高一第一学期数学期末考试试卷(含答案)
- 格式:doc
- 大小:297.00 KB
- 文档页数:4
高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。
房山区2023-2024学年度第一学期期末检测试卷高一数学(答案在最后)本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回,试卷自行保存.第一部分(选择题共50分)一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知()2,3A -,()4,1B -,则线段AB 中点的坐标为()A.()3,2- B.()3,2- C.()1,1 D.()1,1--【答案】D 【解析】【分析】根据,A B 两点的坐标,利用平面向量的坐标表示计算可得结果.【详解】设线段AB 中点的坐标为(),M x y ,取()0,0O ,则()()2,3,4,1OA OB =-=-uu r uu u r;由向量的坐标表示可得2OM OA OB =+,即224,231x y =-=-+,解得1,1x y =-=-;所以线段AB 中点的坐标为()1,1--.故选:D2.某产品按质量分为甲、乙、丙三个级别,从这批产品中随机抽取一件进行检测,设“抽到甲级品”的概率为0.80,“抽到乙级品”的概率为0.15,则“抽到丙级品”的概率为()A .0.05B.0.25C.0.8D.0.95【答案】A 【解析】【分析】根据概率之和为1求解.【详解】“抽到甲级品”,“抽到乙级品”,“抽到丙级品”是互斥事件,因为“抽到甲级品”的概率为0.80,“抽到乙级品”的概率为0.15,则“抽到丙级品”的概率为0.800.051150.-=-.故选:A3.下列四个函数中,在()0,∞+上单调递减的是()A.y =B.2y x x =-+C.2x y =D.2log y x=-【答案】D 【解析】【分析】ACD 可根据函数图象直接判断;C 选项,配方后得到函数单调性.【详解】A 选项,y =()0,∞+上单调递增,A 错误;B 选项,221124y x x x ⎛⎫=-+=--+ ⎪⎝⎭,故在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞⎪⎝⎭上单调递减,B 错误;C 选项,2x y =在()0,∞+上单调递增,C 错误;D 选项,2log y x =在()0,∞+上单调递增,故2log y x =-在()0,∞+上单调递减,D 正确.故选:D4.设2log 0.3a =,20.3b =,0.32c =,则a ,b ,c 的大小关系为()A.a b c <<B.a c b <<C.b a c <<D.b c a<<【答案】A 【解析】【分析】利用函数性质,确定与中间量0和1的大小关系即可.【详解】22log 0.3log 10a =<=,2000.30.31b <=<=,0.30221c =>=.所以a b c <<.故选:A.5.甲、乙两名射击运动员在某次测试中各射击10次,两人的测试成绩如下表:甲的成绩乙的成绩环数678910环数678910频数12421频数32113甲、乙两人成绩的平均数分别记作1x ,2x ,标准差分别记作1s ,2s ,则()A.12x x >,12s s >B.12x x <,12s s <C.12x x >,12s s <D.12x x <,12s s >【答案】C 【解析】【分析】根据平均数、方差公式运算求解.【详解】由题意可得:()1161728492101810x =⨯+⨯+⨯+⨯+⨯=,()21637281911037.910x =⨯+⨯+⨯+⨯+⨯=,1s ==,2s =所以12x x >,12s s <.故选:C.6.如图,在ABC 中,点M ,N 满足AM MB =,3BN NC = ,则MN = ()A.1344AB AC +B.1344AB AC -C.1344AB AC-+D.1344AB AC--【答案】C 【解析】【分析】直接利用向量的几何运算求解即可.【详解】()131331242444MN MB BN AB BC AB AC AB AC AB =+=+=+-=-.故选:C.7.在信息论中,设某随机事件发生的概率为p ,称21log p为该随机事件的自信息.若按先后顺序抛掷两枚均匀的硬币,则事件“恰好出现一次正面”的自信息为()A.0B.1C.2D.3【答案】B 【解析】【分析】依题意计算出事件“恰好出现一次正面”的概率为12p =,代入计算可得结果.【详解】根据题意可知,按先后顺序抛掷两枚均匀的硬币共有“正正、反反、正反、反正”四种情况,则事件“恰好出现一次正面”的概率为12p =,所以“恰好出现一次正面”的自信息为221log log 21p==.故选:B8.设,a b是向量,“a ab =+”是“0b = ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量的运算性质结合充分条件和必要条件的判定,即可得出答案.【详解】当12a b =-时,1122a b b b b a +=-+== ,推不出0b = 当0b = 时,0b = ,则0a b a a +=+=即“a a b =+”是“0b = ”的必要不充分条件故选:B【点睛】本题主要考查了判断必要不充分条件,属于中档题.9.血氧饱和度是呼吸循环的重要生理参数.人体的血氧饱和度正常范围是95%~100%,当血氧饱和度低于90%时,需要吸氧治疗,在环境模拟实验室的某段时间内,可以用指数模型:0()e Kt S t S =描述血氧饱和度()S t 随给氧时间t (单位:时)的变化规律,其中0S 为初始血氧饱和度,K 为参数.已知060%S =,给氧1小时后,血氧饱和度为80%.若使得血氧饱和度达到90%,则至少还需要给氧时间(单位:时)为()(精确到0.1,参考数据:ln 2069ln 3110≈≈.,.)A.0.3 B.0.5 C.0.7 D.0.9【答案】B 【解析】【分析】依据题给条件列出关于时间t 的方程,解之即可求得给氧时间至少还需要的小时数.【详解】设使得血氧饱和度达到正常值,给氧时间至少还需要1t -小时,由题意可得60e 80K =,60e 90Kt =,两边同时取自然对数并整理,得804ln ln ln 4ln 32ln 2ln 3603K ===-=-,903ln ln ln 3ln 2602Kt ===-,则ln 3ln 2 1.100.691.52ln 2ln 320.69 1.10t --=≈≈-⨯-,则给氧时间至少还需要0.5小时故选:B10.已知函数()12xf x =,()221f x x =+,()()1log 1a g x x a =>,()()20g x kx k =>,则下列结论正确的是()A.函数()1f x 和()2f x 的图象有且只有一个公共点B.0x ∃∈R ,当0x x >时,恒有()()12g x g x >C.当2a =时,()00,x ∃∈+∞,()()1010f x g x <D.当1a k=时,方程()()12g x g x =有解【答案】D 【解析】【分析】对于A ,易知两个函数都过()0,1,结合特值和图象可得函数()1f x 和()2f x 的图像有两个公共点;对于B ,由函数的增长速度可判断;对于C ,当2a =时,作图可知x ∀∈R ,有()()11f x g x >恒成立;对于D ,当1a k =时,易知两个函数都过点1,1k ⎛⎫ ⎪⎝⎭,即方程()()12g x g x =有解;【详解】对于A ,指数函数()12xf x =与一次函数()221f x x =+都过()0,1,且()()121213f f =<=,()()123837f f =>=,故还会出现一个交点,如图所示,所以函数()1f x 和()2f x 的图像有两个公共点,故A 错误;对于B ,()()1log 1a g x x a =>,()()200g x kx k =>=均单调递增,由对数函数的性质可得对数函数的增长速度越来越慢,逐渐趋近0,一次函数的增长速度固定,所以不存在0x ∈R ,当0x x >时,恒有()()12g x g x >,故B 错误;对于C ,当2a =时,指数函数()12xf x =与对数函数()12log g x x =互为反函数,两函数图像关于直线y x=对称,如图所示,由图可知,x ∀∈R ,有()()11f x g x >恒成立,故C 错误;对于D ,当1a k =时,()11log k g x x =,()()20g x kx k =>,由1a >知,11k >,且两个函数都过点1,1k ⎛⎫ ⎪⎝⎭,即方程()()12g x g x =有解,故D 正确;故选:D【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解第二部分(非选择题共100分)二、填空题共6小题,每小题5分,共30分.11.238=____________;lg 42lg 5+=___________.【答案】①.4②.2【解析】【分析】直接利用指数对数的运算性质计算即可.【详解】2223824===,()22lg 42lg 5lg 4lg 5lg 45lg1002+=+=⨯==.故答案为:4;2.12.向量a ,b ,c 在正方形网格中的位置如图所示,若(),c a b λμλμ=+∈R,则λμ+=_________.【答案】3【解析】【分析】根据题意将向量a ,b ,c坐标化,解方程即可求出2,1λμ==,可得结果.【详解】以b 的起点为坐标原点,水平向右为x 轴正方向,b的方向为y 轴负方向,建立平面直角坐标系;不妨取()1,1a = ,()0,1b =- ,()2,1c =,由(),c a b λμλμ=+∈R可得()()2,10,λλμ=+-,即可得2,1λμ==,即3λμ+=.故答案为:313.为估计某森林内松鼠的数量,使用以下方法:先随机从森林中捕捉松鼠100只,在每只松鼠的尾巴上作上记号后放回森林.再随机从森林中捕捉50只,若尾巴上有记号的松鼠共有5只,估计此森林内约有松鼠_______只.【答案】1000【解析】【分析】直接根据比例求解.【详解】估计此森林内约有松鼠5100100050÷=只.故答案为:100014.已知向量)a =,(),b x y = ,若a ,b 共线,且1b = ,则向量b的坐标可以是__________.(写出一个即可)【答案】1,22⎛⎫ ⎪ ⎪⎝⎭或1,22⎛⎫-- ⎪ ⎪⎝⎭(写出一个即可)【解析】【分析】直接根据题目条件列方程组求解即可.【详解】由已知得221x x y =+=⎪⎩,解得3212x y ⎧=⎪⎪⎨⎪=⎪⎩或3212x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即向量b的坐标可以是1,22⎛⎫ ⎪ ⎪⎝⎭或1,22⎛⎫-- ⎪ ⎪⎝⎭.故答案为:1,22⎛⎫ ⎪ ⎪⎝⎭或1,22⎛⎫-- ⎪ ⎪⎝⎭(写出一个即可).15.函数()()31,1log ,1a a x x f x x x ⎧--<=⎨≥⎩,若4a =,则()()2f f -=_________;若函数()f x 是(),-∞+∞上的增函数,则a 的取值范围是___________.【答案】①.0②.[)2,3【解析】【分析】(1)利用分段函数的解析式,直接求值即可;(2)函数在(),-∞+∞上递增,必须函数的每一段都递增,且1x =时,()311log 1a a -⨯-≤.【详解】(1)当4a =时,()()()234211f -=-⨯--=,()41log 10f ==.(2)因为函数在(),-∞+∞上递增,所以:()301311log 1a a a a ⎧->⎪>⎨⎪-⨯-≤⎩⇒23a ≤<.故答案为:0;[)2,316.有一组样本数据1x ,2x ,…,6x ,其中1x 是最小值,6x 是最大值,下面有四个结论:①2x ,3x ,4x ,5x 的中位数等于1x ,2x ,…,6x 的中位数;②2x ,3x ,4x ,5x 的平均数等于1x ,2x ,…,6x 的平均数;③2x ,3x ,4x ,5x 的标准差不大于1x ,2x ,…,6x 的标准差;④2x ,3x ,4x ,5x 的极差不大于1x ,2x ,…,6x 的极差.则所有正确结论的序号是____________.【答案】①③④【解析】【分析】由中位数、极差、方差的定义性质结合平均数公式逐一判断即可.【详解】由题意不妨设123456x x x x x x ≤≤≤≤≤,对于2x ,3x ,4x ,5x 的中位数和1x ,2x ,…,6x 的中位数均为342x x +,故①正确;取12345612x x x x x x =====<=,此时2x ,3x ,4x ,5x 的平均数为1,它小于1x ,2x ,…,6x 的平均数76,故②错误;对于③,2x ,3x ,4x ,5x 相比1x ,2x ,…,6x 去掉了两个极端的数,应更为稳定,故③正确;2x ,3x ,4x ,5x 的极差与1x ,2x ,…,6x 的极差满足5261x x x x -≤-,故④正确.故答案为:①③④.三、解答题共5题,共70分.解答应写出文字说明,演算步骤或证明过程.17.设向量a 与b不共线.(1)若()1,2a =r ,()1,1b =- ,且2a kb -与32a b - 平行,求实数k 的值;(2)若AB a b =- ,32BC a b =+,82CD a b =-- ,求证:A ,C ,D 三点共线.【答案】(1)43k =(2)证明见解析【解析】【分析】(1)利用向量平行求待定系数;(2)证明AC CD λ=,可得A ,C ,D 三点共线.【小问1详解】()1,2a = ,()1,1b =- ,则()22,4a kb k k -=+- ,()325,4a b -=.因为2a kb - 与32a b - 平行,所以有()()42540k k +--=.解得43k =.【小问2详解】因为AB a b =- ,32BC a b =+,82CD a b =-- ,所以324AC AB BC a b a b a b =+=-++=+,所以2CD AC =- .所以AC 与CD共线,又因为有公共点C ,所以A ,C ,D 三点共线.18.一个问题,甲正确解答的概率为0.8,乙正确解答的概率为0.7.记事件:A 甲正确解答,事件:B 乙正确解答.假设事件A 与B 相互独立.(1)求恰有一人正确解答问题的概率;(2)某同学解“求该问题被正确解答的概率”的过程如下:解:“该问题被正确解答”也就是“甲、乙二人中至少有一人正确解答了问题”,所以随机事件“问题被正确解答”可以表示为A B +.所以()()()0.80.7 1.5P A B P A P B +=+=+=.请你指出这位同学错误的原因,并给出正确解答过程.【答案】(1)0.38(2)答案见解析【解析】【分析】(1)分析可知,事件“恰有一人正确解答”可表示为AB AB +,利用互斥事件和独立事件的概率公式可求得所求事件的概率;(2)指出该同学作答的错误之处,分析可知,“问题被解答”也就是“甲、乙二人中至少有一人正确解答了问题”,可以表示为AB AB AB ++,利用互斥事件和独立事件的概率公式可求得所求事件的概率,或利用对立事件和独立事件的概率公式可求得所求事件的概率.【小问1详解】解:事件“恰有一人正确解答”可表示为AB AB +,因为AB 、AB 互斥,A 与B 相互独立,所以()()()()()()()P AB AB P AB P AB P A P B P A P B +=+=+0.20.70.80.30.38=⨯+⨯=.【小问2详解】解:该同学错误在于事件A 、B 不互斥,而用了互斥事件的概率加法公式.正确的解答过程如下:“问题被解答”也就是“甲、乙二人中至少有一人正确解答了问题”,可以表示为AB AB AB ++,且AB 、AB 、AB 两两互斥,A 与B 相互独立,所以()()()()P AB AB AB P AB P AB P AB ++=++()()()()()()0.20.70.80.30.80.70.94P A P B P A P B P A P B =++=⨯+⨯+⨯=.或者()()()()11P A B P AB P A P B +=-=-()()110.810.70.94=---=.19.已知函数()()()33log 2log 2f x x x =++-.(1)求()f x 的定义域;(2)判断()f x 的奇偶性,并证明;(3)解关于x 的不等式()1f x ≥.【答案】(1)()2,2-(2)函数()f x 是定义在()2,2-上的偶函数,证明见解析(3){}11x x -≤≤【解析】【分析】(1)根据对数函数定义域求法可得()f x 的定义域为()2,2-;(2)利用定义域关于原点对称,由奇偶性定义可得()f x 为偶函数;(3)由对数函数单调性解不等式即可得不等式()1f x ≥的解集为{}11x x -≤≤.【小问1详解】由题意可得2020x x +>⎧⎨->⎩,解得22x -<<.所以函数()f x 的定义域为()2,2-.【小问2详解】偶函数,证明如下:函数()f x 的定义域为()2,2-,关于原点对称.因为()()()33log 2log 2f x x x =++-,所以()()()()33log 2log 2f x x x f x -=-++=.即函数()f x 是定义在()2,2-上的偶函数.【小问3详解】由()()()()2333log 2log 2log 4f x x x x=++-=-,得()23log 41x -≥,即()233log 4log 3x -≥.因为3log y x =在()0,∞+是增函数,所以243x -≥.解得11x -≤≤,因为函数()f x 的定义域为()2,2-.