把各角的三角函数值代入原式,再由二次根式混合运算的法则进行计算即可.【详解】解:原式22122⎛=⨯- ⎝⎭,314+,74=.【点睛】本题考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.18.(1)20,80;(2)58.【分析】(1)若两次都转向“10元”,该顾客最少可得20元购物券,若两次都转向“40元”,最多可得80元购物券.(2)画树状图或列表即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【详解】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)画树状图得:∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况,∴该顾客所获购物券金额不低于50元的概率为:105168=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(1)34,157;(2)见解析【分析】(1)由//AB CD ,可证AOC BOD ∆∆∽,由性质知34AO CO AC BO DO BD ===,由勾股定理求出22345CD =+=,利用比例即可求出CO 的长;(2)从A 向左取两个格为E ,过B 向右取三个格为F ,连结EF 交AB 与点M ,构造相似,利用相似比即可求出M 满足条件.【详解】解:(1)由图知:3AC =,4BD =,∵//AB CD ,∴A B∠=∠,C D∠=∠.∴AOC BOD∆∆∽,∴34 AO CO ACBO DO BD===,∵5 CD=,∴31577 CO CD==,(2)从A向左取两个格为E,过B向右取三个格为F,连结EF交AB与点M,∵AE∥BF,∴∠A=∠B,∠E=∠F,∴△AEM∽△BFM,∴AE AM2== BF BM3,如图,点M是所求作的点.【点睛】本题考查网格作图问题,与平行线性质,相似三角形的判定与性质,掌握网格作图经常利用相似或全等解决问题.20.(1)轮船M到海岸线l的距离为200米;(2)该轮船能行至码头海岸AB靠岸【分析】(1)过点M作MD⊥AC交AC的延长线于D,设DM=x,解直角三角形即可得到结论;(2)作∠DMF=22°,交l于点F.解直角三角形即可得到结论.【详解】解:(1)过点M作MD⊥AC交AC的延长线于D,设DM=x,∵在Rt △CDM 中,CD=DM•tan ∠CMD=x•tan37°,又∵在Rt △ADM 中,∠MAC=45°,∴AD=DM ,∵AD=AC+CD=50+x•tan37°,∴50+x•tan37°=x ,∴50502001tan 3710.75x ︒=≈=--,答:轮船M 到海岸线l 的距离约为200米;(2)作∠DMF=22°,交l 于点F ,在Rt △DMF 中,DF=DM•tan ∠FMD=DM•tan22°≈200×0.40=80(米),∴AF=AC+CD+DF=DM+DF≈200+80=280<300,所以该轮船能行至码头AB 靠岸.【点睛】本题考查了解直角三角形的应用-方向角问题,读懂题目信息并作出辅助线构造成直角三角形是解题的关键.21.(1)见解析;(2)23π【分析】(1)连接OD ,由等腰三角形的性质得到,∠A =∠C,∠ODC =∠C ,∠A =∠ODC,可得OD ∥AB,根据平行线的性质得到OD ⊥DE ,于是得到DE 是⊙O 的切线;(2)根据等腰三角形的性质得到AD =CD ,根据直角三角形的性质得到∠ADE =30°,求得∠A =60°,然后根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)连结OD ,∵OD OC =,∴∠=∠C ODC .∵AB BC =,∴C A ∠=∠.∴A ODC ∠=∠.∴OD ∥AB .∵DE AB ⊥,∴DE OD ⊥,而OD 是圆O 的半径,∴DE 是O 的切线.(2)连结BD ,∵BD ⊥AC ,AB =BC ,∴AD =CD ,∵AC =4AE ,∴AD =2AE ,∵∠AED =90°,∴∠ADE =30°,∴∠A =60°,∴∠ABD =∠CBD =30°,∴∠COD =60°,AD =CD =12AB =2,BD =2AB =∴2602112360223S BD CD ππ⨯⨯=-⨯⨯⋅=-阴影【点睛】本题考查了切线的判定和性质,等腰三角形的性质,直角三角形的性质,扇形面积的计算,正确的作出辅助线是解题的关键.22.(1)y=2x 2-5;(2)2.25m.【分析】(1)把点A (2,3),点B (-1,-3)代入y=ax 2+c ,解方程组即可得到结论;(2)先求出顶点坐标,然后设抛物线的解析式为y=a (x-1)2+3(0≤x≤3),将(3,0)代入求得a 值,则x=0时得的y 值即为水管的长.【详解】解:(1)把点A (2,3),点B (-1,-3)代入y=ax 2+c 得,433a c a c +=⎧⎨+=-⎩,解得:25a c =⎧⎨=-⎩,∴该抛物线的解析式为:y=2x 2-5;(2)∵在距池中心的水平距离为1m 时达到最高,高度为3m ,∴抛物线的顶点坐标为(1,3),∴设抛物线的解析式为:y=a (x-1)2+3(0≤x≤3),代入(3,0)求得:a=-.将a 值代入得到抛物线的解析式为:y=34-(x-1)2+3(0≤x≤3),令x=0,则y=94=2.25.故水管长为2.25m ;【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.23.(1)45︒或90︒;(2)见解析;(3)图见解析,15DBC ∠=︒或75︒.【分析】(1)分2种情况进行讨论:AB ∥DE 、BC ∥DE ,分别画出图形,计算出度数即可;(2)根据等腰直角三角形的性质得出2AC AE AB AD ==,∠BAC=∠DAE=45°,即可得出∠BAD=∠CAE ,从而证得△ABD ∽△ACE ;(3)由(2)可知,△ABD ∽△ACE ,得到∠ABD=∠ACE=90°,根据AB=2AD 得出∠ACE=30°,即可得出∠DBC=15°或75°.【详解】解:(1)当△ADE 中的DE 边旋转到与△ABC 的某条边平行时,旋转角α的度数是45°,90°.①当AB ∥DE 时,α=45°;②当DE ∥BC 时,α=90°;∴旋转角α的所有可能的度数为45°,90°.故答案为45°,90°;(2)∵△ABC 和△ADE 均是等腰直角三角形,其中∠ACB=∠AED=90°.∴22AC AE AB AD ==,∠BAC=∠DAE=45°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE ,∴△ABD ∽△ACE ;(3)如图,由BAD CAE ∆∆∽得,ABD ACE ∠=∠,2ACABAE AD ==.在Rt ACE ∆中,90AEC ∠=︒,2AC AE =,∴30ACE ∠=︒,∴30ABD ACE ∠=∠=︒.∴453015DBC ∠=︒-︒=︒.如图,在BAD CAE ∆∆∽得,ABD ACE ∠=∠,2AC AB AE AD==.在Rt ACE ∆中,90AEC ∠=︒,2AC AE =,∴30ACE ∠=︒,∴30ABD ACE ∠=∠=︒.∴453075DBC ∠=+=︒︒︒.∴15DBC ∠=︒或75︒.【点睛】本题考查了作图-旋转变换,等腰直角三角形的性质,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.24.(1)108A ∠=︒;(2)见解析;(3)①见解析;②22421x y x -=-【分析】(1)利用“差倍角三角形”的意义,建立方程求解,即可得出结论;(2)先判断出∠C=∠BAD ,进而判断出∠CAD=∠ADC ,即可得出结论;(3)①先判断出∠CAD=∠ABE ,进而得出AC ∥DE ,即可得出结论;②先判断出△ABF ∽△EBA ,得出BE=x 2进而得出CD=x 2-1,AE=x 2-1,AF=21x x-,再判断出221-x x ,即可得出结论【详解】解:(1)设等腰三角形的顶角∠A 为2x ,则等腰三角形的底角为90°-x ,∵等腰△ABC 是“差倍角三角形”,∴90°-x-2x=2×2x ,∠A=2x=108°,∴顶角∠A 的度数为108°;(2)∵3AB =,1BD =,9BC =,∴ABBDBC AB =.又∵B B ∠=∠,∴BAD BCA ∆∆∽.∴BAD C ∠=∠.设BAD C α∠=∠=.∵8CA CD ==,∴1902DAC ADC α∠=∠=︒-.∴3902B α︒∠=-,1902BAC α∠=︒+.∴2BAC B C ∠-∠=∠.∴ABC ∆是差倍角三角形.(3)①证明:连结CE ,∵»»BC DE =,∴ECD BEC ∠=∠,∴BE CD ∥.∵ AB BC DE ==,∴AEB BAC DAE ∠=∠=∠.∵ABE ∆是关于AEB ∠的差倍角三角形,∴2FAG BAE BAC DAE BAE AEB ABE ∠=∠-∠-∠=∠-∠=∠.∴FAG ABE ADE ∠=∠=∠.∴//AC DE .∴四边形CDEF 是平行四边形②∵∠BAF=∠AEB ,∠ABF=∠EBA ,∴△ABF ∽△EBA ,∴ABBF AFBE AB AE ==,∴2221AB x BE x BF ===,∴EF=BE-BF=x 2-1,∵四边形CDEF 是平行四边形,∴CD=EF=x 2-1,∵ AE CD =,∴AE=CD=x 2-1,∴222(1)1AB AE x x x AF BE x x ⋅--===,过点B 作BM ⊥AC 于M ,EN ⊥AC 于N,∴BM ∥EN ,∴△BFM ∽△EFN ,∴211BM BF EN EF x ==-,∴211BM ENx =-过点G 作GH ⊥AE 于H ,∵∠BAC=ACB=∠AEG=∠EAG ,∴△ABC ∽△AGE ,∴BM ACGH AE =,∴22222112111(1)EN x x x x GH GH x x x ---===--,∴221EN x GH x -=,∴22222221421112CDEFAEGS DE EN DE EN x x xyS AE GH x x xAE GH∆⋅--===⋅=⋅=--⋅四边形.【点睛】此题是圆的综合题,主要考查了相似三角形的判定和性质,圆周角定理,新定义,平行四边形的判定和性质,构造出相似三角形判断出221EN xGH x-=是解本题的关键.。
浙教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.若32y x =,则x yx +的值为()A .32B .5C .52D .122.在一个不透明的盒子中有1个白球和3个红球,它们除颜色外其余都相同,从盒子里任意摸出1个球,摸到白球的概率是()A .12B .13C .14D .153.将抛物线2y x =-向左平移3个单位,再向上平移5个单位,则平移后的抛物线解析式为()A .2(3)5y x =-++B .2(3)5y x =-+-C .2(3)5y x =--+D .2(3)5y x =---4.如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则EC 的长为()A .1B .2C .3D .45.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为()A .12cmB .18cmC .20cmD .24cm6.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则tan ADC ∠的值为()A .21313B .31313C .23D .327.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A 、B 、C 、D 、E 、O 均是正六边形的顶点.则点O 是下列哪个三角形的外心()A .AEDB .ABD △C .BCD △D .ACD△8.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=()A .30°B .36︒C .54︒D .45︒9.如图,CD 是Rt ABC 斜边AB 上的高,8AC =,6BC =,点O 是CD 上的动点,以O 为圆心作半径为1的圆,若该圆与ABC 重叠部分的面积为π,则OC 的最小值为()A .54B .43C .75D .5310.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)ky k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =()A .4B .92C .32D .5二、填空题11.正五边形每个内角的度数是_______.12.