因此不等式()1f x ≥的解集为{}11x x -≤≤.20.某校为了调查学生的体育锻炼情况,从全校学生中随机抽取100名学生,将他们的周平均锻炼时间(单位:小时)数据按照[)3,5,[)5,7,[)7,9,[)9,11,[]11,13分成5组,制成了如图所示的频率分布直方图.(1)求a 的值;(2)用分层抽样的方法从[)9,11和[]11,13两组中抽取了6人.求从这6人中随机选出2人,这2人不在同一组的概率;(3)假设同组中的每个数据用该区间的中点值代替,试估计全校学生周平均锻炼时间的平均数.【答案】(1)0.15a =(2)815(3)7.92小时【解析】【分析】(1)由频率分布直方图所有矩形的面积之和为1计算可得0.15a =;(2)列举出从6人中随机选出2人的所有情况,再求得2人不在同一组的情况,即可求得其概率;(3)由频率分布直方图计算平均数公式代入计算即可求得结果.【小问1详解】因为频率分布直方图所有矩形的面积之和为1,易知组距为2,所以()0.020.050.10.1821a ++++⨯=,解得0.15a =.【小问2详解】由频率分布直方图可知[)9,11和[]11,13两组的频数的比为0.1:0.052:1=所以利用分层抽样的方法抽取6人,这两组被抽取的人数分别为4,2,记[)9,11中的4人为1a ,2a ,3a ,4a ,[]11,13中的2人为1b ,2b ,从这6人中随机选出2人,则样本空间{}121314232434111221223132414212,,,,,,,,,,,,,,a a a a a a a a a a a a a b a b a b a b a b a b a b a b b b Ω=,共15个样本点设事件A :选出的2人不在同一组,{}1112212231324142,,,,,,,A a b a b a b a b a b a b a b a b =,共8个样本点,所以()815P A =【小问3详解】()40.0260.1880.15100.1120.0527.92⨯+⨯+⨯+⨯+⨯⨯=估计全校学生周平均锻炼时间的平均数为7.92小时21.若0M ∃>,对x D ∀∈,都有()f x M ≤成立,则称函数()f x 在D 上具有性质()J M .(1)分别判断函数()221x x f x -=-+与()11x g x x +=-在区间[)2,+∞上是否具有性质()J M ,如果具有性质()J M ,写出M 的取值范围;(2)若函数()124x x h x a +=⋅-在[]0,1上具有性质()1J ,求实数a 的取值范围.【答案】21.详见解析;22.3,14⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)根据题意结合调性与最值分析判断;(2)令[]21,2xt =∈,由题意可得对[]1,2t ∀∈,都有2121at t --≤≤.方法1:利用参变分类结合恒成立问题分析求解;方法2:先取特值1,2,求得314a ≤≤,进而根据二次函数分析求解;方法3:分类讨论二次函数对称轴与区间的关系,结合恒成立问题分析求解.【小问1详解】因为2x y =在[)2,+∞上是单调递增的函数,2xy -=在[)2,+∞上是单调递减的函数,则()221x x f x -=-+在[)2,+∞上是单调递增的函数,可得()()19204f x f =>≥,任意0M >,当2logx >()221x x f x M -=-+>,所以函数()221x x f x -=-+在区间[)2,+∞上不具有性质()J M .因为()11221111x x g x x x x +-+===+---在区间[)2,+∞上单调递减,由[)2,x ∞∈+可得[)11,x -∈+∞,则(]10,11x ∈-,所以()(]1,3g x ∈,所以3M ∃=,对[)2,x ∀∈+∞,()3≤g x ,即函数()g x 在区间[)2,+∞上具有性质()J M ,且M 的取值范围是[)3,+∞.【小问2详解】因为函数()124x x h x a +=⋅-在[]0,1上具有性质()1J ,即对[]0,1x ∀∈,都有()11h x -≤≤,且()()2124222x x x xh x a a +=⋅-=⋅-,令[]21,2x t =∈,可得对[]1,2t ∀∈,都有2121at t --≤≤,方法1:[]1,2t ∀∈,都有111122t a t t t ⎛⎫⎛⎫-≤≤+ ⎪ ⎪⎝⎭⎝⎭,设()122t m t t=-,()112n t t t ⎛⎫=+ ⎪⎝⎭,可得()max a m t ≥,()min a n t ≤,因为()m t 在区间[]1,2上单调递增,()n t 在区间[]1,2上单调递增.则()()max 324m t m ==,()()min 11n t n ==.可得314a ≤≤,所以a 的取值范围为3,14⎡⎤⎢⎥⎣⎦.方法2:对[]1,2t ∀∈,都有2121at t --≤≤,可得12111441a a -≤-≤⎧⎨-≤-≤⎩,解得314a ≤≤,若314a ≤≤,函数()22F t t at =-+的对称轴为1t a =≤,则()22F t at t =-在[]1,2t ∈上单调递减,所以()()21112121F at t F ⎧≤⎪-≤-≤⇔⎨≥-⎪⎩,即314a ≤≤,所以a 的取值范围为3,14⎡⎤⎢⎥⎣⎦.方法3:函数()22F t t at =-+的对称轴为t a =,以对称轴与区间的关系分1a ≤,12a <<,2a ≥三种情况.(i )当1a ≤时,12111441a a -≤-≤⎧⎨-≤-≤⎩,解得314a ≤≤;(ⅱ)当2a ≥时,12111441a a -≤-≤⎧⎨-≤-≤⎩,不合题意,舍去;(ⅲ)当12a <<时,2212111441121a a a a -≤-≤⎧⎪-≤-≤⎨⎪-≤-≤⎩,不合题意,舍去;综上所述:a 的取值范围为3,14⎡⎤⎢⎥⎣⎦.。
东城区2023-2024学年度第一学期期末统一检测高一数学(答案在最后)2024.1本试卷共4页,满分100分.考试时长120分钟,考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共30分)一、选择题:共10小题,每小题3分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合N A =,{}22B x x =-<<,则A B = ()A.{}1 B.{}0,1 C.{}1,0,1- D.{}2,1,0,1,2--【答案】B 【解析】【分析】根据集合的交运算法则直接计算即可.【详解】因为集合N A =,{}22B x x =-<<,所以{}0,1A B = ,故选:B .2.下列函数中,与1y x =-是同一函数的是()A.1y =- B.y = C.211x y x -=+ D.1y =【答案】A 【解析】【分析】根据函数的定义域与对应关系逐项判断即可得答案.【详解】函数1y x =-的定义域为R ,对于A ,函数11y x =-=-的定义域为R ,且对应关系与函数1y x =-相同,故A 正确;对于B ,函数y =R ,但是1y x ==-,对应关系与函数1y x =-不相同,故B 错误;对于C ,函数211x y x -=+的定义域为()(),11,∞∞--⋃-+,定义域不同,则不是同一函数,故C 错误;对于D ,函数1y =-的定义域为R ,且1y x =-,则对应关系与函数1y x =-不相同,故D 错误.故选:A.3.下列函数在定义域内既是奇函数又是增函数的是()A.()3f x x = B.()2xf x = C.()1f x x=-D.()tan f x x=【答案】A 【解析】【分析】根据基本初等函数的单调性以及奇偶性即可求解.【详解】对于A ,()()()()33,f x x x f x f x -=-=-=-为奇函数,且为单调递增的幂函数,故A 正确,对于B ,()2xf x =为非奇非偶函数,故不符合,对于C ,()1f x x=-为反比例函数,在()0,∞+和(),0∞-均为单调递增函数,但在定义域内不是单调递增,故不符合,对于D ,()tan f x x =在πππ,π,Z 22k k k ⎛⎫++∈ ⎪⎝⎭-单调递增,但在定义域内不是单调递增,故不符合,故选:A4.下列命题中正确的是()A.若a b >,则11a b< B.若a b <,则22ac bc <C.若22a b >,则a b > D.若22a b c c>,则a b >【答案】D 【解析】【分析】取特殊值结合不等式的性质,逐项判断即可.【详解】对于A ,若取2,2a b ==-,则1122>-,即11a b >,故A 错误;对于B ,令0c =,则有22ac bc =,故B 错误;对于C ,令2,1a b =-=,则有a b <,故C 错误;对于D ,根据不等式性质可知D 正确,故选:D .5.若1sin 2α=,π,π2α⎛⎫∈ ⎪⎝⎭,则()cos πα-的值为()A. B.12-C.2D.12【答案】C 【解析】【分析】根据同角三角函数的平方关系及诱导公式进行计算即可.【详解】因为1sin 2α=,π,π2α⎛⎫∈ ⎪⎝⎭,所以cos 2α==-,则()cos πcos 2αα-=-=,故选:C.6.下列函数中,满足对任意的1x ,()20,x ∞∈+,都有()()()1212f x x f x f x =的是()A.()12f x x = B.()ln f x x = C.()22f x x= D.()3f x x=-【答案】A 【解析】【分析】根据各项函数解析式,结合指对数运算性质或特例判断是否满足题设,即可得答案.【详解】对于A :若()12f x x =,则()()121212f x x x x =,()()()111222121212f x f x x x x x =⋅=,()()()1212f x x f x f x =,成立;对于B :若()ln f x x =,由()()()1212f x x f x f x =,得()1212ln ln ln x x x x =,取121,2x x ==,得ln20=不成立;对于C :若()22f x x =,由()()()1212f x x f x f x =,得2222121224x x x x =,取121x x ==,得24=不成立;对于D :若()3f x x =-,由()()()1212f x x f x f x =,得33331212x x x x -=,取121x x ==,得11-=不成立.故选:A7.已知0.13a -=,13log 5b =-,2c =,则().A.a b c << B.b<c<aC.c b a<< D.a c b<<【答案】D 【解析】【分析】通过化简,,a b c ,并比较与1的大小即可得出结论.【详解】由题意,0.131a -=<,1333log 5log 5log 41b c =-=>==>,所以a c b <<.故选:D.8.“角α与β的终边关于直线y x =对称”是“()sin 1αβ+=”的()A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据终边关于y x =对称,得两角的关系,再由()sin 1αβ+=,得两角满足的关系,根据充分必要条件的定义即可求解.【详解】角α与β的终边关于直线y x =对称,则π+=+2π,Z 2k k αβ∈,()sin 1αβ+=,则π+=+2π,Z 2k k αβ∈,“角α与β的终边关于直线y x =对称”是“()sin 1αβ+=”的充分必要条件.故选:A9.某品牌可降解塑料袋经自然降解后残留量y 与时间t (单位:年)之间的关系为0e kty y =⋅.其中0y 为初始量,k 为降解系数.已知该品牌塑料袋2年后残留量为初始量的75%.若该品牌塑料袋需要经过n 年,使其残留量为初始量的10%,则n 的值约为()(参考数据:lg 20.301≈,lg 30.477≈)A.20 B.16C.12D.7【答案】B 【解析】【分析】由23e4k=可得2ln 32ln 2k =-,再代入1e 10nk =,求解即可.【详解】根据题意可得2003e 4ky y ⋅=⋅,则23e 4k=,32ln ln 32ln 24k ==-,则经过n 年时,有001e 10nky y ⋅=⋅,即1e 10nk=,则1lnln1010nk ==-,所以lg101822lg 32lg 20.47720.301n nk k --==≈=--⨯,则16n =.故选:B .10.已知()f x 是定义在[]5,5-上的偶函数,当50x -≤≤时,()f x 的图象如图所示,则不等式()0sin f x x>的解集为()A.()()(]π,20,2π,5--⋃⋃ B.()()π,22,π--⋃C.[)()()5,π2,02,π--- D.[)(]5,2π,5-- 【答案】C 【解析】【分析】由已知结合偶函数的对称性可确定05x ≤≤时函数性质,然后结合分式不等式的求法可求.【详解】因为()f x 是定义在[5-,5]上的偶函数,当50x -≤≤时,()f x 单调递减,(2)0f -=,所以05x ≤≤时,函数单调递增,()20f =,所以()0f x >的解集[5-,2)(2-⋃,5],()0f x <的解集(2,2)-,当55x -≤≤时,sin 0x >的解集[5-,π)(0-⋃,π),sin 0x <时的解集(π-,0)(π⋃,5],则不等式()0sin f x x >可转化为()0sin 0f x x >⎧⎨>⎩或()0sin 0f x x <⎧⎨<⎩,解得5πx -<<-或20x -<<或2πx <<.故选:C .第二部分(非选择题共70分)二、填空题:共6小题,每小题4分,共24分.11.函数1ln 1y x x =++的定义域为______.【答案】()0,∞+【解析】【分析】根据已知列出不等式组,求解即可得出答案.【详解】要使函数1ln 1y x x =++有意义,则应有010x x >⎧⎨+≠⎩,解得0x >,所以函数1ln 1y x x =++的定义域为()0,∞+.故答案为:()0,∞+.12.设0a >,则4a a a++的最小值为__________.【答案】5【解析】【详解】4a a a ++4115a a =++≥+=,当且仅当2a =时取等号点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.13.已知23x y a ==,若111x y+=,则=a ______.【答案】6【解析】【分析】先由指数式化为对数式可得2log x a =,3log y a =,再利用111x y+=即可求a 的值.【详解】由23x y a ==,可得:2log x a =,3log y a =,所以11log 2log 3log 61a a a x y+=+==,则6a =,故答案为:614.在平面直角坐标系中,角α的终边不在坐标轴上,则使得tan sin cos ααα<<成立的一个α值为____________.【答案】π4-(答案不唯一)【解析】【分析】根据特殊角的三角函数值即可求解.【详解】不妨考虑第四象限角α,由sin cos tan 1ααα<⇒<,取π4α=-,此时22tan 1,sin ,cos 22ααα=-=-=,故答案为:π4-(答案不唯一)15.已知函数()()133xf x =-,则()2f ______2(用“>”“<”“=”填空);()f x 的零点为______.【答案】①.<②.3log 12【解析】【分析】根据对数运算性质及对数的单调性比较大小,根据对数运算及指对互化求解函数的零点.【详解】()()22133452f =-=<=,由()1330x-=得1331x-=,所以312x =,所以3log 12x =,所以函数()f x 的零点为3log 12.故答案为:<,3log 1216.已知符号[]x 表示不超过x 的最大整数,若函数()[]x f x x=(0x ≠),给出下列四个结论:①当()0,1x ∈时,()0f x =;②()f x 为偶函数;③()f x 在[)1,2单调递减;④若方程()f x a =有且仅有3个根,则a的取值范围是3443,,4532⎛⎤⎡⎫⋃⎪⎥⎢⎝⎦⎣⎭.其中所有正确结论的序号是______.【答案】①③④【解析】【分析】根据新定义分析()f x 得到()f x 的图象,即可判断①②③;将方程()f x a =有且仅有3个根转化为()f x 与y a =的图象有3个交点,然后结合图象即可判断④.【详解】因为符号[]x 表示不超过x 的最大整数,若函数()[]()0x f x x x=≠,所以当()0,1x ∈时,[]0x =,则()0f x =;当[)1,2x ∈时,[]1x =,则()11,12f x x ⎛⎤=∈ ⎥⎝⎦;当[)2,3x ∈时,[]2x =,则()22,13f x x ⎛⎤=∈ ⎥⎝⎦,当[)3,4x ∈时,[]3x =,则()33,14f x x ⎛⎤=∈ ⎥⎝⎦;当[)4,5x ∈时,[]4x =,则()44,15f x x ⎛⎤=∈ ⎥⎝⎦;当[)5,6x ∈时,[]5x =,则()55,16f x x ⎛⎤=∈ ⎥⎝⎦;L 当[)1,0∈-x 时,[]1x =-,则()[)11,f x x ∞=-∈+;当[)2,1x ∈--时,[]2x =-,则()[)21,2f x x=-∈;当[)3,2x ∈--时,[]3x =-,则()331,2f x x ⎡⎫=-∈⎪⎢⎣⎭;当[)4,3x ∈--时,[]4x =-,则()441,3f x x ⎡⎫=-∈⎪⎢⎣⎭;所以函数()[]()0x f x x x=≠的图象如图所示:对于①,由上面的图象可知,①是正确的,对于②,由上面的图象可知,②是错误的,对于③,由上面的图象可知,③是正确的,对于④,由上面的图象可知43,3A ⎛⎫- ⎪⎝⎭,32,2B ⎛⎫- ⎪⎝⎭,34,4C ⎛⎫ ⎪⎝⎭,45,5D ⎛⎫⎪⎝⎭,因为方程()f x a =有且仅有3个根,等价于()f x 与y a =的图象有3个交点,结合图象可知,当3445a <≤或4332a ≤<.