在一个有10万人的小镇随机调查了1000人,其中有100人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是_______.13.如图,已知⊙O 上三点A ,B ,C ,切线PA 交OC 延长线于点P ,若2OP OC =,则ABC ∠=_______.14.如图所示,正方形的顶点A 在矩形DEFG 的边EF 上,矩形DEFG 的顶点G 在正方形的边BC 上.已知正方形的边长为4,DG 的长为6,则DE 的长为_______.15.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).16.如图,直角ABC 的直角边长4AB BC ==,D 是AB 中点,线段PQ 在边AC 上运动,322PQ =PDBQ 面积的最大值为_______,周长的最小值为_______.三、解答题17.(1)计算:022sin 30(2021)tan 60π︒+--︒.(2)已知线段4a =,9b =,求线段a ,b 的比例中项.18.在一个不透明的盒子中有3个颜色、大小、形状完全相同的小球,小球上分别标有1,2,3这3个号码.(1)搅匀后从中随机抽出1个小球,抽到1号球的概率是_______.(2)搅匀后先从中随机抽出1个小球(不放回),再从余下的2个球中随机抽出1个球,求抽到的2个小球的号码的和为奇数的概率.19.如图,某海防哨所(O )发现在它的北偏西30°,距离哨所500m 的A 处有一艘船,该船向正东方向航行,经过3分钟到达哨所东北方向的B 处,求该船的航速.(精确到1/km h )20.如图,在ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,//DE AC ,//EF AB .(1)求证:BDE EFC :△△.(2)若35AF FC =,EFC 的面积是25,求ABC 的面积.21.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x (元/千克)55606570销售量y (千克)70605040(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?22.如图,在ABC 中,点O 是BC 中点,以O 为圆心,BC 为直径作圆刚好经过A 点,延长BC 于点D ,连接AD .已知CAD B ∠=∠.(1)求证:①AD 是⊙O 的切线;②ACD BAD :△△;(2)若8BD =,1tan 2B =,求⊙O 的半径.23.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,ABC 中,点D 是BC 边上一点,连接AD ,若2AD BD CD =⋅,则称点D 是ABC 中BC 边上的“好点”.(1)如图2,ABC 的顶点是43⨯网格图的格点,请仅用直尺画出(或在图中直接描出)AB 边上的“好点”;(2)ABC 中,14BC =,3tan 4B =,tan 1C =,点D 是BC 边上的“好点”,求线段BD 的长;(3)如图3,ABC 是⊙O 的内接三角形,点H 在AB 上,连结CH 并延长交⊙O 于点D .若点H 是BCD △中CD 边上的“好点”.①求证:OH AB ⊥;②若//OH BD ,⊙O 的半径为r ,且3r OH =,求CHDH的值.24.如图,在平面直角坐标系中,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,且∠OBC =30°,OB =3OA .(1)求抛物线y =ax 2+bx +3的解析式;(2)点P 为直线BC 上方抛物线上的一动点,P 点横坐标为m ,过点P 作PF //y 轴交直线BC 于点F ,写出线段PF 的长度l 关于m 的函数关系式;(3)过点P 作PD ⊥BC 于点D ,当 PDF 的周长最大时,求出 PDF 周长的最大值及此时点P 的坐标.参考答案【分析】由32y x =,设()30,y k k =≠则2,x k =再代入求值即可得到答案.【详解】解:32y x =,∴设()30,y k k =≠则2,x k =∴2355.222x y k k k x k k ++===故选:.C 【点睛】本题考查的是比例的基本性质,掌握设参数的方法解决有关比例的问题是解题的关键.2.C 【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【详解】解: 不透明的口袋里装有1个白球、3个红球,共有4个球,∴现随机从袋里摸出1个球是白球的概率为14;故选:C .【点睛】本题考查了概率的计算,熟练掌握概率公式是解题的关键.3.A 【分析】根据图象向左平移加,向上平移加,可得答案.【详解】解:将抛物线y=-x 2向左平移3个单位,再向上平移5个单位,平移后抛物线的解析式是y=-(x+3)2+5,故选:A .【点睛】本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.【详解】试题分析:根据平行线分线段成比例可得AD AEDB EC =,代入计算可得:643EC=,即可解EC=2,故选B .考点:平行线分线段成比例5.D 【分析】连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,由题意可知CD 为8,然后根据勾股定理求出BD 的长,进而可得出AB 的长.【详解】如图,连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,则AB=2BD ,∵圆的直径为26cm ,∴圆的半径r=OB=13cm ,由题意可知,CD=8cm ,∴OD=13-8=5(cm ),∴()12BD cm ==,∴AB=24cm ,故选:D .【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.6.C 【分析】根据圆周角定理可知,∠ABC=∠ADC.在Rt△ACB中,根据锐角三角函数的定义即可求出∠ABC的正切值,从而得出答案.【详解】连接BC、AC.∵∠ADC和∠ABC所对的弧都是 AC,∴根据圆周角定理知,∠ABC=∠ADC,∴在Rt△ACB中,2 tan3ACABCBC∠==,∴tan∠ADC=2 3,故选C.【点睛】本题主要考查锐角三角函数的定义和圆周角的知识点,解答本题的关键是利用圆周角定理把求∠ADC的正切值转化成求∠ABC的正切值.7.D【分析】根据三角形外心的性质,到三个顶点的距离相等,可以依次判断.【详解】答:因为三角形的外心到三角形的三个顶点的距离相等,所以由正六边形性质可知,点O 到A,B,C,D,E的距离中,只有OA=OC=OD.故选:D.【点睛】此题主要考查了三角形外心的性质,即到三角形三个顶点的距离相等.8.B【分析】连接OC ,易得四边形CDOE 是矩形,△DOE ≌△CEO ,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC ,∵∠AOB =90°,CD ⊥OA ,CE ⊥OB ,∴四边形CDOE 是矩形,∴CD ∥OE ,∴∠DEO =∠CDE ,由矩形CDOE 易得到△DOE ≌△CEO ,∴图中阴影部分的面积=扇形OBC 的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36,∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.9.D【分析】根据勾股定理求出AB=10,由OC 取最小值时,O 与BC 相切,证明△OCP ∽△BCD ∽△BAC 得出::3:4:5OP PC CO =,从而求出OC 的最小值.【详解】解:2S r ππ==∵圆O 的半径为1,且圆与ABC 重叠部分的面积为π,∴此圆全部在△ABC 内,如图,在Rt ABC 中,8AC =,6BC =,∴10AB =若OC 取最小值时,O 与BC 相切,设切点为P ,连接OP ,则OP ⊥BC∵CD ⊥AB∴∠OPC=∠CDB∵∠OCP=∠BCD∴△OCP ∽△BCD同理可证△BAC ∽△BCD∴△OCP ∽△BCD ∽△BAC∵::6:8:103:4:5BC AC AB ==∴::3:4:5OP PC CO =又∵OP=1∴OC=15533⨯=故选:D .【点睛】此题主要考查了相似三角形的判定与性质,勾股定理以及直线与圆的位置关系,证明△OCP ∽△BCD ∽△BAC 是解答此题的关键.10.B【分析】设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可.【详解】解:在k y x =中,设(,)(0)k B x k x >,则3k x x+=,(,)k C x x ∵AB 经过坐标原点,∴(,)k A x x--∵ABC 为直角三角形,且30A ∠=︒,∴∠60B =︒∴1,22BC AB AB BC ==又∵2AB OB=∴BC OB=∴3k x x ⎪+=⎪⎩解得,92=k 故选:B .【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.11.108︒【分析】先求出正n 边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为2180()n -⨯︒,∴正五边形的内角和是5218540(0)-⨯︒=︒,则每个内角的度数是5405108︒÷=︒.故答案为:108︒【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.12.10%【分析】由随机调查了1000人,其中100人看中央电视台的早间新闻,直接利用概率公式求解即可求得答案.【详解】解:∵随机调查了1000人,其中100人看中央电视台的早间新闻,∴在该镇随便问一个人,他看中央电视台早间新闻的概率大约是:10=10%100,故答案为:10%.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.30︒【分析】如图,连接,OA 先证明2,OP OA =再证明90,OAP ∠=︒利用三角函数求解60AOP ∠=︒,从而可得答案.【详解】解:如图,连接,OA ,2,OA OC OP OC == 2,OP OA ∴=PA 是O 的切线,90,OAP ∴∠=︒1cos ,2OA AOP OP ∴∠==60AOP ∴∠=︒,,AC AC= 11603022ABC AOC ∴∠=∠=⨯︒=︒,故答案为:30.︒【点睛】本题考查的是圆周角定理,圆的切线的性质,锐角三角函数的应用,掌握以上知识是解题的关键.14.83【分析】根据两角对应相等得出 AED CGD ,再根据相似三角形的性质得出=AD DE DG DC,从而得出DE 的长;【详解】解:∵四边形ABCD 是正方形,∴AD=DC=4,∠ADC=∠C=90°,∴∠GDC+∠ADG=90°,∵四边形DEFG 是矩形,∴∠EDG=∠E =90°,∴∠EDA+∠ADG=90°,∴∠GDC=∠EDA∴ AED CGD ,∴=AD DE DG DC ,∵DG=6∴4=64DE ∴83DE =【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的性质和判定是解题的关键15.③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0,b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1,∴12ba -=,∴b=-2a ;∵c+a+b >0,∴c-a >0,∴a-c <0,∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x 当p <0时,()()120<--p m x m x ∴()()120p m x m x --≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.16.11222+【分析】(1)连接DQ ,则可得四边形PDBQ DPQ BDQ S S S =+△△,根据已知条件分别表示出DPQ S 和BDQ S ,再根据AC 和PQ 的值求得四边形PDBQ 面积的最大值;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,设1BH D E ⊥于点H ,交AC 于点F ,据此可得,四边形1PD EQ 为平行四边形,因为四边形PDBQ的周长2BD PQ DP BQ EQ BQ =+++=++,周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,此时EQ BQ BE +=,再根据勾股定理求得BE 的长即可.【详解】(1)如图,连接DQ ,∴四边形PDBQ DPQ BDQ S S S =+△△,∵直角ABC 的直角边长4AB BC ==,D 是AB 中点,∴ABC 为等腰直角三角形,122BD AD AB ===,∴AC =设AP x =,∴AQ AP PQ x =+=+,∴CQ AC AQ x x =-==,设DPQ V 底边PQ 上的高为1h ,∴2h ===∴113222DPQ S PQ h =⨯⨯=⨯△,设BDQ △底边PQ 上的高为2h ,∴22h AQ ==,∴2113222222BDQ S BD h x x =⨯⨯=⨯⨯=+△,∴四边形PDBQ 3332222S x x =++=+,∴当x 最大时,四边形PDBQ 的面积最大,∵x 的最大值AC PQ =-=∴四边形PDBQ 的面积最大值1132=;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,∴四边形1PD EQ 为平行四边形,1DG AG D G ==,∴1DP D P EQ ==,又∵四边形PDBQ 的周长2BD PQ DP BQ EQ BQ =+++=++,∴周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,∴此时EQ BQ BE +=,设1BH D E ⊥于点H ,交AC 于点F ,∴BF AC ⊥,∴1DG AG D G FH ===∴BF AF ==∴BH BF FH =+==∴1FG D H AF AG ==-==∴112EH D E D H =-==,∴在Rt BEH 中,BE ==∴四边形PDBQ 的周长最小值2=.【点睛】本题考查了等腰直角三角形的性质、三角形的面积、四边形面积、四边形周长等知识,解答本题的关键是正确的作出辅助线.17.(1)1-;(2)6.【分析】(1)先计算特殊角的正弦与正切值、零指数幂,再计算实数的混合运算即可得;(2)根据比例中项的定义列出式子计算即可得.【详解】(1)原式21212⨯+-=113=+-1=-;(2)设线段a ,b 的比例中项为x ,则::a x x b =,4a = ,9b =,4::9x x ∴=,解得6x =或6x =-(不符题意,舍去),即线段a ,b 的比例中项为6.【点睛】本题考查了特殊角的正弦与正切值、零指数幂、比例中项,熟记各定义和运算法则是解题关键.18.(1)13;(2)23【分析】(1)用列举法列出所有可能出现的结果,其中“抽到1号”的有1种,即可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.【详解】(1)共有3种可能出现的结果,其中“抽到1号球”的有1种,∴“抽到1号球”的概率为13;(2)用列表法表示出所有可能出现的结果情况如下:∴由表可知,共有6种等可能结果,其中其中“和为奇数”的有4种,∴4263P ==.【点睛】本题考查了列举法、列表法求随机事件发生的概率,列举出所有可能出现的结果是解答本题的关键.19.14/km h【分析】设AB 与正北方向线交于点C ,根据已知及三角函数求得AC 、OC 的长,再根据等腰直角三角形的性质求得BC 的长,利用AB=AC+BC 求出AB 的长,再除以该船航行的时间即可求解;【详解】如图所示:设AB 与正北方向线交于点C ,∵在Rt △AOC 中,∠AOC=30°,OA=500m ,∴sin 30250AC OA m =︒= ,cos30OC OA =︒= ,∵△OBC 是等腰直角三角形,∴BC OC ==,∴250AB AC BC =+=+,∴该船的航速为:2503=5100060+÷+【点睛】本题考查了解直角三角形的知识,解一般三角形的问题一般可以转化为解直角三角形的问题,解决方法为构造直角三角形,难度一般;20.(1)见解析;(2)64【分析】(1)由平行线的性质可得∠DEB=∠FCE ,∠DBE=∠FEC ,再根据相似三角形的判定可得结论;(2)先根据35AF FC =得出58CF AC =,再根据相似三角形的判定与性质即可得出答案.【详解】(1)∵DE ∥AC ,∴∠DEB=∠FCE ,∵EF ∥AB ,∴∠DBE=∠FEC ,∴△BDE ∽△EFC ;(2)∵35AF FC =,∴58CF AC =,∵//EF AB ,∴△BAC ∽△EFC ,∴22564⎛⎫== ⎪⎝⎭ EFC ABC CF AC S S ,∵25= EFC S ,∴64= ABC S ,即△ABC 的面积为64.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是本题的关键.21.(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得:55706060k b k b +=⎧⎨+=⎩,解得:2180k b =-⎧⎨=⎩,∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.22.(1)①见解析;②见解析;(2)3r =【分析】(1)①直接用直径所对圆周角是90°进行解题即可;②找到∠CAD=∠ABD 和∠ADC=∠BDA ,两个角相等即可证明两个三角形相似;(2)利用锐角三角函数和相似三角形的性质即可求出半径的长度;【详解】(1)①如图所示,连接AO ,由BC 是直径得90BAC ∠= ,∵OB=OA ,∴∠B=∠OAB ,∵∠CAD=∠B ,∴∠OAD=∠OAC+∠CAD=∠OAC+∠OAB=90°,∴AD 为圆的切线;②在△ACD 和△BAD 中,∠CAD=∠ABD ,∠ADC=∠BDA ,∴△ACD ∽△BAD(2)由(1)知△ACD ∽△BAD ∴DA DC AC DB DA AB==,∵1tan 2B =,∴1tan 2AC B AB ==,∴12DA DC DB DA ==,则2AD CD =,即182AD AD BD ==,得AD=4,∴122CD AD ==,∴BC=BD-CD=8-2=6,∴半径3r =;【点睛】本题考查了直径所对圆周角等于90°,相似三角形的判定以及锐角三角函数,正确掌握知识点是解题的关键;23.(1)见解析;(2)5或10;(3)①见解析;②23.【分析】(1)分两种情况讨论,如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2.CD AD BD = 从而可作出图形;(2)作BC 边上的高AH ,由3tan 4AH B BH ==tan 1,AH C CH ==可得:4,,3BH AH CH AH ==再列方程414,3AH AH +=求解6,8,6,AH BH CH ===设BD x =,则由222,AD AH DH =+2AD BD CD =⋅可得22(8)6(14)x x x -+=-,解方程可得答案;(3)①首先证得,AHC DHB ∽则该相似三角形的对应边成比例:,AH CH DH BH=即••AH BH CH DH =,由点H 是BCD △中CD 边上的“好点”,可得2•,BH CH DH =再证明,AH BH =再利用垂径定理的推论可得结论;②如图④,连接,AD 证明90,ABD ∠=︒可得AD 是直径,所以,,A O D 共线,设,OH x =则3,OA OD x ==2,BD x =再分别求解,,CH DH 从而可得答案.【详解】解:(1)如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2,CD AD BD = 即D 为ABC 中边AB 上的“好点”.理由如下:如图①,90ACB CEF ∠=∠=︒,2,4,EF AC CE CB ====(),CEF BCA SAS ∴ ≌,ECF CBA ∴∠=∠90,ECF BCD ∠+∠=︒ 90BCD CBA ∴∠+∠=︒,90CDB ∴∠=︒,∴90CDA CDB ∠=∠=︒,,ACD CBD ∴ ∽,CDADBD CD ∴=2,CD AD BD ∴= 如图②, 矩形,ANBC ,CD ND AD BD ∴===2.CD AD BD ∴= (2)如图③,作BC 边上的高AH ,3tan 4AHB BH ==tan 1,AHC CH ==4,,3BH AH CH AH ∴==14,BC BH CH =+= ∴414,3AH AH +=6,8,6,AH BH CH ∴===设BD x =,则8,14,DH x CD x =-=- 222,AD AH DH =+2AD BD CD =⋅,∴22(8)6(14)x x x -+=-,215500,x x ∴-+=()()5100,x x ∴--=∴5x =或10x =,经检验:5x =或10x =都符合题意,所以BD 的长为5或10.(3)①∵,,CHA BHD ACH DBH ∠=∠∠=∠∴,AHC DHB ∽∴,AH CH DH BH =即••AH BH CH DH =,∵点H 是BCD △中CD 边上的“好点”,2•,BH CH DH ∴=2•,BH AH BH ∴=,BH AH ∴=.OH AB ∴⊥②2.3CH DH =理由如下:如图④,连接,AD //,OH BD ,OH AB ⊥∴90,ABD ∠=︒∴AD 是直径,所以,,A O D 共线,3,r OH = ∴设,OH x =则3,OA OD x ==2,BD x ∴=22223642,AB AD BD x x x ∴=-=-=,OH AB ⊥ 22222,483,AH BH x HD BD HB x x x ∴===+=+=2•,BH CH DH =22,3BH CH x DH ∴==2.3x CH DH ∴=【点睛】本题考查的是直角三角形斜边上的中线等于斜边的一半,三角形的中位线的性质,勾股定理的应用,相似三角形的判定与性质,解直角三角形的应用,垂径定理,圆周角定理,掌握以上知识是解题的关键.24.(1)y =﹣13x 2+3;(2)l==213m -+;(3,P 15)4【分析】(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),根据∠OBC =30°,得B (0),而OB =3OA ,得A0),再用待定系数法即可得y =﹣13x 2+3;(2)延长PF 交x 轴于点E ,先由B (0),C (0,3)得直线BC 的表达式为y=3-x +3,设点P (m,21333m -++),则点F (m,3-m +3),故PF =l=213m -+;(3)先证明∠OBC =30°=∠P ,在Rt △PDF 中,PD =cos30°⋅PF,DF =sin30°⋅PF =12PF ,故△PDF 的周长=PD +PF +DF+1+12)PF,可知PF 最大时,△PDF 的周长最大,而当m=2时,l 最大=94,即PF 最大为94,即可得到答案.【详解】解:(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),∴OC =3,∵∠OBC =30°,∴OB=tan 30°OC∴B(0),又OB =3OA,即3OA ,∴OA∴A(0),将A(0),B(0)代入y =ax 2+bx +3,得:0330273a a ⎧=-+⎪⎨=++⎪⎩,解得:13a b ⎧=-⎪⎪⎨⎪=⎪⎩∴y =﹣13x 2+3;(2)延长PF 交x 轴于点E,如图:设直线BC 表达式为y =sx +t ,将B(0),C (0,3)代入得:3t t ⎧+⎪⎨=⎪⎩,解得3s t ⎧=⎪⎨⎪=⎩∴直线BC 的表达式为y=3-x +3,设点P (m,2133m -++),则点F (m,+3),∴PF =l=21(3)(3)3m -++--+=213m -;(3)∵∠OBC =30°,∴∠BFE =60°=∠PFD ,∵PD ⊥BC ,∴∠P =30°,在Rt △PDF 中,PD =cos 30°⋅PFPF ,DF =sin 30°⋅PF =12PF,∴△PDF 的周长=PD +PF +DF 12)PF PF ,∴PF 最大时,△PDF 的周长最大,而由(2)知:PF =l =213m -=219()324x --+,∴当m l 最大=94,即PF 最大为94,此时,△PDF∴点P 的坐标为15()24,△PDF 的周长最大值为278+.【点睛】本题考查二次函数综合应用,涉及待定系数法、二次函数图象上点坐标的特征、解直角三角形、三角形周长等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.。