故答案为:①③④.三、解答题:共5小题,共46分.解答应写出文字说明,演算步骤或证明过程.17.设全集U =R ,集合{}220A x x x =+-≤,{}R 1B x x m =∈+<.(1)求U A ð;(2)当1m =时,求A B ⋃;(3)若x A ∀∈,都有x B ∈,直接写出一个满足条件的m 值.【答案】(1){|2U A x x =<-ð或1}x >(2){}|1A B x x =≤ (3)3(答案不唯一)【解析】【分析】(1)解出集合A ,直接求解即可;(2)根据集合的并运算直接求解即可;(3)根据条件可知A B ⊆,列出条件,可解得m 的范围,在范围内写出一个值即可.【小问1详解】因为{}{}220|21A x x x x x =+-≤=-≤≤,U =R ,所以{|2U A x x =<-ð或1}x >.【小问2详解】当1m =时,{}{}R 1|0B x x m x x =∈+<=<,则{}|1A B x x =≤ .【小问3详解】{}{}R 1|1B x x m x x m =∈+<=<-,若x A ∀∈,都有x B ∈,则A B ⊆,所以11m ->,则m>2,故m 的值可以为3(答案不唯一).18.已知函数()()22log 4,022,2x x f x x x a x ⎧<<=⎨--≥⎩.(1)当1a =时,①求()()1ff 的值;②求()f x 的图象与直线2y =的交点坐标;(2)若()f x 的值域为R ,求实数a 的取值范围.【答案】18.()()1121,2,3,2- ;19.[)3,-+∞【解析】【分析】(1)①直接利用代入法即可求解;②令()2f x =分别求出x ,即可求解;(2)分别求出两段函数的值域,然后并集为R 即可求解.【小问1详解】①当02x <<时,2()log (4)f x x =,所以2(1)log 42f ==,当2x ≥时,2()21f x x x =--,所以(2)1f =-,所以((1))1f f =-;②当02x <<时,2()log (4)2f x x ==,得242x =,解得1x =;当2x ≥时,2()212f x x x =--=,即2230x x --=,解得3x =或-1(舍去),所以函数()f x 的图象与直线2y =的交点坐标为(1,2),(3,2);【小问2详解】当02x <<时,048x <<,所以22log (4)log 83x <=,即当02x <<时,()(,3)f x ∈-∞;当2x ≥时,22()2(1)1f x x x a x a =--=---,由2(1)1x -≥,得2()(1)111f x x a a a =---≥--=-,即当2x ≥时,()[,)f x a ∈-+∞,所以(,3)[,)R a -∞-+∞= ,得3a -≤,解得3a ≥-,即实数a 的取值范围为[3,)-+∞.19.已知函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)的部分图象如图所示.(1)求()f x 的解析式及单调递减区间;(2)当ππ,123x ⎡⎤∈-⎢⎣⎦时,求()f x 的最小值及此时x 的值.【答案】(1)()π2sin 23f x x ⎛⎫=+⎪⎝⎭;π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦(2)0;π3x =【解析】【分析】(1)结合图象,根据最小值可求得A ,根据周期可求得ω,利于图象上点7π,212⎛⎫-⎪⎝⎭可求得ϕ,继而求得解析式,整体代换可求得单调减区间;(2)根据变量范围,结合函数单调区间可直接求得()f x 的最小值及此时x 的值.【小问1详解】根据函数的最小值可知2A =,又2π7ππ4π123T ω⎛⎫==-= ⎪⎝⎭,所以2ω=,此时()()2sin 2f x x ϕ=+,又过点7π,212⎛⎫- ⎪⎝⎭,所以7π22sin 6ϕ⎛⎫-=+ ⎪⎝⎭,所以7πsin 16ϕ⎛⎫+=- ⎪⎝⎭,结合π2ϕ<,所以π3ϕ=,故()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭.令ππ3π2π22π,Z 232k x k k +≤+≤+∈,得π7πππ,Z 1212k x k k +≤≤+∈,所以()f x 的递减区间为π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦.【小问2详解】当ππ,123x ⎡⎤∈-⎢⎥⎣⎦时,ππ2π63x ≤+≤,所以当ππ,2π33x x =+=时,()f x 取最小值0,此时π3x =.20.已知()f x 是定义在R 上的奇函数,当0x ≥时()32x x f x -=+.(1)求()f x 的解析式;(2)根据定义证明()f x 在[)0,∞+上单调递减,并指出()f x 在定义域内的单调性;(3)若对任意的x ∈R ,不等式()()222430f k x f x x -+-->恒成立,求实数k 的取值范围.【答案】(1)3,02()3,02x x x f x x x x -⎧≥⎪⎪+=⎨⎪<⎪-⎩(2)证明见详解;()f x 在R 上的单调递减(3)(),1-∞-【解析】【分析】(1)当0x <时,利于奇函数的定义求解即可;(2)根据单调函数的定义证明即可,利于奇函数的性质可判断函数的单调性;(3)根据奇函数的定义及函数的单调性,转化不等式为2430x x k ++->恒成立,利于Δ0<,解不等式即可.【小问1详解】依题()f x 是定义在R 上的奇函数,当0x ≥时()32x f x x -=+,当0x <时,0x ->,则()()3322x x f x f x x x =--=-=-+-,所以3,02()3,02x x x f x x x x -⎧≥⎪⎪+=⎨⎪<⎪-⎩.【小问2详解】当[)0,x ∈+∞时,()32x f x x -=+,任取[)12,0,x x ∈+∞,且12x x <,则()()()()()()2112121212123232332222x x x x x x f x f x x x x x +-+--=+=++++()()()2112622x x x x -=++,因为[)12,0,x x ∈+∞,且12x x <,所以21120,20,20x x x x ->+>+>,故()()120f x f x ->,即()()12f x f x >,所以()f x 在[)0,∞+上单调递减,根据奇函数的性质可知()f x 在R 上的单调递减.【小问3详解】因为()()222430f k xf x x -+-->,化为()()22243f k x f x x ->---,即()()22243f k x f x x ->-++,根据()f x 在R 上的单调递减,则22243k x x x -<-++,在x ∈R 时恒成立,即2430x x k ++->恒成立,故()Δ16430k =--<,解得1k <-,故实数k 的取值范围为(),1∞--.21.某地要建设一座购物中心,为了减少能源损耗,计划对其外墙建造可使用30年的隔热层,已知每厘米厚的隔热层的建造成本为9万元.该建筑物每年的能源消耗费用P (单位:万元)与隔热层厚度工(单位:cm )满足关系:45m P x =+(010x ≤≤).若不建隔热层,每年能源消耗费用为6万元.设S 为隔热层建造费用与30年的能源消耗费用之和.(1)求出S 关于x 的函数解析式;(2)若使隔热层建造费用与30年的能源消耗费用之和S 控制在90万元以内,隔热层的厚度不能超过多少厘米?隔热层的厚度为整数)【答案】(1)900945S x x =++,010x ≤≤(2)6【解析】【分析】(1)利于给定条件,求出m 的值,进而可得能源消耗费用与隔热层建造成本之和.(2)根据条件建立不等式,解出后进一步分析即可.【小问1详解】依题意,当0x =时,65m P ==,所以30m =,所以3045P x =+,010x ≤≤,则900945S x x =++(万元),010x ≤≤.【小问2详解】若90099045S x x =+≤+,不等式化为2435500x x -+≤,解得353588x -+≤≤又35 6.958+≈,所以隔热层的厚度不能超过6厘米.。
1上海中学2023学年第一学期高一年级数学期末2024.01一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.函数224y x x =−+的图像关于直线________成轴对称. 2.已知函数()21,2,lg ,2,x x f x x x +<= ≥ 则()()()05f f f +=________.3.已知扇形的弧长和半径都是4,则扇形的面积为________.4.已知点()sin ,cos P αα在第二象限,则角α的终边在第________象限.5.化简:4224441sin cos sin cos sin cos θ⋅θ+θ⋅θ=−θ−θ________.6.若函数()1f x x a =−+在区间[)1,+∞上是严格增函数,则实数a 的取值范围为______. 7.函数()21yf x =−的定义域为()0,1,则函数()1yf x =−的定义域为________.8.函数3132xx y −=−的值域是________.9.已知函数()y f x =是定义域为R 的偶函数,且当0x >时,其表达式为()22x f x x =+,则当0x <时,其表达式为()f x =________.10.已知函数()3log ,034,3x x f x x x <<= −≥,若存在0a b c <<<满足()()f a f b ==()f c ,则()()f a f c abc的取值范围为________.11.已知函数()f x ,()g x ,()h x 的定义域均为R .给出以下3个命题: (1)()f x 一定可以写成一个奇函数和一个偶函数之差;(2)若()f x 是奇函数,且在().0−∞是严格减函数,则()f x 在R 上是严格减函数; (3)若()()f x g x +,()()g x h x +,()()h x f x +在R 上均是严格增函数;则()f x ,()g x ,2()h x 中至少有一介在R 上是严格增函数.其中,假命题的序号为________.12.已知函数()f x 满足:()()()()22114f x f x f x f x +−++−=则下列三个结论: (1)()()()()2220242024186518654f f f f −+−=;(2)()()20232024f f =; (3)()()202418654f f +≤.其中正确的结论是________. 二、选择题(本大题共有4题,满分20分,每题5分) 13.若幂函数()()22235mm f x mm x −−=+−的图像不经过原点,则m 的值为( )A .2B .3−C .3D .3−或214.存在函数()f x 满足:x R ∀∈都有( ) A .()31fx x +=B .211f x x=−C .()211f x x +=+D .()221f x x x +=+15.已知函数()()1,0,2,0,x x f x x x x +< =−≥ 若(1)f x −在区间I 上恒负,且是严格减函数,则区间I 可以是( ).A .()2,1−−B .()1,0−C .()0,1D .()1,216.定义域和值域均为[],a a −(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:其中正确的个数是( ). (1)函数()()f g x 有且仅有三个零点; (2)函数()()g f x 有且仅有三个零点; (3)函数()()f f x 有且仅有九个零点; (4)函数()()g g x 有且仅有一个零点,A .1B .2C .3D .43三、解答题(共5道大题,其中17题14分,18题14分,19题14分,20题16分,21题18分,共计76分)17.(本题满分14分.本题共2小题,第(1)小题7分,第(2)小题7分.)已知函数()f x 是R 上的严格增函数,()g x 是R 上的严格减函数,判断函数()()f x g x −的单调性,并利用定义证明.18.(本题满分14分.本题共2小题,第(1)小题8分,第(2)小题6分.) 在下面的坐标系中画出下列函数的图像: (1)2y x −=(2)22x y =−.419.(本题满分14分.本题共2小题,第(1)小题6分,第(2)小题8分.) 解下列关于x 的方程:(1)162log log 163x x +=; (2)()()2416290x x x a a a −+⋅−−⋅=.20.(本题满分16分.本题共有3小题,第(1)小题满分4分,第(2)小题满分6分.第 (3)小题满分6分)某地中学生社会实践小组为研究学校附近某路段交通拥堵情况,经实地调查、数学建模,得该路段上平均行车速度v (单位:km/h )与该路段上的行车数量n (单位:辆)的关系为:2600,9,1033000,10,n n v n n k ≤ += ≥ + 其中常数k R ∈.该路段上每日t 时的行车数量22(125)100n t =−−−+,[)0,24t ∈,t Z ∈.已知某日17时测得的平均行车速度为3km/h .(1)求实数k 的值;(2)定义q nv =,求一天内q 的最大值(结果四舍五入到整数).521.(本题满分18分.本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,在第(3)小题满分8分)若对任意的1a b ≤<,()f x 在区间(],a b 上不存在最小值,且对任意正整数n ,当(),1x n n ∈+时有()()()()()()11f n f x f x f n f n f n −+−+=−+.(1)比较()f n 与()1f n +,*n N ∈的大小关系; (2)判断()f x 是否为[)1,+∞上的增函数,并说明理由; (3)证明:当1x ≥时,()()2f x f x >.6参考答案一、填空题1.1x =;2.1;3.8;4.四;5.12; 6.(],2−∞; 7.()0,2; 8.()1,1,2−∞∪+∞;9.212x x +; 10.10,3; 11.(3); 12.(1)(3); 二、选择题13.A ; 14.D ; 15.B ; 16.B16.定义域和值域均为[],a a −(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:其中正确的个数是( ).(1)函数()()f g x 有且仅有三个零点; (2)函数()()g f x 有且仅有三个零点; (3)函数()()f f x 有且仅有九个零点; (4)函数()()g g x 有且仅有一个零点,A .1B .2C .3D .4B(1)方程()0f g x = 有且仅有三个解;()g x 有三个不同值,由于()y g x =是减函数,所以有三个解,正确;(2)方程()0g f x = 有且仅有三个解;从图中可知,()()0f x ,a ∈可能有1,2,3个解,不正确; (3)方程()0f f x = 有且仅有九个解;类似(2)不正确;(4)方程()0g g x = 有且仅有一个解.结合图象,()y g x =是减函数,故正确.7故选B . 三、解答题 17.严格增,证明略 18. 画图略 19. (1)416x or =(2)①当0a ≤时,()23log 1x a =−;②当01a <<时,()()122233log 1,log 2x a x a =−=;③当1a ≥时,()23log 2x a =20.某地中学生社会实践小组为研究学校附近某路段交通拥堵情况,经实地调查、数学建模,得该路段上平均行车速度v (单位:km/h )与该路段上的行车数量n (单位:辆)的关系为:2600,9,1033000,10,n n v n n k≤ +=≥ + 其中常数k R ∈.该路段上每日t 时的行车数量22(125)100n t =−−−+,[)0,24t ∈,t Z ∈.已知某日17时测得的平均行车速度为3km/h .(1)求实数k 的值;(2)定义q nv =,求一天内q 的最大值(结果四舍五入到整数). (1)1000k = (2)522(1)由17时测得的平均行车速度为3/km h ,得100n =, 代入*2600,9,1033000,10,……n n vn N n n k +∈ +,可得2330003100k =+,解得1000k =. (2)①当9…n 时,60060010101nq nv n n===++为增函数,所以6009300109…q ×<+; ②当10…n 时,330001000q nv n n==+在(0,上单调递增,在,)+∞上单调递减,8且由()31.631.7,知,当31,32n n ==时,较大的q 值为最大值, 分别代入31n =和32n =计算,结果均约为522,故522max q ≈. 综上可知,一天内车流量q 的最大值为522.21.若对任意的1a b ≤<,()f x 在区间(],a b 上不存在最小值,且对任意正整数n ,当(),1x n n ∈+时有()()()()()()11f n f x f x f n f n f n −+−+=−+.(1)比较()f n 与()1f n +,*n N ∈的大小关系; (2)判断()f x 是否为[)1,+∞上的增函数,并说明理由; (3)证明:当1x ≥时,()()2f x f x >.