浙教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是()A.14B.15C.34D.12.下列说法正确的是()A.对角线相等的四边形是矩形B.有两边及一角对应相等的两个三角形全等C.对角线互相垂直的矩形是正方形D.平分弦的直径垂直于弦3.下列函数中,二次函数是()A.y=8x2+1B.y=8x+1C.y=8xD.y=281x4.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.155.下列说法中,正确的是()A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.任意三角形都一定有外接圆D.不同的圆中不可能有相等的弦6.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则EFFC等于()A.13B.12C.23D.327.如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路程长为()A.20cm B.202C.10πcm D.528.下列说法正确的是()A .长度相等的弧叫等弧B .平分弦的直径一定垂直于该弦C .三角形的外心是三条角平分线的交点D .不在同一直线上的三个点确定一个圆9.二次函数2y ax bx =+的图象如图,若一元二次方程有实数根,则m 的最大值为()A .3-B .3C .6-D .9二、填空题10.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是______m .11.布袋中装有4个红球和3个黑球,它们除颜色外没有任何其他区别,小红从中随机摸出1个球,摸出红球的概率是________.12.一个扇形的半径为3cm ,面积为π2cm ,则此扇形的圆心角为______.13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=o ,从A 到B 只有路 AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了__________步(假设1步为0.5米,结果保留整数).(参考1.732≈,π取3.142)14.把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为_____________.15.如图,在ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为_____cm2(结果保留π)16.如图,在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到A点时,乙也跟随冲到B点.从数学角度看,此时甲是自己射门好,还是将球传给乙,让乙射门好?答________________.17.已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为_____.18.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是_____.19.如图,边长为4的正方形ABCD内接于⊙O,点E是 AB上的一动点(不与点A、B重合),点F是 BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①=;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而AE BF变化;④△GBH周长的最小值为4+.其中正确的是____________.(把你认为正确结论的序号都填上)三、解答题20.如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8cm,CD=2cm.求破残的圆形残片的半径.21.如图,等腰梯形的周长为60,底角为30°,腰长为x,面积为y,试写出y与x的函数表达式.22.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC 于E,求线段DE的长.23.如图,⊙O是△ABC的外接圆,C是优弧AB上一点,设∠OAB=α,∠C=β.(1)当β=36°时,求α的度数;(2)猜想α与β之间的关系,并给予证明.(3)若点C 平分优弧AB ,且BC 2=3OA 2,试求α的度数.24.布袋里有四个小球,球表面分别标有2、3、4、6四个数字,它们的材质、形状、大小完全相同.从中随机摸出一个小球记下数字为x ,再从剩下的三个球中随机摸出一个球记下数字为y ,点A 的坐标为(x ,y ).运用画树状图或列表的方法,写出A 点所有可能的坐标,并求出点A 在反比例函数12y x=图象上的概率.25.如图,正方形ABCD 的边长为2,AE=EB ,MN=1,线段MN 的两端在BC 、CD 上,若△ADE ∽△CMN ,求CM 的长.26.小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y 10x 500=-+.(1)设小赵每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?27.如图点O 是等边ABC 内一点,110,AOB BOC α︒∠=∠=,∠ACD=∠BCO ,OC=CD ,(1)试说明:COD 是等边三角形;(2)当150α︒=时,试判断AOD △的形状,并说明理由;(3)当BOC ∠为多少度时,AOD △是等腰三角形参考答案1.A 【解析】根据概率公式即可得到结论.【详解】从甲、乙、丙、丁四人中任选1名代表,甲被选中的可能性是14.故选A .【点睛】本题考查了可能性的大小,解题的关键是掌握概率公式.2.C 【解析】试题解析:A 、对角线相等的平行四边形是菱形,故错误;B 、有两边及夹角对应相等的两个三角形全等,错误;C 、对角线互相垂直的矩形是正方形,正确;D 、两条直径一定互相平分,但是不一定垂直,错误;故选C .3.A 【分析】二次函数的定义:形如2y ax bx c =++(a≠0)的函数叫二次函数.【详解】A 、281y x =+符合二次函数的定义,本选项正确;B 、81y x =+是一次函数;C 、8y x=是反比例函数;D 、281y x =+不是二次函数,故选A 【点睛】本题属于基础应用题,只需学生熟练掌握二次函数的定义,即可完成.4.D 【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为=210=15.故答案为D 【点睛】此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.5.C 【解析】【分析】根据等弧的定义对A 进行判断;根据劣弧和优弧的定义对B 进行判断;根据确定圆的条件对C进行判断;根据弦的定义对D进行判断.【详解】A、长度相等的两条弧不一定是等弧,所以A选项错误;B、在同圆或等圆中,优弧一定大于劣弧,所以B选项错误;C、任意三角形都一定有外接圆,所以C选项正确;D、不同的圆中有相等的弦,所以D选项错误.故选:C.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)6.A【详解】试题分析:如图,∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴EF DEFC CB=,设ED=k,则AE=2k,BC=3k,∴EFFC=3kk=13,故选A.考点:1.相似三角形的判定与性质;2.平行四边形的性质.7.D【解析】【分析】根据弧长公式可得.【详解】如图:连接DB,B′D,则点B的路径为圆心角为90度的扇形的弧长,l=90π10180=cm故选D.【点睛】此题主要考查了正方形的性质和弧长公式,得出B点运动路线是解题关键.8.D【解析】试题分析:根据等弧的定义对A进行判断;根据垂径定理对B进行判断;根据三角形外心的定义对C进行判断;根据确定圆的条件对D进行判断.解:A、能够完全重合的弧叫等弧,所以A选项错误;B、平分弦(非直径)的直径一定垂直于该弦,所以B选项错误;C、三角形的外心是三边垂直平分线的交点,所以C选项错误;D、不在同一直线上的三个点确定一个圆,所以D选项正确.故选D.考点:圆的认识;垂径定理;确定圆的条件;三角形的外接圆与外心.9.B【分析】根据一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=-m有交点,结合图像可判断结果.【详解】解:一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=-m有交点,观察图像可见-m≥-3,∴m≤3,∴m的最大值为3.故选B.【点睛】本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.10.10【分析】y ,求要求铅球推出的距离,实际上是求铅球的落脚点与坐标原点的距离,故可直接令0出x的值,x的正值即为所求.【详解】在函数式21(4)312y x =--+中,令0y =,得21(4)3012x --+=,解得110x =,22x =-(舍去),∴铅球推出的距离是10m.【点睛】本题是二次函数的实际应用题,需要注意的是21(4)312y x =--+中3代表的含义是铅球在起始位置距离地面的高度;当0y =时,x 的正值代表的是铅球最终离原点的距离.11.47【详解】∵有4个红球3个黑球,∴球的总数=4+3=7,∴随机摸出一个球,摸到红球的概率=47.故答案为47.12.40°.【详解】解:根据扇形的面积计算公式可得:23360n p ´=π,解得:n=40°,即圆心角的度数为40°.考点:扇形的面积计算.13.15【详解】【分析】过O 作OC ⊥AB 于C ,分别计算出弦AB 的长和弧AB 的长即可求解.【解答】过O 作OC ⊥AB 于C ,如图,∴AC =BC ,∵120AOB OA OB ∠=︒=,,∴30A ∠=︒,∴1102OC OA ==,∴AC ==∴AB =又∵弧AB 的长=120π2040π1803⨯=,40π7.253∴-≈米15≈步.故答案为15.【点评】考查了弧长的计算,垂径定理的应用,熟记弧长公式是解题的关键.14.=2+8+10【解析】试题分析:根据题意y=x 2+2x-3=(x+1)2-4向左平移3个单位,然后向下平移2个单位,得:y=(x+1+3)2-4-2=(x+4)2-6=x 2+8x+10,即y=x 2+8x+10.考点:1.二次函数的图像,2.配方法15.23π.【分析】图中阴影部分的面积就是两个扇形的面积,圆A ,B 的半径为2cm ,则根据扇形面积公式可得阴影面积.【详解】()2260423603603A B πππ∠+∠⨯⨯==(cm 2).故答案为23π.考点:1、扇形的面积公式;2、两圆相外切的性质.16.乙射门好【解析】试题解析:∵∠MBN =∠MCN ,而∠MCN >∠A ,∴∠MBN >∠A ,∴从数学角度看,此时甲将球传给乙,让乙射门好.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17.2【详解】解:根据函数的图像可知其对称轴为x=-2ba=1,解得b=-2a ,然后可知两根之和为x 1+x 2=-b a=2.故答案为:2【点睛】此题主要考查了二次函数的图像与一元二次方程的关系,解题关键是由函数的图像求得对称轴x=-2b a ,然后根据一元二次方程的根与系数的关系x 1+x 2=-ba求解即可.18.2≤m≤8【详解】设平移后的解析式为y=y=(x+1)2﹣m ,将B 点坐标代入,得4﹣m=2,解得m=2,将D 点坐标代入,得9﹣m=1,解得m=8,y=(x+1)2向下平移m 个单位(m >0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是2≤m≤8.点睛:本题考查了二次函数图象与几何变换,利用了矩形性质和二次函数图象上点的坐标特征,平移的性质的应用,把B ,D 的坐标代入是解题关键.19.①②④【解析】试题分析:①如图1中,连接OB 、OA .∵四边形ABCD 是正方形,∴∠EOF =∠AOB =90°,∴∠AOE +∠BOE =∠BOF +∠BOE ,∴∠AOE =∠BOF ,∴ AE BF=.所以①正确;②如图1中,在△AOG 和△BOH 中,45AOG BOHOAG OBH AO BO ∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△AOG ≌△BOH ;∴OG =OH ,∵∠GOH =90°,∴△OGH 是等腰直角三角形.所以②正确;③如图1中,∵△AOG ≌△BOH ,∴四边形OGBH 的面积=△AOB 的面积=14正方形ABCD 的面积,∴四边形OGBH 的面积不发生变化.所以③错误;④∵△AOG ≌△BOH ,∴AG =BH ,∴BG +BH =BG +AG =BC =4,设BG =x ,则BH =4-x ,则GH∴当x=2时GH最小,最小值为∴△GBH周长的最小值为4+所以④正确.故答案为:①②④.点睛:考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,相等的圆心角所对的弧相等,等腰直角三角形的判定,勾股定理,综合性较强,有一定的难度.20.