(1)()f n <()1f n + (2)不是 (3)证明见解析(3)①首先证明对于任意*n N ∈,()()1.f n f n <+当()1x n,n ∈+时,由()()()()()()11f n f x f x f n f n f n −+−+=−+∣∣ 可知()f x 介于()f n 和()1f n +之间.若()()1,…f n f n +则()f x 在区间(]1n,n +上存在最小值()1f n +,矛盾. 利用归纳法和上面结论可得:对于任意*,k n N ∈,()(),.n k f n f k <<当时 ②其次证明当1…n 且x n >时,()()f x f n >;当2…n 且x n <时,()()…f x f n . 任取x n >,设正整数k 满足1剟n k x k <+,则()()()()1剟剟f n f k f x f k …+. 若存在01厖k x k n +>使得()()0…f x f n ,则()()()()00剟?f x f n f k f x , 即()()0f k f x =.由于当()1x k ,k ∈+时,()()…f k f x , 所以()f x 在区间(0k ,x 有最小值()0f x ,矛盾.9类似可证,当2…n 且x n <时,()()…f x f n .③最后证明:当1…x 时,()()2f x f x >.当1x =时,()()21f f >成立.当1x >时,由21x x x −=>可知,存在*n N ∈使得2x n x <<,所以()()()2…f x f n f x <.当()1x n,n ∈+时,有:()()()()()()11f n f x f x f n f n f n −+−+=−+∣∣ 若()()1f n f n =+,则()()()1,f x f n f n ==+所以()f x 在(]1n,n +上存在最小值,故不具有性质p ,故不成立.若()()1f n f n ≠+,则()(){}()()(){},11min f n f n f x max f n ,f n +<<+假设()()1f n f n +<,则()f x 在(]1n,n +上存在最小值,故不具有性质p ,故假设不成立. 所以当()1x n,n ∈+时,()()()1f n f x f n <<+对于任意*n N ∈都成立. 又()()1f n f n <+,故当()*m n m n N <∈、所以()()()()11,f m f m f n f n <+<…<−<即()()f m f n <.所以当x n <时,则存在正整数m 使得1剟m x m n −<,则()()()()1剟f m f x f m f n −< 所以当x n <时,()()f x f n <,同理可证得当x n >时,()()f x f n >.所以当1x >时,必然存在正整数n ,使得2x n x <<,所以()()()2f x f n f x <<; 当1x =时,()()21f f >显然成立; 所以综上所述:当1…x 时,()()2f x f x >.。
杭高2023学年第一学期期末考试高一数学参考答案(答案在最后)命题:1.本试卷分试题卷和答题卡两部分.本卷满分150分,考试时间120分钟.2.答题前务必将自己的学校、班级、姓名用黑色字迹的签字笔或钢笔填写在答题卡规定的地方.3.答题时,请按照答题卡上“注意事项”的要求,在答题卡相应的位置上规范答题,在本试题卷上答题一律无效.4.考试结束后,只需上交答题卡.第Ⅰ卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角α终边上一点()43P ,-,则sin α=()A.3 B.45-C.35D.34-【答案】C 【解析】【分析】根据三角函数的定义可求sin α的值.【详解】因为()43P ,-,故5OP =,故3sin 5α=,故选:C.2.已知2log 0.5a =,0.52b =,sin 2c =,则,,a b c 的大小关系为()A.a b c <<B.b<c<aC.c<a<bD.a c b<<【答案】D 【解析】【分析】分别利用函数2log y x =、2x y =和sin y x =的单调性,对“2log 0.5a =,0.52b =,sin 2c =”三个因式进行估值即可.【详解】因为函数2log y x =是增函数,且0.51<,则22log 0.5log 10a =<=,因为函数2x y =是增函数,且0.50>,则0.50221b =>=,因为正弦函数sin y x =在区间π3π[,22上是减函数,且π2π2<<,所以π0sin πsin 2sin 12c =<=<<,所以a c b <<,故选:D.3.函数2lg 43()()f x x x =+-的单调递减区间是()A.3,2⎛⎤-∞ ⎥⎝⎦B.3,2⎡⎫+∞⎪⎢⎣⎭C.31,2⎛⎤- ⎥⎝⎦D.3,42⎡⎫⎪⎢⎣⎭【答案】D 【解析】【分析】计算出函数定义域后结合复合函数的单调性计算即可得.【详解】由()()243lg f x x x =+-可得,2430x x+->,解得()1,4x ∈-,故()f x 的定义域为()1,4-,由ln y x =为增函数,令243t x x =+-,对称轴为32x =,故其单调递减区间为3,42⎡⎫⎪⎢⎣⎭,所以()()243lg f x x x =+-的单调递减区间为3,42⎡⎫⎪⎢⎣⎭.故选:D.4.“01a <<且01b <<”是“log 0a b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两者之间的推出关系可得条件关系.【详解】若01a <<且01b <<,则log log 10a a b >=,故log 0a b >成立,故“01a <<且01b <<”是“log 0a b >”的充分条件.若log 0a b >,则log log 1a a b >,故11a b >⎧⎨>⎩或0101a b <<⎧⎨<<⎩,故“01a <<且01b <<”不是“log 0a b >”的必要条件,故“01a <<且01b <<”是“log 0a b >”的充分不必要条件.故选:A.5.设函数()f x 51,11,1x x x a x -<⎧=⎨+≥⎩.若4()95f f ⎡⎤=⎢⎥⎣⎦,则a 等于()A.12B.2C.13D.3【答案】B 【解析】【分析】按照从内到外的原则,先计算4()5f 的值,再代入4()95f f ⎡⎤=⎢⎥⎣⎦,即可求出a 的值.【详解】由于函数()f x 51,11,1x x x a x -<⎧=⎨+≥⎩,且415<,则44(51355f =⨯-=,且31>,所以34()(3)195f f f a ⎡⎤==+=⎢⎥⎣⎦,即38a =,得2a =.故选:B.6.已知函数()24f x x ax =-+在()1,2上有且只有一个零点,则实数a 的取值范围是()A.[)8,10 B.()8,10 C.[)4,5 D.()4,5【答案】D 【解析】【分析】根据题意将零点问题转化为函数图象公共点问题进而求解答案即可.【详解】因为函数()24f x x ax =-+在()1,2上有且只有一个零点,所以24x ax +=,即4x a x+=在()1,2上有且只有一个实根,所以4y x x=+与y a =的函数图象在()1,2x ∈时有一个公共点,由于4y x x =+在()1,2单调递减,所以442121a +<<+,即45a <<.故选:D7.已知()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω在2π0,3⎛⎫⎪⎝⎭上单调递增,则ω的取值范围是()A.(]0,4 B.10,4⎛⎤ ⎝⎦C.10,4⎛⎫ ⎪⎝⎭D.(]0,1【答案】B 【解析】【分析】先求出π3x ω+取值范围,再由()f x 在2π0,3⎛⎫⎪⎝⎭上单调递增得2πππ332ω+≤,最后结合题意求出ω的取值范围即可.【详解】因为2π0,3x ⎛⎫∈ ⎪⎝⎭,0ω>,所以ππ2ππ,3333x ω⎛⎫+∈+ ⎪⎝⎭,要使得()f x 在2π0,3⎛⎫ ⎪⎝⎭上单调递增,则2πππ332ω+≤,解得14ω≤,又由题意可知0ω>,所以104ω<≤,故选:B8.中国早在八千多年前就有了玉器,古人视玉为宝,玉佩不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状.不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分(如图2),经测量知4AB CD ==,4BC =,8AD =,则该玉佩的面积为()A.16π3- B.32π3-C.16π3D.32π3【答案】B【解析】【分析】取AD 的中点为M ,连接BM 、CM ,延长AB ,CD 交于点O ,利用平面几何知识得到扇形的圆心角,进而利用扇形面积公式和三角形的面积公式计算求得该玉佩的面积.【详解】如图,取AD 的中点为M ,连接BM ,CM ,延长AB ,CD 交于点O ,由题意,△AOB 为等腰三角形,又∵AB CD =,∴AD //BC ,又∵M 为AD 的中点,8,4AD BC ==,∴AM 与BC 平行且相等,∴四边形ABCM 为平行四边形,∴4MC AB ==,同理4CM AB ==,∴△ABM ,△CDM 都是等边三角形,∴△BOC 是等边三角形,∴该玉佩的面积138844234S π=⨯⨯⨯-⨯⨯=32π3-.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()f x 的图象是连续不断的,且有如下对应值表:x1234567()f x 4-2-1421-3-在下列区间中,函数()f x 必有零点的区间为()A.(1,2)B.(2,3)C.(5,6)D.(5,7)【答案】BCD 【解析】【分析】根据零点存在定理可判断零点所在区间.【详解】由所给的函数值表知,()()()()()()()()120,230,560,570,f f f f f f f f ><<<由零点存在定理可知:()f x 在区间()()()2,3,5,6,5,7内各至少有一个零点,故选:BCD.10.设函数()πsin 2,6f x x x ⎛⎫=+= ⎪⎝⎭R ,若ππ,22α⎛⎫∈- ⎪⎝⎭,函数()f x α+是偶函数,则α的值可以是()A.π6-B.π3-C.π6D.π3【答案】BC 【解析】【分析】由题意可得()πsin 226f x x αα⎛⎫+=++⎪⎝⎭,结合偶函数的性质与ππ,22α⎛⎫∈- ⎪⎝⎭计算即可得.【详解】()πsin 226f x x αα⎛⎫+=++ ⎪⎝⎭,又其为偶函数,则图像关于y 轴对称,则ππ2π,62k k α+=+∈Z ,得ππ,62k k α=+∈Z ,又ππ,22α⎛⎫∈- ⎪⎝⎭,则π6α=或π3α=-.故选:BC.11.已知函数())ln1f x x x =++.则下列说法正确的是()A.()1lg3lg 23f f ⎛⎫+= ⎪⎝⎭B.函数()f x 的图象关于点()0,1对称C.对定义域内的任意两个不相等的实数12,x x ,()()12120f x f x x x -<-恒成立.D.若实数,a b 满足()()2f a f b +>,则0a b +>【答案】ABD 【解析】【分析】选项A 、B ,先利用函数解析式得出结论:()()2f x f x -+=,由于1lglg33=-,只需验证()()lg3lg32f f +-=是否成立即可;选项B ,需验证点()(,)x f x 和点()(,)x f x --关于点()0,1对称即可;选项C ,利用复合函数单调性的“同增异减”的原则判断即可;选项D ,将不等式()()2f a f b +>转化为()()()2f a f b f b >-=-的形式,借助函数()f x 单调性判断即可.【详解】对于A 、B 选项,对任意的x ∈R ,0x x x >+≥,所以函数())ln1f x x x =++的定义域为R ,又因为()())()1])1f x f x x x x x -+=+-++++22ln(1)22x x =+-+=,由于()()()1lg3lg lg3lg323f f f f ⎛⎫+=+-= ⎪⎝⎭,故A 正确;由于函数()f x 满足()()2f x f x -+=,所以任意点()(,)x f x 和点()(,)x f x --关于点()0,1对称,故函数()f x 的图象关于点()0,1对称,故B 正确;对于C 选项,对于函数())ln h x x =+0x x x >+≥,得该函数的定义域为R ,()()))()22lnlnln 10h x h x x x x x -+=-+=+-=,即()()h x h x -=-,所以函数()h x 为奇函数,当0x ≥时,内层函数u x =为增函数,外层函数ln y u =为增函数,所以函数()h x 在[)0,∞+上为增函数,故函数()h x 在(],0-∞上也为增函数,因为函数()h x 在R 上连续,故函数()h x 在R 上为增函数,又因为函数1y x =+在R 上为增函数,故函数()f x 在R 上为增函数,故C 不正确;对于D 选项,由()()2f x f x -+=,得2()()f x f x -=-,因为实数a ,b 满足()()2f a f b +>,所以()()()2f a f b f b >-=-,同时函数()f x 在R 上为增函数,可得a b >-,即0a b +>,故D 正确.故选:ABD.12.函数()lg f x x =,有0a b <<且()()22a b f a f b f +⎛⎫==⎪⎝⎭,则下列选项成立的是()A.1ab =B.14a <C.3<<4b D.517328a b +<<【答案】ACD 【解析】【分析】利用对数性质判断选项A ;再利用零点存在定理判断得3<<4b ,从而判断选项B 、C 、D.【详解】因为()lg ,f x x =有0a b <<且()()2,2a b f a f b f +⎛⎫== ⎪⎝⎭所以lg lg =a b ,即lg lg a b -=,得lg lg 0a b +=所以1ab =,且()()0,1,1,.a b ∞∈∈+所以A 正确22112lg 2lg lg 24b b b b b +++==(因为12b b+>),故22142,b b b=++即4324210,b b b -++=()()321310b b b b ----=,令()3231,g b b b b =---当13b <<时,()3222313310g b b b b b b b =---<---<当4b >时,()32222314311(1)10g b b b b b b b b b b b =--->---=--=-->,而()()30,40,g g 故()0g b =在()3,4之间必有解,所以存在b ,使得3 4.b <<所以C 正确111,43a b ⎛⎫=∈ ⎪⎝⎭,所以B 不正确11517,2238a b b b +⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭,所以D 正确故选:ACD【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.第Ⅱ卷三、填空题:本题共4小题,每小题5分,20分.13.计算:23(log 9)(log 4)⋅=____________.【答案】4【解析】【分析】根据题意,由换底公式代入计算,即可得到结果.【详解】()()23log 9log 4=lg 9lg 2×lg 4lg 32lg 3lg 2=×2lg 2lg 3=4.故答案为:414.写出一个同时满足以下三个条件①定义域不是R ,值域是R ;②奇函数;③周期函数的函数解析式___________.【答案】()()πtan ,πZ 2f x x x k k =≠+∈(答案不唯一).【解析】【分析】联想正切函数可得结果.【详解】满足题意的函数为()tan f x x =,(Z)2x k k ππ≠+∈(答案不唯一).故答案为:()tan f x x =,(Z)2x k k ππ≠+∈(答案不唯一).15.已知()f x 为定义在R 上的奇函数,且又是最小正周期为T 的周期函数,则πsin 32T f ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦的值为____________.【答案】2【解析】【分析】根据函数的周期和奇偶性得到02T f ⎛⎫=⎪⎝⎭,进而得到ππsin sin 3232T f ⎡⎤⎛⎫+== ⎪⎢⎥⎝⎭⎣⎦.【详解】因为()f x 的最小正周期为T ,故222T T T f f T f ⎛⎫⎛⎫⎛⎫=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又()f x 为奇函数,故22T T f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,故22T T f f ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭,即202T f ⎛⎫= ⎪⎝⎭,解得02T f ⎛⎫= ⎪⎝⎭,故ππsin sin 3232T f ⎡⎤⎛⎫+== ⎪⎢⎥⎝⎭⎣⎦.故答案为:3216.对于任意实数,a b ,定义{},min ,,a a ba b b a b ≤⎧=⎨>⎩.设函数()3f x x =-+,()2log g x x =,则函数{}()min (),()h x f x g x =的最大值是_______.