破残的圆形残片的半径为5cm.【解析】【分析】设圆的半径为r cm,根据AB⊥CD和已知条件求出AD=12AB,在Rt△ADO中,利用勾股定理为等量关系列方程,求出半径即可.【详解】在直线CD上取圆心O,连接OA,设半径为rcm,∵弦AB的垂直平分线交弧AB于点C,交弦AB于点D,在Rt△ADO中,OA2=AD2+OD2,∴r2=42+(r-2)2,∴r=5答:破残的圆形残片的半径为5cm.【点睛】本题考查的是垂径定理和勾股定理的应用,垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.21.s=﹣12x2+15x(0<x<60)【解析】【分析】作AE⊥BC,在Rt△ABE中,求出AE=12AB=12x,利用梯形的周长可得出AD+BC的值,代入梯形面积公式即可得出y与x的函数表达式.【详解】作AE⊥BC,在Rt△ABE中,∠B=30°,则AE=12AB=12x,∵四边形ABCD是等腰梯形,∴AD+BC=60-AB-CD=60-2x,∴S=12(AD+BC)×AE=12(60-2x)×12x=-12x2+15x(0<x<60).【点睛】本题考查了根据实际问题抽象二次函数关系式的知识,掌握梯形的面积公式及等腰梯形的性质是解答本题的关键.22.3【详解】试题分析:直接利用相似三角形的判定与性质得出DE的长.试题解析:∵∠C=∠C,∠A=∠DEC,∴△DEC∽△BAC,DE DCAB BC∴=,则5 610 DE=解得:DE=3.点睛:两组角对应相等,两个三角形相似.23.(1)β=54°;(2)α与β之间的关系是α+β=90°;证明见解析;(3)α=30°.【解析】【分析】(1)连接OB,根据同弧所对的圆周角是圆心角的一半和等腰三角形的性质解答即可;(2)根据(1)的方法解答即可;(3)过O作OE⊥AC于E,连接OC,证明AE=2OA,得到△ABC为正三角形,得到答案.【详解】(1)连接OB,则OA=OB,∴∠OAB=∠OBA,∵∠C=36°,∴∠AOB=72°,∵∠OAB=12(180°﹣∠AOB)=54°,即β=54°;(2)α与β之间的关系是α+β=90°;证明:∵∠OBA=∠OAB=α,∴∠AOB=180°﹣2α,∵∠AOB=2∠β,∴180°﹣2α=2∠β,∴α+β=90°;(3)∵点C平分优弧AB,∴AC=BC,又∵BC2=3OA2,∴,过O作OE⊥AC于E,连接OC,由垂径定理可知OA,∴∠AOE=60°,∠OAE=30°,∴∠ABC=60°,∴△ABC为正三角形,则α=∠CAB﹣∠CAO=30°.【点睛】本题考查的是三角形的外接圆、垂径定理和锐角三角函数的知识,综合性较强,需要学生灵活运用所学的知识,正确作出辅助线构造直角三角形进行解答.24.1 3【详解】试题分析:先画树状图展示所有12种等可能的结果数,然后写出12个点的坐标;根据反比例函数图象上点的坐标特征可判断有两个点在函数12yx=图象上,然后根据概率公式求解.试题解析:依题意列表得:x y23462(2,3)(2,4)(2,6) 3(3,2)(3,4)(3,6) 4(4,2)(4,3)(4,6) 6(6,2)(6,3)(6,4)由上表可得,点A的坐标共有12种结果,其中点A在反比例函数12yx=上的有4种:(2,6)、(3,4)、(4,3)、(6,2),∴点A在反比例函数12yx=上的概率为41123=25.【详解】试题分析:∵正方形ABCD的边长为2,AE=EB,∴AE=×2=1,在Rt △ADE 中,DE===,∵△ADE ∽△CMN ,∴=,即=,解得CM=.考点:相似三角形的性质;正方形的性质.51点评:本题考查了相似三角形对应边成比例的性质,正方形的性质,根据相似三角形对应顶点的字母放在对应位置上确定出对应边是解题的关键.26.(1)当销售单价定为35元时,每月获得的利润最大,最大利润为2250元;(2)如果小赵想要每月获得的利润不低于2000元,那么他的销售单价应不低于30元而不高于40元.【解析】试题分析:(1)根据总利润=单利润×销售量即可得到函数关系式,再根据二次函数的性质即得结果;(2)先求得利润为2000元时对应的销售单价,再根据二次函数的性质即可求得结果.(1)由题意得w=(x -20)·y=(x -20)·(10500x -+)21070010000x x =-+-当352bx a=-=时,;(2)由题意得210700100002000x x -+-=解得x 1=30,x 2=40即小赵想要每月获得2000元的利润,销售单价应定为30元或40元∵100a =-<∴抛物线开口向下∴当30≤x≤40时,w≥2000答:(1)当销售单价定为35元时,每月可获得最大利润,且最大利润为2250元;(2)如果小赵想要每月获得的利润不低于2000元,那么他的销售单价应不低于30元而不高于40元.考点:二次函数的应用点评:解答本题的关键是读懂题意,找到等量关系,正确列出函数关系式,同时熟练掌握二次函数的最值的求法.27.(1)见解析;(2)△AOD是直角三角形,理由见解析;(3)110°或125°或140°时,△AOD 是等腰三角形.【分析】(1)根据CO=CD,∠OCD=60°,然后根据等边三角形的判定方法即可得到△COD是等边三角形;(2)先求得∠ADC=∠BOC=α=150°,再利用△COD是等边三角形得∠CDO=60°,于是可计算出∠ADO=90°,由此可判断△AOD是直角三角形;(3)先利用α表示出∠ADO=α-60°,∠AOD=190°-α,再进行分类讨论:当∠AOD=∠ADO 时,△AOD是等腰三角形,即190°-α=α-60°;当∠AOD=∠DAO时,△AOD是等腰三角形,即2(190°-α)+α-60°=180°;当∠ADO=∠DAO时,△AOD是等腰三角形,即190°-α+2(α-60°)=180°,然后分别解方程求出对应的α的值即可.【详解】(1)∵∠ACD=∠BCO∴∠ACD+∠ACO=∠BCO+∠ACO=60°又∵CO=CD∴△COD是等边三角形;(2)∵△COD是等边三角形∴CO=CD又∵∠ACD=∠BCO,AC=BC∴△ACD≌△BCO(SAS)∴∠ADC=∠BOC=α=150°,∵△COD是等边三角形,∴∠ADC=∠BOC=α=150°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADO=∠ADC−∠CDO=90°,∴△AOD是直角三角形;(3)∵△COD是等边三角形,∴∠CDO=∠COD=60°,∴∠ADO=α−60°,∠AOD=360°−60°−110°−α=190°−α,当∠AOD=∠ADO时,△AOD是等腰三角形,即190°−α=α−60°,解得α=125°;当∠AOD=∠DAO时,△AOD是等腰三角形,即2(190°−α)+α−60°=180°,解得α=140°;当∠ADO=∠DAO时,△AOD是等腰三角形,即190°−α+2(α−60°)=180°,解得α=110°,综上所述,∠BOC的度数为110°或125°或140°时,△AOD是等腰三角形.【点睛】此题考查等腰三角形的判定,旋转的性质,等边三角形的判定与性质,解题关键在于掌握判定定理.。
期末复习:浙教版九年级数学学上册期末综合检测试卷一、单选题(共10题;共30分)1.把标有1~10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是()A. B. C. D.2.已知圆锥侧面积为10πcm2,侧面展开图的圆心角为36º,圆锥的母线长为()A. 100cmB. 10cmC. cmD. cm3.已知⊙O的半径是10cm,是120°,那么弦AB的弦心距是()A. 5cmB. cmC. cmD. cm4.某中学周末有40人去体育场观看足球赛,40张票分别为A区第2排1号到40号,小明同学从40张票中随机抽取一张,则他抽取的座位号为10号的概率是A. B. C. D.5.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是A. B. C. D.6.如图,在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,如果要在AB上找一点E,使△ADE与△ABC相似,则AE的长为()A. B. C. 3 D. 或7.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,∠APD=30°,则∠ADP的度数为()A. 45°B. 40°C. 35°D. 30°8.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁9.若△ABC∽△DEF,且AB:DE=1:3,则S△ABC:S△DEF=()A. 1:3B. 1:9C. 1:D. 1:1.510.已知如图,圆锥的母线长6cm,底面半径是3cm,在B处有一只蚂蚁,在AC中点P处有一颗米粒,蚂蚁从B爬到P处的最短距离是()A. 3 cmB. 3 cmC. 9cmD. 6cm二、填空题(共10题;共30分)11.将抛物线y=x2-2向上平移一个单位后,得一新的抛物线,那么新的抛物线的表达式是________.12.质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是________13.若A(,),B(,),C(1,)为二次函数y= +4x﹣5的图象上的三点,则、、的大小关系是________.14.(2015•上海)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于________ .(只需写出一个符合要求的数)15.如图,在正方形ABCD中,边AD绕点A顺时针旋转角度m(0°<m<360°),得到线段AP,连接PB,PC.当△BPC是等腰三角形时,m的值为________16.已知抛物线C1:y=﹣x2+4x﹣3,把抛物线C1先向右平移3个单位长度,再向上平移3个单位长度,得到抛物线C2,将抛物线C1和抛物线C2这两个图象在x轴及其上方的部分记作图象M.若直线y=kx+ 与图象M至少有2个不同的交点,则k的取值范围是________.17.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为________.18.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于________.19.如图,△ABC内接于⊙O,若∠OAB=32°,则∠C=________°.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12,求⊙O的半径.22.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?23.一个口袋中有黑球10个,白球若干个,小明从袋中随机一次摸出10只球,记下其中黑球的数目,再把它们放回,搅均匀后重复上述过程20次,发现共有黑球18个,由此你能估计出袋中的白球是多少个吗?24.已知一抛物线与抛物线y=- x2+3形状相同,开口方向相反,顶点坐标是(-5,0),根据以上特点,试写出该抛物线的解析式.25.如图,在△ABC中,EF∥CD ,DE∥BC .求证:AF:FD=AD:DB .26.如图,在平面直角坐标系中,点O为坐标原点,平移抛物线y=x2﹣2x+3,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A,O,B为顶点的三角形是等腰直角三角形,求平移后的抛物线的解析式.27.如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD 于点E,F,连结EF。
浙教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.若2x=5y,则xy的值是()A.25B.52C.45D.542.抛物线y=x2﹣2x﹣1的对称轴是()A.直线x=﹣2B.直线x=﹣1C.直线x=1D.直线x=2 3.如图,A、B是⊙O上的两点,∠AOB=120°,OA=3,则劣弧AB的长是()A.πB.2πC.3πD.4π4.从1~9这9个自然数中任选一个数,是3的倍数的概率是()A.12B.13C.14D.155.如图,AB是圆O的直径,C、D、E都是圆上的点,其中C、D在AB下方,E在AB上方,则∠C+∠D等于()A.60°B.75°C.80°D.90°6.已知点P(a,m),Q(b,n)都在反比例函数y=﹣1x的图象上,且a<0<b,则下列结论中,一定正确的是()A.m+n<0B.m+n>0C.m<n D.m>n7.已知△ABC的各边长分别为2、5、6,与其相似的另一个△A′B′C′的最大边为18,则△ABC与A B C '''∆的面积比等于()A .1:3B .1:6C .1:9D .4:98.已知二次函数y =ax 2+bx +c 的图象开口向上(如图),它与x 轴的两个交点分别为(﹣1,0)、(3,0).对于下列结论:①c <0;②b <0;③4a ﹣2b +c >0.其中正确的有()A .3个B .2个C .1个D .0个9.如图,在四边形ABCD 中,∠ACB =∠CAD =90°,AC =CB ,sin ∠ACD =35,则tan ∠BDC 的值是()A B .6C .1637D .162510.如图,在Rt △ABC 中,∠BAC =90°,以Rt △ABC 各边为斜边分别向外作等腰Rt △ADB 、等腰Rt △AFC 、等腰Rt △BEC ,然后将等腰Rt △ADB 和等腰Rt △AFC 按如图方式叠放到等腰Rt △BEC 中,其中BH =BA ,CI =CA ,已知,S 四边形GKJE =1,S 四边形KHCJ =8,则AC 的长为()A .2B .52C .4D .6二、填空题11.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为_______(结果保留π)12.如图,点A、B、C是半径为4的⊙O上的三个点,若∠BAC=45°,则弦BC的长等于_____.13.如图,点D在△ABC的BC边上,且CD=2BD,点E是AC边的中点,连接AD,DE,假设可以随意在图中取点,那么这个点取在阴影部分的概率是_____.14.将二次函数y=﹣(x﹣k)2+k+1的图象向右平移1个单位,再向上平移2个单位后,顶点恰好在直线y=2x+1上,则k的值为_____.15.如图,已知△ABC的顶点A、B在反比例函数y=x<0)的图象上,∠ABC=90°,x∠ACB=30°,AC⊥x轴,点B在点A右下方,若AC=4,则点B的坐标为_____.16.如图,等边三角形ACD的边长为8,点B在AC边延长线上,且AC)CB,连结BD,点E是线段BD上一点,连结AE交DC于点F,若∠AED=60°,则DE的长为_____.三、解答题17.计算:(1)2cos245°+tan60°﹣sin30°;(2)已知12ab=,求a ba b-+的值.18.“只要人人都献出一点爱,世界将变成美好的人间”.在新冠肺炎疫情期间,全国人民万众一心,众志成城,共克时艰.某社区有1名男管理员和3名女管理员,现要从中随机挑选2名管理员参与“社区防控”宣讲活动,请用列表法或树状图法求出恰好选到“1男1女”的概率.19.以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,PA:PD=;(填两数字之比)(2)利用网格和无刻度的直尺作图,保留痕迹,不写作法.①如图②,在线段AB上找一点P,使32 APBP=;②如图③,在线段BD上找一点P,使△APB∽△CPD.20.某数学小组开展了一次测量小山高度的活动,如图,该数学小组从地面A处出发,沿坡角为53°的山坡AB直线上行一段距离到达B处,再沿着坡角为22°的山坡BC直线上行600米到达C处,通过测量数据计算出小山高CD=612m,求该数学小组行进的水平距离AD(结果精确到1m).(参考数据:sin22°≈0.37,cos22°≈0.92,cos53°≈0.6,tan53°≈1.3)21.如图,直线y=﹣12x+7与反比例函数y=mx(m≠0)的图象交于A,B两点,与y轴交于点C,且点A的横坐标为2.(1)求反比例函数的表达式;(2)求出点B坐标,并结合图象直接写出不等式mx<﹣12x+7的解集;(3)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.22.网络销售已经成为一种热门的销售方式.某公司在某网络平台上进行直播销售防疫包,已知防疫包的成本价格为6元/个,每日销售量y(单位:个)与销售单价x(单位:元/个)满足一次函数关系,如表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元,设公司销售防疫包的日获利为w(元).(日获利=日销售额﹣成本)x(元/个)789y(个)430042004100(1)请求出日销售量y与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种防疫包的日获利w最大?最大利润为多少元?23.定义:如果一个四边形的对角线相等,那么这个四边形叫做平衡四边形.(1)如图1,在四边形ABCD中,∠DAB=90°,AD=3,AB=4,AC=5.①判断四边形ABCD是否是平衡四边形,请说明理由;②若△ACD是等腰三角形,求sin∠DAC的值;(2)如图2,在平衡四边形ABCD中,∠DAB=90°,AC⊥BD交于点O,AD=2,若S△CBO﹣S△ADO=12,求AB的长.24.如图1,CD是⊙O的直径,弦AB⊥CD,垂足为点E,连结CA.(1)若∠ACD=30°,求劣弧AB的度数;(2)如图2,连结BO并延长交⊙O于点G,BG交AC于点F,连结AG.①若tan∠CAE=2,AE=1,求AG的长;②设tan∠CAE=x,GFBF=y,求y关于x的函数关系式.参考答案1.B 【分析】利用内项之积等于外项之积进行判断.【详解】解:∵2x =5y ,∴52x y =.故选:B .【点睛】本题考查了比例的性质:熟练掌握比例的性质(内项之积等于外项之积,合比性质,分比性质,合分比性质,等比性质).2.C 【分析】先将抛物线化为顶点式,即可解决问题.【详解】解:因为抛物线y =x 2﹣2x ﹣1=x 2﹣2x +1﹣2=(x ﹣1)2﹣2,所以对称轴是直线x =1.故选:C .【点睛】本题考查了二次函数的性质,解题的关键是能将抛物线化为顶点式.3.B 【分析】直接利用弧长公式计算即可.【详解】解:由题意可得,劣弧AB 的长是:1203=2180ππ⨯.故选:B .【点睛】本题考查了弧长公式:180n Rl π=(弧长为l ,圆心角度数为n ,圆的半径为R ),在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.4.B【分析】先从1~9这九个自然数中找出是3的倍数的有3、6、9共3个,然后根据概率公式求解即可.【详解】解:1~9这九个自然数中,是3的倍数的数有:3、6、9,共3个,∴从1~9这九个自然数中任取一个,是3的倍数的概率是:3÷9=1 3.故选:B.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.5.D【分析】连接OE,根据圆周角定理即可求出答案.【详解】解:连接OE,根据圆周角定理可知:∠C=12∠AOE,∠D=12∠BOE,则∠C+∠D=12(∠AOE+∠BOE)=90°,故选:D.【点睛】本题考查了圆周角的性质,解题关键是连接半径,构造圆心角,依据圆周角与圆心角的关系进行计算.6.D 【分析】由点P (a ,m ),Q (b ,n )都在反比例函数1y x=-的图象上,且a <0<b ,可知点P 在第二象限,点Q 在第四象限,此时m >0>n 得出答案.【详解】解:∵点P (a ,m ),Q (b ,n )都在反比例函数1y x=-的图象上,且a <0<b ,∴点P 在第二象限,点Q 在第四象限,∴m >n .故选:D .【点睛】本题考查反比例函数,解题的关键是掌握反比例函数的图象和性质.7.C 【分析】根据两个三角形的最长边确定两个相似三角形的相似比,然后根据相似比确定面积的比即可.【详解】解:∵△ABC 的各边长分别为2、5、6,与其相似的另一个A B C '''∆的最大边为18,∴两三角形的相似比为6:18=1:3,∴△ABC 与A B C '''∆的面积比为(1:3)2=1:9,故选:C .【点睛】本题考查了相似三角形的性质,熟记相似三角形的性质是解题的关键.8.A 【分析】根据抛物线与y 轴的交点位置可对①进行判断;根据抛物线的对称性得到x =2ba-=1,则b =﹣2a <0,于是可对②进行判断;利用x =﹣2,y >0可对③进行判断.【详解】解:∵抛物线与y 轴的交点坐标在x 轴下方,∴c <0,所以①正确;∵抛物线开口向上,∴a >0,∵抛物线与x 轴的两个交点分别为(﹣1,0),(3,0),∴抛物线的对称轴为直线x =1,即2ba-=1,∴b =﹣2a <0,所以②正确;∵由图象可知,当x =﹣2时,y >0,∴4a ﹣2b +c >0,所以③正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,解题关键是树立数形结合思想,准确读取图象信息,认真推理判断.9.C 【分析】如图,过点D 作DE ⊥BC 交BC 的延长线于E ,过点C 作CH ⊥BD 于H .解直角三角形求出CH ,DH 即可解决问题,【详解】解:如图,过点D 作DE ⊥BC 交BC 的延长线于E ,过点C 作CH ⊥BD 于H .∵∠ACB =∠CAD =90°,DE ⊥EC ,∴∠ACE =∠E =90°,∴四边形ACED 是矩形,∴AD =CE ,AC =DE ,∵sin ∠ACD =35AD CD =,∴设AD =3k ,CD =5k ,则AC =BC =DE =4k ,∴BE =BC +CE =7k ,∴BD==,∵S △CBD =12•BC •DE =12•BD •CH ,∴CH =65k ,∴DH==,∴tan ∠BDC=163765CH DH ==.故选:C .【点睛】本题主要考查了解直角三角形的应用,准确分析计算是解题的关键.10.D【分析】设AD =DB =a ,AF =CF =b ,BE =CE =c ,由勾股定理可求a 2+b 2=c 2,由S 四边形GHCE =S 四边形GKJE +S四边形KHCJ =9,可求b =【详解】解:设AD =DB =a ,AF =CF =b ,BE =CE =c ,∴AB =,AC =,BC =,∵∠BAC =90°,∴AB 2+AC 2=BC 2,∴2a 2+2b 2=2c 2,∴a 2+b 2=c 2,∵将等腰Rt △ADB 和等腰Rt △AFC 按如图方式叠放到等腰Rt △BEC ,∴BG =GH =a ,∵S 四边形GHCE =S 四边形GKJE +S 四边形KHCJ =9,∴12(a +c )(c ﹣a )=9,∴c 2﹣a 2=18,∴b 2=18,∴b=∴AC==6,故选:D.【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.11.3π【详解】试题分析:此题考查扇形面积的计算,熟记扇形面积公式2360n rSπ=,即可求解.根据扇形面积公式,计算这个扇形的面积为212033360Sππ==.考点:扇形面积的计算12.【分析】连接OB,OC.证明△OBC是等腰直角三角形,即可解决问题.【详解】解:连接OB,OC.∵∠BOC=2∠BAC,∠BAC=45°,∴∠BOC=90°,∵OB=OC=4,∴BC=故答案为:.【定睛】本题主要考查圆周角定理以及勾股定理,添加辅助线,构造等腰直角三角形,是解题的关键.13.1 3【分析】先设阴影部分的面积是x,得出整个图形的面积是3x,再根据几何概率的求法即可得出答案.【详解】解:设阴影部分的面积是x,∵点E是AC边的中点,∴S△ACD=2x,∵CD=2BD,∴S△ACB=3x,则这个点取在阴影部分的概率是1 33 xx .故答案为:1 3.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.14.0【分析】先求出二次函数y=﹣(x﹣k)2+k+1的图象平移后的顶点坐标,再将它代入y=2x+1,即可求出k的值.【详解】解:∵二次函数y=﹣(x﹣k)2+k+1的顶点坐标为(k,k+1),∴将y=﹣(x﹣k)2+k+1的图象向右平移1个单位,向上平移2个单位后顶点坐标为(k+1,k+3).根据题意,得k+3=2(k+1)+1,解得k=0.故答案是:0.【点睛】本题考查了二次函数图象与几何变换,一次函数图象上点的坐标特征,难度适中.根据点的平移规律:右加左减,上加下减正确求出二次函数y=−(x−k)2+k+1的图象平移后的顶点坐标是解题的关键.15.2)【分析】过点B 作BD ⊥AC 于点D ,解直角三角形求出BC 、BD 、CD ,得出关于m 、n 的方程组,求出方程组的解即可.【详解】解:过点B 作BD ⊥AC 于点D,∵在Rt △ACB 中,BC =AC •cos ∠ACB =∴在Rt △BCD 中,CD =BC •cos ∠ACB =2=3,BD =12BC∴AD =AC ﹣CD =4﹣3=1,设A (m,m),B (n,n ),依题意知0>n >m ,故BD =n ﹣m ,AD=m﹣n ,∴1n m ⎧-=,解得:m n ⎧=-⎪⎨=⎪⎩∴点B2),故答案为:2).【点睛】本题主要考查反比例函数与平面几何的综合以及解直角三角形,熟练掌握反比例函数图像上的点的坐标特征,是解题的关键.16.3【分析】作DH ⊥AC 于点H ,根据等边三角形的性质和勾股定理可得BD 的长,利用△ADE ∽△BAD ,对应边成比例即可解决问题.