【答案】1【解析】【分析】画出()f x 和()g x 的图象,得到()h x 的图象,根据图象得到最大值.【详解】在同一坐标系中,作出函数()(),f x g x 的图象,依题意,()h x 的图象为如图所示的实线部分,令23log 2x x x -+=⇒=,则点()2,1A 为图象的最高点,因此()h x 的最大值为1,故答案为:1四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知cos sin 3cos sin θθθθ-=-+.(1)求tan θ的值;(2)求222sin 113cos +-θθ的值.【答案】(1)2-(2)132【解析】【分析】(1)根据题意整理可得sin 2cos θθ=-,进而可得结果;(2)根据齐次式问题分析求解,注意“1”的转化.【小问1详解】因为cos sin 3cos sin θθθθ-=-+,整理得sin 2cos θθ=-,所以sin tan 2cos θθθ==-;【小问2详解】因为tan 2θ=-,所以2222222222222sin 12sin sin cos 3sin cos 13cos sin cos 3cos sin 2cos θθθθθθθθθθθθ++++==-+--()()22223tan 1tan 321213222θθ⨯-+==--+=-.18.已知集合{}1217A xx =≤-≤∣,函数()f x =的定义域为集合B .(1)求A B ⋂;(2)若{}M xx m =≤∣,求R M B ⋃=时m 的取值范围.【答案】(1){34}A B xx ⋂=<≤∣(2)[)3,+∞【解析】【分析】(1)解一次与二次不等式,结合具体函数定义域的求法化简集合,A B ,再利用交集的运算即可得解;(2)利用集合的并集结果即可得解.【小问1详解】集合{}{}121714A xx x x =≤-≤=≤≤∣∣,由2230x x -->,得1x <-或3x >,则集合{1B xx =<-∣或3}x >,所以{34}A B xx ⋂=<≤∣.【小问2详解】因为R M B ⋃=,{}M xx m =≤∣,则3m ≥,故m 的取值范围是[)3,+∞.19.已知()sin()f x x π=-223,(1)求()f x 的最小正周期和对称轴方程;(2)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.【答案】(1)最小正周期为π;对称轴方程为5,122k x k Z ππ=+∈;(2)()max 1f x =,()min 2f x =-;【解析】【分析】(1)由正弦函数的性质计算可得;(2)由x 的取值范围,求出23x π-的取值范围,再由正弦函数的性质计算可得;【详解】解:(1)因为()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以最小正周期22T ππ==,令2,32x k k Z πππ-=+∈,解得5,122k x k Z ππ=+∈,故函数的对称轴为5,122k x k Z ππ=+∈(2)因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当236x ππ-=,即4x π=时函数取得最大值()max 14f x f π⎛⎫== ⎪⎝⎭,当232x ππ-=-,即12x π=-时函数取得最小值()min 212f x f π⎛⎫=-=- ⎪⎝⎭20.已知函数()f x 为定义在R 上的偶函数,当0x ≥时,()1432xx f x +=-⨯.(1)求()f x 的解析式;(2)求方程()8f x =-的解集.【答案】(1)()11432,0432,0x x xx x f x x +--+⎧-⨯≥=⎨-⨯<⎩(2){}2,1,1,2--【解析】【分析】(1)根据偶函数的性质直接求解即可;(2)根据题意先求0x ≥时符合题意的解,再结合偶函数对称性求出方程解集即可.【小问1详解】因为函数()f x 为定义在R 上的偶函数,当0x ≥时,()1432xx f x +=-⨯,所以任取0x <,则0x ->,此时()()1432xx f x f x --+=-=-⨯,所以()11432,0432,0x x xx x f x x +--+⎧-⨯≥=⎨-⨯<⎩【小问2详解】当0x ≥时,令()14328xx f x +=-⨯=-,即()226280xx -⨯+=,令2x t =,则2680t t -+=,解得2t =或4t =,当22x t ==时,1x =,当24x t ==时,2x =,根据偶函数对称性可知,当0x <时,符合题意的解为=1x -,2x =-,综上,原方程的解集为{}2,1,1,2--21.已知函数()222cos 1f x x x =+-.(1)求()f x 的单调递增区间;(2)若π102313f α⎛⎫-=⎪⎝⎭,π,π2α⎛⎫∈ ⎪⎝⎭,求πsin 4α⎛⎫+ ⎪⎝⎭的值.【答案】(1)πππ,π,Z36k k k ⎡⎤-++∈⎢⎥⎣⎦(2)26【解析】【分析】(1)由降幂公式和辅助角公式化简函数解析式,整体代入法求单调递增区间;(2)由π102313f α⎛⎫-= ⎪⎝⎭,代入函数解析式解出cos α和sin α,由两角和的正弦公式求解πsin 4α⎛⎫+ ⎪⎝⎭的值.【小问1详解】()222cos 12cos 2f x x x x x =+-=+1π2sin 2cos 22sin 2226x x x ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,令Z 262πππ2π22π,k x k k -+≤+≤+∈,解得2ππ2π22πZ ,33k x k k -+≤≤+∈,即ππππ,Z 36k x k k -+≤≤+∈,所以()f x 的单调递增区间为πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】由π102313f α⎛⎫-=⎪⎝⎭得5sin 213πα⎛⎫-= ⎪⎝⎭,所以5cos 13α=-,又因为π,π2α⎛⎫∈⎪⎝⎭,所以12sin 13α==,所以πππsin sin cos cos sin 44426ααα⎛⎫+=+= ⎪⎝⎭.22.已知函数()22log f x x =-,()()21,11,1x x g x f x x ⎧-≤⎪=⎨->⎪⎩.(1)求()g x 的最大值;(2)若对任意[]14,16x ∈,2R x ∈,不等式()()()12212kf x f xg x ⋅>恒成立,求实数k 的取值范围.【答案】(1)1(2)1,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)根据分段函数性质讨论函数单调性与最值,结合指数函数和对数函数相关知识求解最值即可;(2)根据题意转化为对任意[]14,16x ∈,()()21121kf x f x ⋅>恒成立,代入函数表达式进行化简,令21log ,24m x m =≤≤,将不等式化为()()2211k m m --->,结合二次函数相关知识分类讨论即可.【小问1详解】当1x ≤时,()21xg x =-,此时022x <≤,1211x -<-≤,则()0211xg x ≤=-≤;当1x >时,()()211log g x f x x =-=-单调递减,此时()()11g x g <=,综上所述,当1x =时,取得()g x 的最大值1;【小问2详解】因为对任意[]14,16x ∈,2R x ∈,不等式()()()21122kf x f xg x ⋅>恒成立,且()21g x ≤,所以对任意[]14,16x ∈,()()21121kf x f x ⋅>恒成立,由题意得,()()()()()()22112121212122log 22log 22log 1log kkf x f x x x k x x ⋅=--=---,令21log ,24m x m =≤≤,则不等式可化为()()2211k m m --->,即()2223230m k m k +--+>对任意[]2,4m ∈恒成立,令()()[]222323,2,4h m m k m k m =+--+∈,则函数图象开口向上,对称轴()233222k km --=-=⨯,当322k -≤,即1k ≥-时,()()()min 2843230h m h k k ==+--+>,解得12k >,符合题意;当3242k -<<时,即51k -<<-时,()2min 323022k k k h m h --+-⎛⎫==> ⎪⎝⎭,即2230k k -+<,不等式无解,该情况舍去;当342k-≥时,即5k ≤-时,()()()min 43283236110h m h k k k ==+--+=+>,解得116k >-,不符合题意,该情况舍去.综上所述,实数k 的取值范围为1,2∞⎛⎫+⎪⎝⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d=∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.。
贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U ={0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N = {3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为()u`C.{3}A.{l,2,3,4,5}B.{4,5}D.02命题“3xE R, x2 + x+1 � 0”的否定是()2A.3x e R, x2 + x +l之0B.3x E R, x2 + x+l< 0D.Vx茫R,x·+x+l< 0C.VxER,x2 +x+ l < 0 23对任意角a和fJ."sina = sin/J“是“a=fJ”的()A充分不必要条件B必要不充分条件C.充要条件D既不充分也不必要条件24已知函数f(x)= �+log。
,(2-x),则f(x)的定义域为()4x-3A (扣) B.(扣]C.(-oo,2) D (三)u(扣)5设函数f(x)=2·'+x的零点为X o'则X o所在的区间是()A.(-1,0) C.(1,2)B.(-2,-1) D.(0,1)6设a=(½/,b= 2(c = log2¾,则a,b,c的大小关系为(A. c<a<bB. c < b < aC. a<b<cD.a<c<bII冗7下列选项中,与sin(-飞-)的值不相等的是()A.2sin l5°sin 75°B.cosl8° cos42° -sinl8° sin42°C.2cos2l5°-lD.tan22.5° l-tan2 22.5°8.某池塘野生水葫芦的援盖面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,其中说法错误的是(y/m2l 6t---------------- ,,,81----------t'一气, ,, ,, ,A此指数函数的底数为2B在第5个月时,野生水葫芦的稷盖面积会超过30m2C野生水葫芦从4m2荽延到12m2只需1.5个月D设野生水葫芦蔓延至2m2,3m2,6m2所需的时间分别为x1,x2,x3,则有X1+x2 = X3二、多项选择题(本题共2小题,每小题4分,共8分.在每小题给出的选项中,有多项符合题目要求,全部选对得4分,部分选对得2分,有选错得0分.)9已知a,b,c eR,则下列命题正确的是()I IA若->一,则a<ba bB若ac2> bc2,则(1>bC.若a<b,c <d,则a-c<b-dD若a>b > O,c > 0,则a a+c一>b b+cIO下列说法中,正确的是()IA函数y=-在定义域上是减函数e x -1B.函数y=——一是奇函数e x +lC函数y= f(x+a)-b为奇函数,则函数y=f(x)的图象关于点P(a,b)成中心对称图形D函数f(x)为定义在(-x,,O)U(O冲心)上的奇函数,且f(3) = I.对千任意x,,x2E (0,长't:)),x1:;cx2,汀(x,)-x2f(x2) 3都有1>0成立,则.f(x)三一的解集为(-OCJ,-3] u(0,3]X1 -x2''X三、填空题(本大题共5小题,每小题4分,共20分.请将你认为正确的答案填在答题卷的相应位置上.)11若幕函数f(x)=(11i2-2m-2)义”在(0,+~)上单调递增,则实数m=12函数y= sinx+ cosx的最大值是s13 已知圆和四边形(四个角均为直角)的周长相等,而积分别为S I'鸟,则_]_的最小值为s214已知函数f(x) = 2sin(cv x+(p)(co> O,I例<:)的部分图像如图所示,则f行)=X-2.一一一一-壹15已知函数f(X) = 2kx2 -kx -i (0 ::; X ::;; 2, k E R),若k=I,则该函数的零占为若对沁XE[0,2],不等式f(x) < -2k恒成立,则实数K的取值范围为四、解答题(本大题共4小题,每小题8分,共32分.解答应写出文字说明,证明过程或演算步骤.)16已知角0的终边过点(-3,4),求角0的三个三角函数值.17.(I)已知芦+a令=3,求a+矿的值:(2)已知log2[ l og3 (log4X)] =0'求X的值18 已知函数f(x)=x-�IX(I)判断函数f(x)的奇偶性:1(2)根据定义证明函数f(x)=x--在区间(0,+幻)上单调递增X冗19将函数f(x) =c o s(x+ �)的图象上所有点的横坐标缩短到原来的上,纵坐标不变,得到函数g(x的() 图象(I)求函数g(x)的单调递增区间和对称中心:(2)若关于X的方程2sin2x-m c o s x-4= 0在XE(吟)上有实数解,求实数m的取值范围五、阅读与探究(本大题1个小题,共8分解答应写出文字说明,条理清晰.)20. 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的瓜要途径,是思想阀门发现新问题、新结论的篮要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(I)整体观察:(2)整体设元;(3)整体代入:(4)整体求和等l l例如,ab=I,求证:一+-=l.I+a I+b证明:原式ab I b I+—=—+—=I. ab+a I+b b+I l+b阅读材料二:解决多元变掀问题时,其中一种思路是运用消元思想将多元问题转化为一元问题,再结合一元问题处理方法进行研究a+b例如,正实数a,b满足ab=L求(l+a)b解:由ab=I,得b=一,的最小值1 a+b a+--;; _ a 2+1_ (a+l }2-2(a+l)+2= = = ..(I+a)b I a+la+I (l+a )� a 2 2 =(a+l)+二-2�2✓(a+l)二-2=2✓2-2,当且仅当a+I =✓2,即a=✓2-1,b = ✓2 +1时,等号成立a+b.. (l+a)b的最小值为2J5-2波利亚在《怎样解题》中指出:“当你找到第一个腮菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征结合阅读材料解答下列问题:(I)已知ab=I,求+——了的值;l+a 2. l +bI I(2)若正实数a,b 满足ab=I,求M =--=--+ 的最小值I+a I+3b贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U = {0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N={3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为(u`A.{l,2,3,4,5}【答案】B【解析】B.{4,5}【分析】求出M n N,得到阴影部分表示的渠合C.{3}[详解】图中阴影部分表示的渠合为N中元素去掉M n N的元素后的梊合,MnN = {0,1,2,3们{3,4,5}={习,故图中阴影部分表示的集合为{4,5}故选:B2.命题“3xER,x2+x+l2:0”的否定是()A.3x ie R, x2 + x+l ;;:: 0B.3x E R, x2 + x+I <0C.VxER,x2+x+l<0 2D.Vx茫R,X4+x+l< 0【答案】C【解析】【分析】根据命题的否定即可求解D.0【详解】命题“:3x E R, x 2+ x + 1 2:: 0”的否定是“"ix E R,x 2+x+ 1< 0",故选:C3对任意角a 和/3,"sin a = s in/3“是“a=/3”的()A 充分不必要条件B必要不充分条件C.充要条件D 既不充分也不必要条件【答案)B 【解析】【分析】根据三角函数的性质,结合必要不充分的定义即可求解【详解】由sina=s in/3可得a=/J+2朊或者a+/3=冗+2幻,kEZ,故sina=s in/3不能得到a=/3,但a=/3,则sina= s in/3,故“sina=sin/3“是“a=/3”的必要不充分条件,故选:B2 4已知函数f(x) =�+log 。