【详解】解:如图,作DH ⊥AC 于点H ,∵△ADC 是等边三角形,∴AD =DC =AC =8,AH =CH =12AC =4,∴DH =∵AC )CB ,∴CB=41),∴BH =CB +CH =41)+4=∴BD 在△ADE 和△BAD 中,∠AED =∠BAD =60°,∠ADE =∠BDA ,∴△ADE ∽△BDA ,∴DEAD =ADBD ,∴DE =2ADBD 3.【点睛】本题考查了相似三角形的判定和性质,找到相似三角形是解题的关键.17.(1)12;(2)﹣13(1)先求特殊角的三角函数值,然后进行二次根式的混合运算;(2)利用比例的性质得到b =2a ,再把b =2a 代入a b a b-+中,然后化简即可.【详解】(1)原式=2×(2)212=12=12(2)∵12a b =,∴b =2a ,∴a b a b -+=22a a a a -+=﹣13.【点睛】本题主要特殊角三角函数以及分式的求值,熟练掌握特殊角的三角函数值以及二次根式的混合运算法则,是解题的关键.18.见解析,12【分析】根据题意,可以画出相应的树状图,从而可以求得恰好选到“1男1女”的概率.【详解】解:树状图如下图所示,由树状图知共有12种等可能结果,其中恰好选到“1男1女”的有6种结果,所以恰好选到“1男1女”的概率是61122=.【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,利用数形结合的思想解答.19.(1)3:1;(2)①见解析;②见解析(1)如图①中,利用平行线的性质求解即可.(2)①如图②中,取格点E,F,连接EF交AB于点P,点P即为所求作.②如图③中,取格点T,连接CT交BD于点P,连接PA,点P即为所求作.【详解】解:(1)如图①中,∵AB∥CD,∴PAPD=ABCD=31,故答案为:3:1.(2)①如图②中,点P即为所求作.②如图③中,点P即为所求作.【点睛】本题考查了作图-应用与设计,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.852m【分析】过B作BE⊥CD于点E,过B作BH⊥AD于点H,通过证明四边形BEDH是矩形,得到DE=BH,BE=DH,再根据三角函数的性质,分别计算得BE、AH的长,即可完成求解.【详解】如图,过B作BE⊥CD于点E,过B作BH⊥AD于点H又∵CD AD⊥∴//BH ED ,//EB DH ,90EDH ∠=︒∴四边形BEDH 是矩形,∴DE =BH ,BE =DH ,在Rt △BCE 中,∵BC =600,∠CBE =22°∴CE =BC•sin22°=600×0.37=222m ,BE =BC•cos22°=600×0.92=552m∴DH =BE =552m∵CD =612m ,∴BH =DE =CD-CE =612-222=390m在Rt △ABH 中,∵∠BAH =53°∴tan53°=BH AH ∴AH 3901.3==300m ∴AD =AH+DH =300+552=852m∴该数学小组行进的水平距离AD 为852m .【点睛】本题考查了矩形、三角函数的知识;解题的关键是熟练掌握矩形、三角函数的性质,从而完成求解.21.(1)12y x =;(2)x <0或2<x <12;(3)E (0,6)或(0,8)【分析】(1)由直线y =﹣12x +7求得A 的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)解析式联立,解方程组即可求得B 的坐标,然后根据图象即可求得不等式m x <﹣12x +7的解集;(3)设E (0,n ),求得点C 的坐标,然后根据三角形面积公式得到S △AEB =S △BCE ﹣S △ACE =12|7﹣n |×(12﹣2)=5,解得即可.【详解】解:(1)把x =2代入y =﹣12x +7得,y =6,∴A (2,6),∵反比例函数y =m x(m ≠0)的图象经过A 点,∴m =2×6=12,∴反比例函数的表达式为12y x =;(2)由12172y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,得26x y =⎧⎨=⎩或121x y =⎧⎨=⎩,∴B (12,1),由图象可知,不等式m x <﹣12x +7的解集是:x <0或2<x <12;(3)设E (0,n ),∵直线y =﹣12x +7与y 轴交于点C ,∴C (0,7),∴CE =|7﹣n |,∴S △AEB =S △BCE ﹣S △ACE =12|7﹣n |×(12﹣2)=5,解得,n =6或n =8,∴E (0,6)或(0,8).【点睛】本题主要考查反比例函数与一次函数的综合,掌握反比例函数图像上的点的坐标特征以及待定系数法,是解题的关键.22.(1)y =﹣100x +5000(6≤x ≤30);(2)当销售单价定为28元时,销售这种防疫包的日获利w 最大,最大利润为48400元【分析】(1)观察可得该函数图象是一次函数,设出一次函数解析式为:()0y kx b k =+≠,把其中两点代入即可求得该函数解析式;(2)根据销售利润=每个商品的利润×销售量,把二次函数的关系式配方变为顶点式即可求得相应的最大利润.【详解】解:(1)设y 与x 的函数关系式为:()0y kx b k =+≠,把7x =,4300y =和8x =,4200y =代入得,7430084200k b k b +=⎧⎨+=⎩,解得,1005000k b =-⎧⎨=⎩,∴1005000y x =-+(6≤x ≤30);(2)()()61005000w x x =--+2100560030000x x =-+-()21002848400x =--+∵1000a =-<,对称轴为28x =,∴当28x =时,w 有最大值为48400元,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为48400元;【点睛】本题考查了二次函数的应用,二次函数的性质,利用函数思想解决问题是本题的关键.23.(1)①四边形ABCD 是平衡四边形,见解析;②sin ∠DAC 的值为6(2)AB =6【分析】(1)①由勾股定理可求BD 的长,由平衡四边形的定义可求解;②分两种情况讨论,由勾股定理和锐角三角函数可求解;(2)由相似三角形的性质可求DO,AO BO 的长,由三角形的面积关系可列方程,即可求解.【详解】解:(1)①四边形ABCD 是平衡四边形,理由如下:∵∠DAB =90°,AD =3,AB =4,∴BD =5,∵BD =AC ,∴四边形ABCD 是平衡四边形;②如图1﹣1,当CD =AC =5时,过点C 作CH ⊥AD 于H ,∵CD =AC ,CH ⊥AD ,∴AH =DH =32,∴CH 2,∴sin ∠DAC =CHAC =5=10,如图1﹣2,当AD =CD =3时,过点D 作DG ⊥AC 于G ,∵AD =CD =3,DG ⊥AC ,∴AG =CG =52,∴DG =2,∴sin ∠DAC =DGAD 6,综上所述:sin ∠DAC 的值为6或10;(2)∵四边形ABCD 是平衡四边形,∴AC =BD ,∵S △CBO ﹣S △ADO =12,∴S △ABC ﹣S △ADB =12,∴12×AC ×OB ﹣12×BD ×OA =12,设AB =x ,∴BD =AC ,∵AC ⊥BD ,∴∠AOD =∠AOB =∠DAB =90°,∴∠DAO +∠BAO =90°=∠DAO +∠ADO ,∴∠BAO =∠ADO ,∴△ADO ∽△BDA ,∴AD DO AO BD AD AB==,=2DO =AO x ,∴DOAO ∴BO =DB ﹣DO 2,∴122﹣12=12,∴()()460x x +-=,∴x 1=﹣4(舍去),x 2=6,∴AB =6.【点睛】本题是四边形综合题,考查了勾股定理,锐角三角函数,相似三角形的判定和性质等知识,理解新定义并运用是本题的关键.24.(1)劣弧AB 的度数是120°;(2)①AG =32;②21122y x=-【分析】(1)如图1,连接OA ,OB ,根据垂径定理和圆心角与圆周角的关系可得∠AOB =120°,由弧的度数等于对应圆心角的度数可得结论;(2)①先根据垂径定理得:AE =BE =1,∠AEC =90°,根据三角函数可得CE 的长,设OE =x ,则OC =2﹣x =OB ,利用勾股定理列方程可得OE 的长,最后根据三角形中位线定理可得AG 的长;②证明△GAF ∽△OCF ,则FG AG OF OC =,表示21FG y OF y =-,则2221AG OE OE y OC OC OA y ===-,根据已知的三角函数可得OA OE AE x+=,最后根据勾股定理列方程为OA 2=OE 2+AE 2,可得222111OE OE OA x OA ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,设OE a OA =,则原方程变形为:()22212110,a a a x +++-=解出可得11a =-(舍),22211x a x -=+,从而可得结论.【详解】解:(1)如图1,连接OA ,OB ,∵CD 是⊙O 的直径,弦AB ⊥CD ,∴ ,AD BD =∴∠AOD =∠BOD ,∵∠ACD =30°,∴∠AOD =60°,∴∠AOB =120°,∴劣弧AB 的度数是120°;(2)①∵CD ⊥AB ,∴AE =BE =1,∠AEC =90°,在Rt △AEC 中,tan ∠CAE =2CEAE =,∴CE =2,设OE =x ,则OC =2﹣x =OB ,在Rt △OEB 中,由勾股定理得:OB 2=OE 2+BE 2,即(2﹣x )2=x 2+1,解得:34x =,∴34OE =,∵OG =OB ,AE =BE ,∴OE 是△AGB 的中位线,∴AG =2OE =32;②∵BG 是⊙O 的直径,∴∠BAG =90°,∵∠BAG =∠BEO =90°,∴//OC AG ,∴∠C =∠GAC ,∵∠GFA =∠OFC ,∴△GAF ∽△OCF ,∴FGAGOF OC =,∵GFy BF =,且GF +BF =2OG ,∴OG =12y GF y + ,∵OF =OG ﹣GF ,∴OF =12yGF y - ,∴21FGyOF y =-,如图3,连接OA ,∵OA =OC ,AG =2OE ,∴2221AGOE OE yOC OC OA y ===-,∵tan ∠CAE =CEx AE =,∴CE =x •AE =OA +OE ,∴OA OEAE x +=,Rt △AOE 中,OA 2=OE 2+AE 2,∴222OA OE OA OE x +⎛⎫=+ ⎪⎝⎭,即()2222212OA OE OA OA OE OE x =+++ ,两边同时除以OA 2,得:222111OE OEOA x OA ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,设OEa OA =,则原方程变形为:()22212110,a a a x +++-=22221211+10,a a x x x ⎛⎫∴++-= ⎪⎝⎭()22111110,a a x x ⎡⎤⎛⎫⎛⎫∴+++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦10a ∴+=或2211110,a x x ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭2110,x +≠ ∴11a =-(舍),22211x a x -=+,∴2211OE x OA x -=+,∴()2221211x y x y-=+-,∴21122y x=-.【点睛】本题考查的是圆周角定理,圆心角与弧的关系,垂径定理的应用,锐角三角函数的应用,一元二次方程的解法,三角形的相似的判定与性质,掌握以上知识是解题的关键.。
期末综合达标测试卷
(满分:120分时间:120分钟)
一、选择题(每小题3分,共30分)
1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有(B) A.4个B.3个
C.2个D.1个
2.如图,在△ABC中,D、E两点分别在BC、AC边上.若BD=CD,∠B=∠CDE,DE=2,则AB的长为(A)
第2题
A.4 B.5
C.6 D.7
3.如图,⊙O的直径CD⊥AB,∠AOC=50°,则∠CDB的度数为(A)
第3题
A.25°B.30°
C.40°D.50°
4.如图,在△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的点C′处,并且C′D∥BC,则CD的长是(A)
第4题
A.40
9
B.
50
9
C.15
4
D.