2023—2024学年第一学期高一年级期末检测数学试题卷(答案在最后)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题无效.第Ⅰ卷(选择题共60分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案涂在答题卡上)1.已知集合{2,1,0,1,2}M =--,{(1)(3)0}N xx x =+->∣,则M N ⋂=()A.{2,1,0,1}-- B.{2}- C.{2,1}-- D.{0,1,2}【答案】B 【解析】【分析】解一元二次不等式,求出集合N ,然后进行交集的运算即可.【详解】由{(1)(3)0}N xx x =+->∣解得:{3N x x =>∣或1}x <-,因为{2,1,0,1,2}M =--,所以M N ⋂={2}-.故选:B 2.“π2π,6k k α=+∈Z ”是“1sin 2α=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分、必要条件结合任意角的正弦函数分析判断.【详解】若π2π,6k k α=+∈Z ,则ππ1sin sin 2πsin ,662k k α⎛⎫=+==∈ ⎪⎝⎭Z 成立;若1sin 2α=,则π2π,6k k α=+∈Z 或5π2π,6k k α=+∈Z ,故π2π,6k k α=+∈Z 不一定成立;综上所述:“π2π,6k k α=+∈Z ”是“1sin 2α=”的充分不必要条件.故选:A.3.计算55log 42log 10-=()A.2B.1- C.2- D.5-【答案】C 【解析】【分析】利用对数的运算公式可得答案.【详解】555552log 42log 10log 4log 1100l 5og 2-===--.故选:C.4.已知正数x ,y 满足811x y+=,则2x y +的最小值是()A.6B.16C.20D.18【答案】D 【解析】【分析】将所求的式子乘以“1”,然后利用基本不等式求解即可.【详解】因为正数x ,y 满足811x y+=,则()811622101018y x x y x y x y x y ⎛⎫+=++=++≥+=⎪⎝⎭,当且仅当16y xx y=,即12,3x y ==时等号成立.故选:D5.计算sin 50cos10sin 40sin10︒︒︒︒+=()A. B.32C.12-D.12【答案】B 【解析】【分析】由两角和的正弦公式求解即可.【详解】因为sin 50cos10sin 40sin10︒︒︒︒+=sin 50cos10cos50sin10︒︒︒︒+()sin 5010=sin 602︒︒︒=+=.故选:B6.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线3y x =-上,则πtan 24θ⎛⎫+= ⎪⎝⎭()A.17-B.17C.7D.7-【答案】C 【解析】【分析】先求解tan θ的值,结合倍角公式和和角公式可得答案.【详解】由题意tan 3θ=-,所以22tan 63tan 21tan 194θθθ-===--,所以πtan 21tan 2741tan 2θθθ+⎛⎫+== ⎪-⎝⎭.故选:C.7.将函数π()cos 23f x x ⎛⎫=+⎪⎝⎭向右平移2π3个单位,再将所得的函数图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A.()cos g x x =-B.()cos g x x=C.π()cos 3g x x ⎛⎫=- ⎪⎝⎭D.()πcos 43g x x ⎛⎫=-⎪⎝⎭【答案】A 【解析】【分析】利用三角函数图象变化规律,即可判断选项.【详解】将函数π()cos 23f x x ⎛⎫=+⎪⎝⎭向右平移2π3个单位,得到()2ππcos 2cos 2πcos 233y x x x ⎡⎤⎛⎫=-+=-=- ⎪⎢⎝⎭⎣⎦,再将所得的函数图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()cos y g x x ==-的图象.故选:A.8.设函数()f x 的定义域为R ,(1)f x +为奇函数,(2)f x +为偶函数,当[0,1]x ∈时,2(2)f x x bx c =++.若(3)(2)6f f -=,则752f ⎛⎫= ⎪⎝⎭()A.94B.32C.74-D.52-【答案】D 【解析】【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()2286f x x x =-+,进而利用周期性结论,即可得到答案.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()02f f c =-=,由②得:()()312f f b c ==++,因为(3)(2)6f f -=,所以26b c c +++=,即24b c +=,令0x =,由①得:()()()111020f f f b c =-⇒=⇒++=,解得:8,6b c =-=,所以()2286f x x x =-+.又因为()()()()()221111f x f x f x f x f x ⎡⎤⎡⎤+=-+=--+=--+=-⎣⎦⎣⎦,即()()2f x f x +=-,则()()()42f x f x f x +=-+=,所以函数()f x 是以4为周期的函数,所以75331114911222222f f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+==+=--+=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭115246242f ⎛⎫=⨯-+= ⎪⎝⎭.75522f ⎛⎫=- ⎪⎝⎭.故选:D【点睛】结论点睛:复合函数的奇偶性:(1)()f x a +是偶函数,则()()f x a f x a -+=+;(2)()f x a +是奇函数,则()()f x a f x a -+=-+.二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.请把正确答案涂在答题卡上)9.已知a ,b 为实数,且a b <,则下列不等式恒成立的是()A.sin sin a b <B.1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C.33a b <D.()()22ln 1ln 1a b +<+【答案】BC 【解析】【分析】利用函数单调性和反例可得答案.【详解】对于A ,π2π23<,而π2πsin sin 23>,故A 不正确;对于B ,因为12xy ⎛⎫= ⎪⎝⎭为减函数,a b <,所以1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故B 正确;对于C ,因为3y x =为增函数,a b <,所以33a b <,故C 正确;对于D ,21-<,而()()ln 41ln 11+>+,故D 不正确.故选:BC.10.高斯是世界著名的数学家,近代数学奠基者之一,享有“数学王子”的美称.函数[]()f x x =称为“高斯函数”,它的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=,[3]3=.下列结论正确的是()A.对12,x x ∀∈R ,若12x x <,则()()12f x f x ≤B.函数()f x 是R 上的奇的数C.对任意实数m ,(2)2()f m f m =D.对任意实数m ,1()(2)2f m f m f m ⎛⎫++= ⎪⎝⎭【答案】AD 【解析】【分析】利用函数定义及单调性的定义判断A ;通过举例来判断BC ;设m n r =+,其中n 为m 的整数部分,r 为m 的小数部分,01r ≤<,分102r ≤<,112r ≤<讨论计算来判断D .【详解】对于A :对12,x x ∀∈R ,若12x x <,则[][]12x x ≤,即()()12f x f x ≤,故A 正确;对于B :例如()[]1.5 1.51f ==,()[]1.5 1.52f -=-=-,即()()1.5 1.5f f -≠-,故函数()[]f x x =不是奇函数,故B 错误;对于C :取12m =,()[]121112f f ⎛⎫⨯=== ⎪⎝⎭,1122022f⎛⎫⎡⎤== ⎪⎢⎥⎝⎭⎣⎦,不满足(2)2()f m f m =,故C 错误;对于D :设m n r =+,其中n 为m 的整数部分,,n m n ≤∈Z ,r 为m 的小数部分,01r ≤<,则[][]1122m m n r n r ⎡⎤⎡⎤++=++++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222m n r =+,若102r ≤<,可得[]122m m n ⎡⎤++=⎢⎥⎣⎦,[]22m n =,若112r ≤<,可得[]1212m m n ⎡⎤++=+⎢⎥⎣⎦,[]221m n =+,所以对任意实数m ,1()(2)2f m f m f m ⎛⎫++= ⎪⎝⎭,故D 正确;故选:AD.11.已知0a >,0b >,且4a b +=,则下列不等式恒成立的是()A.4ab ≤B.228a b +≥ C.228a b +≥ D.22log log 2a b +≥【答案】ABC 【解析】【分析】根据基本不等式及其变形式,结合指数运算判断ABC ,举反例根据对数函数的单调性判断D.【详解】对于A :因为4=+≥a b 4ab ≤,当且仅当2a b ==时取等号,A 正确;对于B :因为222222228a b a b ++≥=⋅=⋅=,当且仅当2a b ==时取等号,故B 正确;对于C :因为()2222162a b a b ab ab +=+-=-,4ab ≤,所以221621688a b ab +=-≥-=,当且仅当2a b ==时取等号,故C 正确;对于D :当10,30a b =>=>时,满足4a b +=,但是222222log log log 1log 3log 3log 42a b +=+=<=,故D 错误;故选:ABC.12.已知函数()cos(2)(0π)f x x ϕϕ=+<<的图象关于直线7π12=-x 对称,则()A.(0)2f =B.函数()y f x =的图象关于点2π,03⎛⎫⎪⎝⎭对称C.函数()f x 在区间19π,π24⎛⎫⎪⎝⎭上单调递增 D.函数()f x 在区间5,126ππ⎡⎤⎢⎥⎣⎦上的值域为1,2⎡-⎢⎣⎦【答案】ABD 【解析】【分析】先根据对称轴求出函数解析式,结合选项逐个验证即可.【详解】因为()f x 的图象关于直线7π12=-x 对称,所以7ππ6k ϕ-=,即7ππ6k ϕ=+,Z k ∈;因为0πϕ<<,所以π6ϕ=,即()cos(2π6=+f x x .π(0)cos 62f ==,故A 正确;2π3π(cos 032f ==,所以函数()y f x =的图象关于点2π,03⎛⎫ ⎪⎝⎭对称,故B 正确;令π26t x =+,由19π,π24x ⎛⎫∈ ⎪⎝⎭可得21π13π,126t ⎛⎫∈ ⎪⎝⎭,因为21π13π2π126<<,所以函数()f x 在区间19π,π24⎛⎫⎪⎝⎭上不是单调函数,故C 不正确;令π26t x =+,由5,126x ππ⎡⎤∈⎢⎥⎣⎦可得11,36t ππ⎡⎤∈⎢⎣⎦,所以cos 1,2t ⎡∈-⎢⎣⎦,所以()1,2f x ⎡∈-⎢⎣⎦,故D 正确.故选:ABD.第Ⅱ卷(非选择题共90分)三、填空题:本大题共4小题,每小题5分.把答案填在答题卡的相应位置.13.命题“()2R,ln 10x x ∀∈+>”的否定是_________.【答案】()2R,ln 10x x ∃∈+≤【解析】【分析】利用全称命题的否定方法可得答案.【详解】因为“()2R,ln 10x x ∀∈+>”的否定是“()2R,ln 10x x ∃∈+≤”故答案为:()2R,ln 10x x ∃∈+≤.14.已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()4x f x =,则52f ⎛⎫-= ⎪⎝⎭_________.【答案】2-【解析】【分析】先利用周期和奇偶性,把所求转化为已知区间内,代入可得答案.【详解】因为()f x 是周期为2的奇函数,所以511222f f f ⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为当01x <<时,()4x f x =,所以1()22f =,所以522f ⎛⎫-=- ⎪⎝⎭.故答案为:2-15.已知偶函数()f x 在[0,)+∞单调递减,(2)0f -=,若()2log 0f m >,则实数m 的取值范围是______.【答案】1,44⎛⎫ ⎪⎝⎭【解析】【分析】根据函数单调性和奇偶性得到22log 2m -<<,利用对数函数单调性求解即可.【详解】因为偶函数()f x 在[0,)+∞单调递减,(2)0f -=,所以()f x 在(),0∞-上单调递增,()20f =,所以()2log 0f m >等价于()()2log2f m f >,所以2log 2m <,所以22log 2m -<<,解得144m <<.所以实数m 的取值范围是1,44⎛⎫⎪⎝⎭.故答案为:1,44⎛⎫⎪⎝⎭.16.已知函数π()2sin 23f x x ⎛⎫=+⎪⎝⎭,区间[,]a b (,a b ∈R 且a b <)满足:()y f x =在区间[,]a b 上至少含有20个零点,在所有满足此条件的区间[,]a b 中,b a -的最小值为_________.【答案】55π6##55π6【解析】【分析】通过整体代换求解函数的零点通式,求出相邻零点之间的距离,即可求出满足零点个数的最小区间长度.【详解】令π()2sin 203f x x ⎛⎫=+= ⎪⎝⎭,解得πx k =或ππ6x k =+,k ∈Z ,即()y f x =的相邻两零点间隔为π6或5π6,故若()y f x =在[],a b 上至少含有20个零点,则b a ﹣的最小值为π5π55π109666⨯+⨯=.故答案为:55π6四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知函数2()(2)2f x x k x k =++++,设集合{}122xA x=<<∣,集合{()0}B x f x =<∣.(1)若B =∅,求实数k 的取值范围;(2)若“x A ∈”是“x B ∈”的充分条件,求实数k 的取值范围.【答案】17.[]2,2-18.5,2⎛⎤-∞- ⎥⎝⎦【解析】【分析】(1)根据题意可得()()2220f x x k x k =++++≥恒成立,即0∆≤求解;(2)化简()0,1A =,由题意A B ⊆得()()0010f f ⎧≤⎪⎨≤⎪⎩求得答案.【小问1详解】由B =∅,即()()2220f x x k x k =++++≥恒成立,()()22420k k ∴∆=+-+≤,解得22k -≤≤.所以实数k 的取值范围为[]22-,.【小问2详解】由{}()1220,1xA x =<<=,x A ∈是xB ∈的充分条件,所以A B ⊆,得()()0010f f ⎧≤⎪⎨≤⎪⎩,即20250k k +≤⎧⎨+≤⎩,解得52k ≤-.所以实数k 的取值范围为5,2∞⎛⎤-- ⎥⎝⎦.18.已知函数π()2sin 6g x x ω⎛⎫=-⎪⎝⎭周期为π,其中0ω>.(1)求函数()g x 的单调递增区间;(2)请运用“五点法”,通过列表、描点、连线,在所给的直角坐标系中画出函数()g x 在[0,]π上的简图.【答案】(1)πππ,π,Z 63k k k ⎡⎤-+∈⎢⎥⎣⎦(2)答案见解析【解析】【分析】(1)先利用周期求出函数解析式,再利用单调性可得答案;(2)利用五点法画图可得答案.【小问1详解】由题意可得2ω=,所以π()2sin 26g x x ⎛⎫=- ⎪⎝⎭;令πππ2π22π262k x k -≤-≤+,Z k ∈,解得ππππ63k x k -≤≤+,故函数()g x 的单调递增区间为πππ,π,Z 63k k k ⎡⎤-+∈⎢⎥⎣⎦.【小问2详解】π26x -π6-π2π3π211π6x 0π12π37π125π6π()g x 1-022-1-描点,连线,其简图如下19.已知函数2()141x a f x =-+是奇函数.(1)求实数a 的值并判断函数单调性(无需证明);(2)若不等式()()412250x x f f t ++-⋅+<在R 上恒成立,求实数t 的取值范围.【答案】(1)1a =,减函数(2)5t >-【解析】【分析】(1)先根据奇偶性求出a ,再根据复合函数单调性可判定单调性;(2)利用奇偶性和单调性进行转化,再结合换元法可求答案.【小问1详解】因为2()141x a f x =-+是奇函数,所以(0)0f =,解得1a =;当1a =时,214()14141xx x f x -=-=++,定义域为R ,又1441()41)4(1x x x x f x x f ---+-==-+=-符合题意.所以1a =,因为41x y =+为增函数,所以()f x 为减函数.【小问2详解】()()412250x x f f t ++-⋅+<等价于()()41225x x f f t +<--⋅+,即()()41225x x f f t +<-+⋅-;因为()f x 为减函数,所以41225x x t +>-+⋅-,即4226x x t ⋅+->-;令20x m =>,则上式化为226m m t ⋅+->-,即()215m t -+>-;所以5t >-.20.中国“一带一路”倡议提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为500万元,每生产1台,需另投入成本()C x (万元),当年产量不足70台时,21()602C x x x =+(万元);当年产量不小于70台时,8100()1212180C x x x=+-(万元),若每台设备售价为120万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?