25
4
5.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,。
期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AĈ上的点,若∠BOC=40°,则∠D的度数为()A. 100°B. 110°C. 120°D. 130°2.两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为( )A. 23B.32C.4 9D. 943.在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为()A. 1:20B. 1:20000 C. 1:200000 D. 1:20000004.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A. 8cmB. 5cmC. 3cmD. 2cm5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是()A. ①②B. ①③C. ①③④D. ①②③④6.围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是23.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()颗 D. 12颗7.一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。
如果任意抛掷小正方体两次,那么下列说法正确的是()A. 得到的数字之和必然是4 B. 得到的数字之和可能是3C. 得到的数字之和不可能是2 D. 得到的数字之和有可能是18.函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是().A. a>0B. a−b+c<0 C. c<0D. 当−1<x<3时,y>09.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是()A. (-1.4,-1.4)B. (1.4,1.4)C. (-,- ) D. (,)10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.个 D. 4个二、填空题(共10题;共30分)11.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________.12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.13.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB=________14.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= ________时,以A、D、E为顶点的三角形与△ABC相似.15.已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.16.某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t﹣1.5t2,那么飞机着陆后滑行________ 米才能停止.17.已知点P为平面内一点,若点P 到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为________.18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________19.如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为________ .20.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 √2,则另一直角边AE的长为________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使ODOB =OEOA=13,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.23.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.24.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:.25.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)26.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?27.如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点M作MC⊥BC,垂足为C,MC与⊙O 交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).(1)当x=9时,求BM的长和△ABM的面积;(2)是否存在点M,使MD•DC=20?若存在,请求出x的值;若不存在,请说明理由.28.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币).(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?答案解析部分一、单选题 1.【答案】B 2.【答案】A 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】B 8.【答案】B 9.【答案】D 10.【答案】C 二、填空题 11.【答案】25 12.【答案】55 13.【答案】108° 14.【答案】125 , 53 15.【答案】(0,10) 16.【答案】600 17.【答案】2或3 18.【答案】1319.【答案】2 20.【答案】10 三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE , ∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC . 又∵∠B=∠D , ∴△ABC∽△ADE .22.【答案】解: ∵ ODOB =OEOA ,∠AOB =∠EOD (对顶角相等), ∴ △AOB ∼△EOD , ∴ ODOB =OEOA =13, ∴ 37.2AB =13, 解得AB =111.6米.所以,可以求出A 、B 之间的距离为111.6米23.【答案】解:图中的弧为BC,AB,AC,ACB,BAC,ABC. 24.【答案】解:∵共3红2黄1绿相等的六部分, ∴①指针指向红色的概率为36=12; ②指针指向绿色的概率为16; ③指针指向黄色的概率为26=13;④指针不指向黄色为56,(1)可能性最大的是④,最小的是②; (2)由题意得:②<③<①<④, 故答案为:②<③<①<④.25.【答案】解:设男同学标记为A 、B ;女学生标记为1、2,可能出现的所有结果列表如下:的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为212=16 26.【答案】解:连CO ∵DC⊥AD,CE⊥OB CD=EC ∠1=∠227.【答案】证明:(1)∵直线BC 与半径为6的⊙O 相切于点B ,且AB 为⊙O 的直径, ∴AB⊥BC, 又∵MC⊥BC, ∴AB∥MC, ∴∠BMC=∠ABM, ∵AB 是⊙O 的直径, ∴∠AMB=90°, ∴∠BCM=∠AMB=90°, ∴△BCM∽△AMB, ∴BMAB =MCBM ,∴BM 2=AB•MC=12×9=108, ∴BM=6√3, ∵BC 2+MC 2=BM 2, ∴BC=√BM 2−MC 2=3√3∴S △ABM =12AB•BC=12×12×3√3=18√3; (2)解:过O 作OE⊥MC,垂足为E , ∵MD 是⊙O 的弦,OE⊥MD, ∴ME=ED,又∵∠CEO=∠ECB=∠OBC=90°, ∴四边形OBCE 为矩形, ∴CE=OB=6, 又∵MC=x,∴ME=ED=MC﹣CE=x ﹣6,MD=2(x ﹣6), ∴CD=MC﹣MD=x ﹣2(x ﹣6)=12﹣x ,∴MD•DC=2(x﹣6)•(12﹣x)=﹣2x2+36x﹣144=﹣2(x﹣9)2+18∵6<x<12,∴当x=9时,MD•DC的值最大,最大值是18,∴不存在点M,使MD•DC=20.28.【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地 [80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x)=-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40.又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.。
浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm2.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A. ∠ABD=∠CB. ∠ADB=∠ABCC.D.3.抛物线y=3x2,y=-3x2,y= x2+3共有的性质是()A. 开口向上B. 对称轴是y轴C. 都有最高点D. y随x值的增大而增大4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()A. k>-B. k>- 且k≠0C. k≥-D. k≥- 且k≠05.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A. 0.5mB. 0.55mC. 0.6mD. 2.2m6.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则的值为()A. B. C. D.7.平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为( )A. (1,)B. ( -1,)C. (0,2)D. (2,0)8.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A. 70°B. 50°C. 40°D. 35°9.两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是()A. 75cm2B. 65cm2C. 50cm2D. 45cm210.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A. 2个B. 3个C. 4个D. 5个二、填空题(共10题;共30分)11.如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.12. 如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O 为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.15.如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB交BC于E,交AC于F.若AB=12,那么EF=________.16.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为________ 元时,可获得最大利润.17.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).18.如果2+ 是方程的一个根,那么c的值是________.19.如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB绕点O逆时针旋转90°得△′′,则点′的坐标为________20.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________ .三、解答题(共8题;共60分)21.如图,已知△ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转180°后的△A2B2C2,并写出点A2的坐标;(3)直接回答:∠AOB与∠A2OB2有什么关系?22.已知:如图所示,AD=BC。
浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5 cm ,则它的最长边为( )A. 3cmB. 4cmC. 4.5cmD. 5cm2.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A. ∠ABD=∠CB. ∠ADB=∠ABCC. AB BD =CB CDD. AD AB =AB AC 3.抛物线y=3x 2, y=-3x 2, y= x 2+3共有的性质是( ) A. 开口向上 B. 对称轴是y 轴 C. 都有最高点 D. y 随x 值的增大而增大 4.已知二次函数y=kx 2-7x-7的图象与x 轴有两个交点,则k 的取值范围为( )A. k >- 74B. k >- 74且k≠0C. k≥- 74D. k≥- 74且k≠05.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A. 0.5mB. 0.55mC. 0.6mD. 2.2m6.如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB ,若AD=2BD ,则CF CB 的值为( )A. 12B. 13C. 14D. 237.平面直角坐标系中,O 为坐标原点,点A 的坐标为(√3,1),将OA 绕原点按逆时针方向旋转30°得OB ,则点B 的坐标为( )A. (1,√3)B. ( -1,√3)C. (0,2)D. (2,0)8.如图,A 、B 、C 是⊙O 上的点,若∠AOB =70°,则∠ACB 的度数为( )A. 70°B. 50°C. 40°D. 35°9.两个相似三角形的相似比为2:3,它们的面积之差为25cm 2,则较大三角形的面积是( )A. 75cm 2B. 65cm 2C. 50cm 2D. 45cm 210.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下面四个结论:①CF=2AF ;②tan ∠CAD=√22;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=5S△ABF ,其中正确的结论有()2A. 2个B. 3个C. 4个D. 5个二、填空题(共10题;共30分)11.如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.12. 如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的1,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.214.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.15.如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB交BC于E,交AC于F.若AB=12,那么EF=________.16.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为________ 元时,可获得最大利润.17.如图,抛物线y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点P (m ,n ).给出下列结论:①2a+c <0;②若(﹣32,y 1),(﹣12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③关于x 的方程ax 2+bx+k=0有实数解,则k >c ﹣n ;④当n=﹣1a 时,△ABP 为等腰直角三角形.其中正确结论是________(填写序号).18.如果2+ √3是方程x 2−cx +1=0的一个根,那么c 的值是________.19.如图,在直角坐标系中,点A在y 轴上,△OAB 是等腰直角三角形,斜边OA=2,将△OAB 绕点O 逆时针旋转90°得△OA ′B ′,则点B ′的坐标为________20.如图,△ABC 中,已知∠C=90°,∠B=55°,点D 在边BC 上,BD=2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=________ .三、解答题(共8题;共60分)21.如图,已知△ABC 三个顶点的坐标分别是A (-2,3),B (-3,-1),C (-1,1)(1)画出△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1,并写出点A 1的坐标;(2)画出△ABC 绕点O 逆时针旋转180°后的△A 2B 2C 2,并写出点A 2的坐标;(3)直接回答:∠AOB 与∠A 2OB 2有什么关系?22.已知:如图所示,AD=BC。
求证:AB=CD。
23.如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q和S ,使点P、Q、S 共线且直线PS与河垂直,接着再过点S且与PS垂直的直线a上选择适当的点T ,确定PT与过点Q且垂直PS的直线b的交点R .如果测得QS=45m ,ST=90m ,QR=60m ,求河的宽度PQ .24.如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.25.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是几个单位长度;(2)△AOC与△BOD关于直线对称,则对称轴是。
(3)△AOC绕原点O顺时针旋转可以得到△DOB,则旋转角度是多少度,在此旋转过程中,△AOC扫过的图形的面积是多少.26.盒子里装有12张红色卡片,16张黄色卡片,4张黑色卡片和若干张蓝色卡片,每张卡片除颜色外都相同,从中任意摸出一张卡片,摸到红色卡片的概率是0.24.(1)从中任意摸出一张卡片,摸到黑色卡片的概率是多少?(2)求盒子里蓝色卡片的个数.27.有两个可以自由转动的均匀转盘,都被分成了3等分,并在每份内均标有数字,如图所示,规则如下:分别转动转盘,两个转盘停止后,将两个指针所指份内的数字相乘,(若指针停止在等分析线上,那么重转一次,直到指针指向某份为止)。
(1)用列表或画树状图分别求出数字之积为3的倍数和数字之积为5的倍数的概率;(2)小明和小亮想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小明得2分;数字之积为5的倍数时,小亮得3分.这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏对双方公平.28.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD 是矩形,且DE⊥CF.则DE·CD CF·AD(填“<”或“=”或“>”);(2)如图2,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得DE·CD=CF·AD成立?并证明你的结论;(3)如图3,若BA=BC= 3,DA=DC= 4,∠BAD= 90°,DE⊥CF.则DE的值为.CF图1 图2 图3答案解析部分一、单选题1.【答案】C2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】B7.【答案】A8.【答案】D9.【答案】D10.【答案】D二、填空题11.【答案】△ABF ∽△DBE 或△ACE ∽△DCF 或△EDB ∽△FDC12.【答案】50°13.【答案】52或15214.【答案】215.【答案】816.【答案】6517.【答案】②③④18.【答案】419.【答案】(-1,1)20.【答案】70°或120°三、解答题21.【答案】解:(1)作图如下,点A 1的坐标(-4,-2).(2)作图如下,点A 2的坐标(2,-3).(3)相等.22.【答案】解:23.【答案】解答:根据题意得出:QR∥ST ,则△PQR∽△PST ,故= ,∵QS=45m,ST=90m,QR=60m,∴= ,解得:PQ=90(m),∴河的宽度为90米.24.【答案】解:△PBQ的面积S随出发时间t(s)成二次函数关系变化,∵在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,∴BP=12﹣2t,BQ=4t,∴△PBQ的面积S随出发时间t(s)的解析式为:y= (12﹣2t)×4t=﹣4t2+24t,(0<t<6)25.【答案】(1)∵A(-2,0),∴OA=2.∵△AOC沿x轴向右平移得到△OBD,∴△AOC≌△OBD,∴AO=OB,∴OB=2,∴平移的距离是2个单位长度.(2)∵△AOC与△BOD关于直线对称,∴△AOC≌△BOD,∴AO=BO.∴y轴是AB的垂直平分线,∴对称轴是y轴,(3)∵△AOC和△OBD都是等边三角形,∴∠AOC=∠DOB=60°,∴∠AO=120°,∴旋转角度是120°.△AOC扫过的图形的面积是π×22×=2π.26.【答案】解:(1)由题意得卡片的总张数为120.24=50,则任意摸出一张卡片,摸到黑色卡片的概率是450=0.08;(2)盒子里蓝色卡片的个数是:50﹣12﹣16﹣4=18.27.【答案】解:(1)每次游戏可能出现的所有结果列表如下:表格中共有9种等可能的结果,则数字之积为3的倍数的有五种,其概率为59;数字之积为5的倍数的有三种,其概率为39= 13.(2)这个游戏对双方不公平.∵小亮平均每次得分为2×59=109(分),小芸平均每次得分为3×39=99(分),∵109≠1,∴游戏对双方不公平.修改得分规定为:若数字之积为3的倍数时,小亮得3分;若数字之积为5的倍数时,小芸得5分即可.28.【答案】解(1)证明:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴DECF =ADCD,即DE·CD=CF·AD.(2)当∠B+∠EGC=180°时,DE·CD=CF·AD成立.证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴DEAD =DFDG,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴DFDG =CFCD,∴DEAD =CFCD,∴DECF =ADCD,即当∠B+∠EGC=180°时,DECF =ADCD成立.(3)解:DECF =2524.理由是:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,∵在△BAD和△BCD中{AD=CD AB=BC BD=BD∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠CBM=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴CMCN =BCCD,∴CMX =68∴CM=34x在Rt△CMB中,CM=34x,BM=AM﹣AB=x﹣6,由勾股定理得:BM2+CM2=BC2,∴(x−6)2+(34x)2=62,解得 x=0(舍去),x=19225∴CN=19225,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴DECF =ADCN=819225=2524。