【答案】20.2160500,070281001680,70x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-++≥ ⎪⎪⎝⎭⎩21.90台时利润最大.【解析】【分析】(1)分070x <<、70x ≥两种情况分别求出函数关系式即可;(2)利用二次函数及基本不等式计算可得.【小问1详解】由题可知当070x <<时,2211120605006050022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭,当70x ≥时,8100810012012121805001680y x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭,所以2160500,070281001680,70x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-++≥ ⎪⎪⎝⎭⎩;【小问2详解】当070x <<时,()22116050060130022y x x x =-+-=--+,则60x =时,y 有最大值1300(万元);当70x ≥时,81001680y x x ⎛⎫=-+ ⎪⎝⎭,当0x >时,8100180x x +≥=,当且仅当8100x x =,即90x =时取等号,所以8100168016801801500y x x ⎛⎫=-+≤-= ⎪⎝⎭,所以当90x =时,y 有最大值1500(万元);综上,年产量为90台时,该厂在这一商品的生产中所获利润最大.21.已知函数2())2cos 1(0,0π)2x f x x ωϕωϕωϕ+⎛⎫=+-+><< ⎪⎝⎭为奇函数,且()f x 图象的相邻两对称轴间的距离为π2.(1)求()()sin cos h x f x x x =+-的最小值.(2)将函数()f x 的图象向右平移π6个单位长度,再把横坐标缩小为原来的12倍(纵坐标不变),得到函数()y g x =的图象,记方程2()3g x =在4π0,3x ⎡⎤∈⎢⎥⎣⎦上的根从小到依次为1231,,,,,n n x x x x x - 试确定n 的值,并求1231222n n x x x x x -+++++ 的值.【答案】21.2-22.85π12【解析】【分析】(1)利用降幂公式和辅助角公式化简()f x ,再根据周期及奇偶数性求出()f x 的解析式,再令sin cos t x x =-,利用二次函数性质求解最小值即可;(2)根据三角函数图像变换求得()g x ,利用换元法,结合三角函数图象与性质求得n 以及1231222n n x x x x x -+++++ 的值.【小问1详解】()()22cos 12x f x x ωϕωϕ+⎛⎫=+-+ ⎪⎝⎭()()πcos 2sin 6x x x ωϕωϕωϕ⎛⎫=+-+=+- ⎪⎝⎭.因为函数()f x 图象的相邻两对称轴间的距离为π2,所以πT =,可得2ω=,又由函数()f x 为奇函数,所以ππ,6k k ϕ-=∈Z ,因为0πϕ<<,所以π6ϕ=,所以函数()2sin2f x x =.所以()()sin cos 2sin 2sin cos h x f x x x x x x =+-=+-,令πsin cos 4t x x x ⎛⎫⎡=-=-∈ ⎪⎣⎝⎭,则22sin 24sin cos 22x x x t ==-,故原函数最小值为222,y t t t ⎡=-++∈⎣的最小值,其对称轴为14t =,在14t ⎡⎤∈⎢⎣⎦单调递增,在14t ⎡∈⎢⎣单调递减,且(222222-⨯+>--,所以t =222y t t =-++有最小值2-,所以()()sin cos h x f x x x =+-的最小值为2-.【小问2详解】将函数()f x 的图象向右平移π6个单位长度,得到ππ2sin 22sin 263y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再把横坐标缩小为原来的12(纵坐标不变),得到()π2sin 43g x x ⎛⎫=-⎪⎝⎭,令()π22sin 433g x x ⎛⎫=-= ⎪⎝⎭,则π1sin 433x ⎛⎫-= ⎪⎝⎭,因为4π0,3x ⎡⎤∈⎢⎥⎣⎦,所以ππ4,5π33x ⎡⎤-∈-⎢⎥⎣⎦,令3π4t x =-,则π,5π3t ⎡⎤∈-⎢⎥⎣⎦,函数sin y t =在π,5π3t ⎡⎤∈-⎢⎥⎣⎦上的图象如下图所示,由图可知,sin y t =与13y =共有6个交点,所以方程2()3g x =在4π0,3x ⎡⎤∈⎢⎥⎣⎦上共有6个根,即6n =,因为()()()123456162345222222t t t t t t t t t t t t +++++=+++++5π3π7π2222225π222=⨯+⨯⨯+⨯⨯=,所以1234562222x x x x x x +++++()1234561π222210412t t t t t t =++++++⨯85π12=.22.对于函数()()f x x D ∈,D 为函数定义域,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≤成立,我们称函数()f x 为“T 同比不增函数”.(1)若函数()sin f x kx x =+是“π2同比不增函数”,求k 的取值范围;(2)是否存在正常数T ,使得函数()11f x x x x =---++为“T 同比不增函数”,若存在,求T 的取值范围;若不存在,请说明理由.【答案】(1)22,π∞⎛-- ⎝⎦(2)存在,且4T ≥【解析】【分析】(1)由()()f x T f x +≤恒成立,分离常数k ,结合三角函数的最值来求得k 的取值范围.(2)结合()f x 的图象以及图象变换的知识求得T 的取值范围.【小问1详解】因为函数()sin f x kx x =+是“π2同比不增函数”,则()π2f x f x ⎛⎫+≤ ⎪⎝⎭恒成立,所以ππsin sin 22k x x kx x ⎛⎫⎛⎫+++≤+ ⎪ ⎪⎝⎭⎝⎭恒成立,所以ππsin cos 24k x x x ⎛⎫≤-=- ⎪⎝⎭,即πsin π4k x ⎛⎫≤- ⎪⎝⎭,由于πsin 14x ⎛⎫-≥- ⎪⎝⎭,所以πk ≤-.所以k的取值范围是,π∞⎛-- ⎝⎦.【小问2详解】存在,理由如下:2,1()11,112,1x x f x x x x x x x x --≤-⎧⎪=---++=-<<⎨⎪-+≥⎩,画出()f x的图象如下图所示,()f x T +的图象是由()f x 的图象向左平移T 个单位所得,由图可知,当4T ≥时,对任意的x D ∈,都有()()f x T f x +≤成立,所以存在正常数T ,使得函数()11f x x x x =---++为“T 同比不增函数”,且4T ≥.【点睛】关键点点睛:本题考查新定义的理解和应用,解题的关键在于利用题中的定义,将问题转化为恒成立问题,本题第(2)问利用数形结合思想求解比较直观简单.。
完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
北京市朝阳区2023~2024学年度第一学期期末质量检测高一数学(答案在最后)(考试时间120分钟满分150分)本试卷分为选择题(共50分)和非选择题(共100分)两部分第一部分(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}{}2,1,2,3,2,Z A B x x k k =-==∈∣,则A B = ()A.{2,1}-B.{2,2}- C.{1,2}D.{2,3}【答案】B 【解析】【分析】根据题意,结合集合交集的概念,即可求解.【详解】由集合{}{}2,1,2,3,2,Z A B xx k k =-==∈∣,集合B 由,所有偶数构成,集合A 中只有-2,2两个偶数,故{2,2}A B =- .故选:B.2.命题“x ∀∈R ,都有||0x x +≥”的否定为()A.x ∃∈R ,使得||0x x +<B.x ∃∈R ,使得||0x x +≥C.x ∀∈R ,都有||0x x +≤D.x ∀∈R ,都有||0x x +<【答案】A 【解析】【分析】根据全称命题的否定知识即可求解.【详解】由“x ∀∈R ,使得0x x +≥”的否定为“x ∃∈R ,使得0x x +<”,故A 正确.故选:A.3.已知,,a b c ∈R ,且a b >,则下列不等式一定成立的是()A.22a b >B.ac bc> C.22a b> D.11a b<【答案】C 【解析】【分析】根据题意,利用不等式的基本性质,以及特例法,结合指数函数的单调性,逐项判定,即可求解.【详解】对于A 中,例如1,2a b ==-,此时满足a b >,但22a b <,所以A 错误;对于B 中,当0c =时,ac bc =,所以B 不正确;对于C 中,由指数函数2x y =为单调递增函数,因为a b >,可得22a b >,所以C 正确;对于D 中,例如1,2a b ==-,此时满足a b >,但11a b>,所以D 不正确.故选:C.4.设x ∈R ,则“x >1”是“2x >1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【详解】试题分析:由1x >可得21x >成立,反之不成立,所以“1x >”是“21x >”的充分不必要条件考点:充分条件与必要条件5.已知0x 是函数3()e x f x x =+的一个零点,且()()00,,,0a x b x ∈-∞∈,则()A.()0,()0f a f b <<B.()0,()0f a f b >> C.()0,()0f a f b >< D.()0,()0f a f b <>【答案】D 【解析】【分析】判断出()f x 的单调性,根据0x 是函数()f x 的一个零点求出()f x 的值域可得答案.【详解】因为3e ,x y y x ==为x ∈R 上的单调递增函数,所以3()e x f x x =+为x ∈R 上的单调递增函数,又因为0x 是函数3()e x f x x =+的一个零点,所以()0,x x ∈-∞时()0f x <,()0,x x ∈+∞时()0f x >,若()()00,,,0a x b x ∈-∞∈,则()0,()0f a f b <>.故选:D.6.已知112223211,,log 332a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则()A.a b c <<B.c a b<< C.b a c<< D.c b a<<【答案】C 【解析】【分析】根据幂函数和对数函数的单调性比较大小即可.【详解】因为幂函数12y x =在[)0,∞+上单调递增,12133<<,所以112212133⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即1b a <<,因为对数函数23log y x =在()0,∞+单调递减,1223<,所以223312log log 123>=,即1c >,所以b a c <<,故选:C.7.已知函数ππ()2sin()0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示,则()A.π1,4ωϕ==- B.π1,4ωϕ==C.π2,4ωϕ==-D.π2,4ωϕ==【答案】B 【解析】【分析】结合三角函数的周期性求ω,利用特殊点的相位求ϕ的值.【详解】由图可知:7π3ππ244T =-=⇒2πT =,由2π2πω=⇒1ω=.由3ππ4ϕ+=⇒3πππ44ϕ=-=.故选:B8.函数()|sin |cos f x x x =+是()A.奇函数,且最小值为 B.C.偶函数,且最小值为 D.【答案】D【解析】【分析】根据题意,结合函数的奇偶性,判定A 、B 不正确;再结合三角函数的图象与性质,求得函数()f x 的最大值和最小值,即可求解.【详解】由函数()|sin |cos f x x x =+,可得其定义域x ∈R ,关于原点对称,且()|sin()|cos()|sin |cos ()f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,因为()()()()2πsin 2πcos 2πsin cos f x x x x x f x +=+++=+=,所以2π为()y f x =的一个周期,不妨设[0,2π]x ∈,若[0,π]x ∈时,可得π()sin cos )4f x x x x =+=+,因为[0,π]x ∈,可得ππ5π[,]444x +∈,当ππ42x +=时,即π4x =时,可得max ()f x =;当π5π44x +=时,即πx =时,可得min ()1f x =-;若[]π,2πx ∈,可得π()sin cos )4f x x x x =-+=+,因为[π,2π]x ∈,可得π5π9π[,]444x +∈,当π2π4x +=时,即7π4x =时,可得max ()f x =;当π5π44x +=时,即πx =时,可得()min 1f x =-,综上可得,函数()f x ,最小值为1-.故选:D.9.已知函数()f x 的图象是在R 上连续不断的曲线,()f x 在区间项[1,)+∞上单调递增,且满足()()20f x f x -+=,()23f =,则不等式3(1)3f x -<+<的解集为()A.(2,2)- B.(1,1)- C.(0,2)D.(1,3)【答案】B 【解析】【分析】通过条件分析函数具有的性质,再把函数不等式转化为代数不等式求解.【详解】由()()2f x f x -=-得:()f x 的图象关于点()1,0对称;()23f =⇒()03f =-;又()f x 在R 上连续不断,且在[)1,+∞上单调递增,所以()f x 在R 上单调递增.()313f x -<+<⇒012x <+<⇒11x -<<.故选:B10.在一定通风条件下,某会议室内的二氧化碳浓度c 随时间t (单位:min )的变化规律可以用函数模型0etc c δλ-=+近似表达.在该通风条件下测得当0,5,10t t t ===时此会议室内的二氧化碳浓度,如下表所示,用该模型推算当15t =时c 的值约为()t 0510c0.15%0.09%0.07%A.0.04%B.0.05%C.006%.D.0.07%【答案】C 【解析】【分析】根据题意知建立方程组分别求出51e3δ-=,0.09%λ=,从而可求解.【详解】由题意得:当0t =时,0000.15%c c ec δλλ-=+=+=①,当5t =时,5e0.09%c c δλ-=+=②,当10t =时,10e0.07%c c δλ-=+=③,由-①②得51e 0.06%δλ-⎛⎫-= ⎪⎝⎭④,由-②③得55e1e 0.02%δδλ--⎛⎫-= ⎪⎝⎭⑤,由⑤④得51e 3δ-=⑥,所以00.09%3c c λ=+=⑦,由-①⑦得20.06%3λ=,解得0.09%λ=,所以当15t =时,315555001e eee0.15%0.09%0.09%0.0633%3c c c δδδδλλ----⎛⎫=+=+⨯⨯=-+⨯≈ ⎪⎝⎭,故C 正确.故选:C.第二部分(非选择题共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.函数()()lg 1f x x =+的定义域为_________________.【答案】()1-+∝,【解析】【分析】根据对数的真数大于零,列出不等式解出即可.【详解】由10x +>得1x >-,则函数()()lg 1f x x =+的定义域为()1-+∝,.故答案为:()1-+∝,12.若1x >,则11x x +-的最小值是_____.【答案】3【解析】【分析】111111x x x x +=-++--,利用基本不等式可得最值.【详解】∵1x >,∴11111311x x x x +=-++≥=--,当且仅当111x x -=-即2x =时取等号,∴2x =时11x x +-取得最小值3.故答案为:3.13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,若角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,角β的终边与角α的终边关于原点对称,则sin α=__________,cos β=__________.【答案】①.35②.45【解析】【分析】根据角α终边经过点43,55P ⎛⎫- ⎪⎝⎭,从而可求出sin α,cos α,再根据角β的终边与角α的终边关于原点对称,从而可求解cos β.【详解】对空①:由点43,55P ⎛⎫- ⎪⎝⎭在角α的终边上,所以445cos 5α-=-,335sin 5α==.对空②:由角β的终边与角α的终边关于原点对称,所以4cos cos 5a β=-=.故答案为:35;45.14.已知函数()21x f x a =⋅-的图象过原点,则=a __________;若对x ∀∈R ,都有()f x m >,则m 的最大值为__________.【答案】①.1②.1-【解析】【分析】根据函数()f x 过原点,从而求出a 的值;对于()f x m >,只需求出()min f x m >,从而可求解.【详解】对空①:由函数()·21xf x a =-过原点,即()00·210f a =-=,得1a =;对空②:由函数()21xf x =-在定义域上单调递增,且()211xf x =->-恒成立,所以m 的最大值为1-.故答案为:1;1-.15.将函数()sin 2f x x =的图象向左平移(0)ϕϕ>个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于y 轴对称,则ϕ的一个取值为__________.【答案】π4(答案不唯一)【解析】【分析】根据图象平移变换得到()g x 的解析式,结合图象关于y 轴对称,令()01g =±,求出ϕ的值.【详解】函数()sin 2f x x =的图象向左平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,则()()sin 2g x x ϕ=+,因为函数()g x 的图象关于y 轴对称,则()()0sin 201g ϕ=+=±,即sin 21ϕ=±,所以π2π2k ϕ=+,即π1π42k ϕ=+,N k ∈,所以ϕ的一个取值为π4,故答案为:π4(答案不唯一).16.已知函数()2f x x b =+,()g x 为偶函数,且当0x ≥时,2()4g x x x =-,记函数()()()()()()(),,f x f x g x T x g x f x g x ⎧≥⎪=⎨<⎪⎩,给出下列四个结论:①当0b =时,()T x 在区间[2,)-+∞上单调递增;②当8b =-时,()T x 是偶函数;③当0b <时,()T x 有3个零点;④当8b ≥时,对任意x ∈R ,都有()0T x >.其中所有正确结论的序号是__________.【答案】①③【解析】【分析】根据题意,结合函数()(),f x g x 的解析式,利用函数的新定义,结合函数的图象、函数的零点的定义,逐项判定,即可求解.【详解】因为()g x 为偶函数,且当0x ≥时,2()4g x x x =-,当0x <时,可得()2()4g x g x x x =-=+,所以224,0()4,0x x x g x x x x ⎧-≥=⎨+<⎩,对于①中,当0b =时,()2f x x =,令()()f x g x =,解得0,2,6x x x ==-=,如图所示,()224,22,224,2x x x T x x x x x x ⎧+<-⎪=-≤≤⎨⎪->⎩,结合图象,可得函数()T x 在区间[2,)-+∞上单调递增,所以①正确;对于②中,当8b =-时,可得()28f x x =-,令2428x x x -=-,即2680x x -+=,解得2x =或4x =,当2x <时,可得()()T x g x =;当24x ≤≤时,可得()()T x f x =;当4x >时,可得()()T x g x =,即2224,04,02()28,244,4x x x x x x T x x x x x x ⎧+<⎪-≤<⎪=⎨-≤<⎪⎪-≥⎩,其中()()33,32f f -=-=-,所以()()33f f -≠,所以当8b =-时,函数()T x 不是偶函数,所以②不正确;对于③中,当0b <时,令()0f x =,即20x b +=,解得02bx =->,当0x <时,令()0g x =,即240x x +=,解得4x =-,当0x ≥时,令()0g x =,即240x x -=,解得0x =或4x =,若042b <-<时,函数()T x 有三个零点,分别为4x =-,0x =和2b x =-;若42b-=时,即8b =-时,函数()T x 有三个零点,分别为4x =-,0x =和4x =;若42b->时,即8b <-时,函数()T x 有三个零点,分别为4x =-,0x =和4x =;综上可得,当0b <时,函数()T x 有三个零点,所以③正确;对于④中,当0x <时,令()0g x =,即240x x +=,解得4x =-,将点(4,0)-代入函数()y f x =,可得2(4)0b ⨯-+=,解得8b =,如图所示,当8b ≥时,函数()0T x ≥,所以④不正确.故答案为:①③.三、解答题(本大题共5小题,共70分.解答应写出文字说明,演算步骤或证明过程)17.已知集合{}2340,{0}A xx x B x x a =--≤=->∣∣.(1)当4a =时,求A B ⋃;(2)若()A B =∅R ð,求实数a 的取值范围.【答案】(1){}1A B x x ⋃=≥-(2)1a <-【解析】【分析】(1)化简集合,A B ,直接利用并集运算求解即可;(2)化简集合,根据交集运算结果求解参数.【小问1详解】由题知,{}{}234014A xx x x x =--≤=-≤≤∣,{}{0}B x x a x x a =->=>∣,因为4a =,所以{}4B x x =>,所以{}1A B x x ⋃=≥-.【小问2详解】因为()A B =∅R ð,且{}14A x x =-≤≤,{}R B x x a =≤ð,所以1a <-.18.已知,αβ为锐角,21sin ,tan()102ααβ=+=.(1)求tan α和tan β的值;(2)求2αβ+的值.【答案】(1)1tan 7α=,1tan 3β=(2)π4【解析】【分析】(1)先根据同角三角函数平方关系求出cos α,再根据商数关系和两角和正切公式化简得结果;(2)根据二倍角公式得sin 2,cos 2ββ,,再根据两角和余弦公式得()cos 2αβ+,最后根据范围求结果.【小问1详解】因为,αβ为锐角,2sin 10α=,所以cos 10α==,所以2sin 110tan cos 77210ααα==,又因为tan tan 1tan()1tan tan 2αβαβαβ++==-,所以1tan 3β=,【小问2详解】因为,αβ为锐角,1tan 3β=,所以22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩,解得sin 10cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩,所以sin 22sin cos 3101052βββ==⨯=⨯,24cos 212sin 5ββ=-=,所以()43cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=,又因为,αβ为锐角,所以3π022αβ<+<,所以π24αβ+=.19.设函数()2()log 4(1)x f x m m =+>-.(1)当0m =时,求(1)f 的值;(2)判断()f x 在区间[0,)+∞上的单调性,并用函数单调性的定义证明你的结论;(3)当[0,)x ∈+∞时,()f x 的最小值为3,求m 的值.【答案】(1)2(2)()f x 在区间[0,)+∞上的单调递增,证明见解析(3)7【解析】【分析】(1)求出函数()f x 的解析式,进而求出(1)f 的值;(2)利用函数单调性的定义证明单调性;(3)由(2)的单调性,可得()()min 03f x f ==,求出m 的值.【小问1详解】当0m =时,222()log 4log 22x x f x x ===,所以(1)2f =.【小问2详解】()f x 在区间[0,)+∞上的单调递增,证明如下:在[0,)+∞上任取12,x x ,且12x x <,则()()()()1122122224log 4log 4log 4x x x x m m m m f x f x =++--+=+,因为120x x ≤<,1m >-,所以12144x x ≤<,所以12044x x m m <+<+,即121440x x m m <+<+,所以12204log 4x x m m++<,即()()120f x f x -<,所以()()12f x f x <,即()f x 在区间[0,)+∞上的单调递增.【小问3详解】[0,)x ∈+∞时,由(2)可得()f x 在[)0,∞+上单调递增,所以()()()()022min 0log 4log 13f x f m m ==+=+=,所以3217m =-=.20.设函数2()2cos cos (0)f x x x x m ωωωω=++>,且(0)1f =.(1)求m 的值;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求ω的值及()f x 的零点.条件①:()f x 是奇函数;条件②:()f x 图象的两条相邻对称轴之间的距离是π;条件③:()f x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,在区间ππ,63⎡⎤⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)1m =-(2)选择①,不存在;选择②,12ω=,ππ,Z 6k k -+∈;选择③,1ω=,ππ,Z 122k k -+∈【解析】【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据(0)1f =,即可求解;(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【小问1详解】2()2cos cos f x x x x mωωω=++πcos 212sin 216x x m x m ωωω⎛⎫=++=+++ ⎪⎝⎭,又1(0)2112f m =⨯++=,所以1m =-.【小问2详解】由(1)知,()π2sin 26f x x ω⎛⎫=+⎪⎝⎭,选择①:因为()f x 是奇函数,所以()00f =与已知矛盾,所以不存在()f x .选择②:因为()f x 图象的两条相邻对称轴之间的距离是π,所以π2T =,2πT =,2π21Tω==,12ω=则()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭,令()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭,解得ππ,Z 6k x k -+∈=.即()f x 零点为ππ,Z 6k k -+∈.选择③:对于()π2sin 26f x x ω⎛⎫=+⎪⎝⎭,0ω>,令πππ2π22π,Z 262k x k k ω-+≤+≤+∈,ππ3π2π22π,Z 262k x k k ω+≤+≤+∈,解得ππππ,Z 36k k x k ωωωω-+≤≤+∈,ππ2ππ,Z 63k k x k ωωωω+≤≤+∈,即()f x 增区间为ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦,()f x 减区间为ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦,因为()f x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,在区间ππ,63⎡⎤⎢⎥⎣⎦上单调递减,所以0k =时符合,即()f x 在ππ,36ωω⎡⎤-⎢⎥⎣⎦上单调递增,在π2π,63ωω⎡⎤⎢⎣⎦上单调递减,所以π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩且2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩,解得1ω=,则()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,所以令()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭,解得ππ,Z 122k x k =-+∈,即()f x 零点为ππ,Z 122k k -+∈.21.已知集合{}12,,,n A a a a = ,其中*n ∈N 且*4,(1,2,,)i n a i n ≥∈=N ,非空集合B A ⊆,记()T B 为集合B 中所有元素之和,并规定当B 中只有一个元素b 时,()T B b =.(1)若{1,2,5,6,7,8},()8A T B ==,写出所有可能的集合B ;(2)若{}{}1233,4,5,9,10,11,,,A B b b b ==,且()T B 是12的倍数,求集合B 的个数;(3)若{1,2,3,,21}(1,2,,)i a n i n ∈-=L L ,证明:存在非空集合B A ⊆,使得()T B 是2n 的倍数.【答案】21.{}8,{}1,7,{}2,6,{}1,2,522.423.证明见详解【解析】【分析】根据条件,可列出(1)(2)中所有满足条件的B ;对(3),分情况讨论,寻找使()T B 是2n 倍数的集合B .【小问1详解】所有可能的集合B 为:{}8,{}1,7,{}2,6,{}1,2,5.【小问2详解】不妨设:123b b b <<,由于123311b b b ≤<<≤,且123,,b b b A ∈,所以()123345123091011T B b b b ++=≤=++≤=++.由题意,()T B 是12的倍数时,()12T B =或()24T B =.当()12T B =时,因为12334512b b b ++≥++=,所以当且仅当{}3,4,5B =时,()12T B =成立,故{}3,4,5B =符合题意.当()24T B =时,若311b =,则1213b b +=,故{}3,10,11B =或{}4,9,11B =符合题意;若310b =,则1214b b +=,故{}5,9,10B =符合题意;若39b =,则12345918b b b ++≤++=,无解.综上,所有可能的集合B 为{}3,4,5,{}3,10,11,{}4,9,11,{}5,9,10.故满足条件的集合B 的个数为4.【小问3详解】(1)当n A ∉时,设12···n a a a <<<,则1212,,···,,2,2,···,2n n a a a n a n a n a ---∈{}1,2,3,···,1,1,···,21n n n -+-,这2n 个数取22n -个值,故其中有两个数相等.又因为12···n a a a <<<,于是1222···2n n a n a n a ->->>-,从而12,,···,n a a a 互不相等,122,2,···,2n n a n a n a ---互不相等,所以存在μ,ν{}1,2,···,n ∈使得2a n a μν=-.又因a n μ≠,a n ν≠故μν≠.则{},B a a μν=,则()2T B a a n μν=+=,结论成立.(2)当n A ∈时,不妨设n a n =,则121,,···,n a a a -(4n ≥),在这1n -个数中任取3个数,i j k a a a <<.若j i a a -与k j a a -都是n 的倍数,()()2k i k j j i a a a a a a n -=-+-≥,这与(],,0,21i j k a a a n ∈-矛盾.则,,i j k a a a 至少有2个数,它们之差不是n 的倍数,不妨设()2121a a a a ->不是n 的倍数.考虑这n 个数:1a ,2a ,12a a +,123a a a ++,···,121···n a a a -+++.①若这n 个数除以n 的余数两两不同,则其中必有一个是n 的倍数,又1a ,22a n <且均不为n ,故存在21r n ≤≤-,使得()12···N*r a a a pn n +++=∈.若p 为偶数,取{}12,,···,r B a a a =,则()T B pn =,结论成立;若p 为奇数,取{}12,,···,,r n B a a a a =,则()()1T B pn n p n =+=+,结论成立.②若这n 个数除以n 的余数中有两个相同,则它们之差是n 的倍数,又21a a -,1a 均不是n 的倍数,故存在21s t n ≤<≤-,使得()()()1212······N*t s a a a a a a qn q +++-+++=∈.若q 为偶数,取{}12,,···,s s t B a a a ++=,则()T B qn =,结论成立;若q 为奇数,取{}12,,···,,s s t n B a a a a ++=,则()()1T B qn n q n =+=+,结论成立.综上,存在非空集合B A ⊆,使得()T B 是2n 的倍数.T B是2n的倍数是问题的关键.【点睛】关键点点睛:如何找到非空集合B,使得()。
石景山区2023—2024学年第一学期高一期末试卷数学(答案在最后)本试卷共5页,满分为100分,考试时间为120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}0A x x =>,{}12B x x =-<<,则A B = ()A.{}2x x < B.{}02x x << C.{}12x x << D.{}12x x -<<【答案】B 【解析】【分析】根据交集的定义,即可判断选项.【详解】集合{}0A x x =>,{}12B x x =-<<,由交集的定义可知,{}02A B x x ⋂=<<.故选:B2.已知命题p :“2,10x R x x ∃∈-+<”,则p ⌝为()A.2,10x R x x ∃∈-+≥ B.2,10∃∉-+≥x R x x C.2,10x R x x ∀∈-+≥ D.2,10x R x x ∀∈-+<【答案】C 【解析】【分析】根据命题的否定的定义判断.【详解】特称命题的否定是全称命题.命题p :“2,10x R x x ∃∈-+<”,的否定为:2,10x R x x ∀∈-+≥.故选:C .3.下列函数中,在区间()0,∞+上单调递增的是()A.1()2xy = B.()21y x =- C.1y x =-+ D.3y x =【答案】D【分析】根据各选项中的函数直接判断单调性即可.【详解】函数1()2xy =在R 上单调递减,A 不是;函数()21y x =-在(,1)-∞上单调递减,在()1,+∞上单调递增,则在(0,)+∞上不单调,B 不是;函数1y x =-+的R 上单调递减,C 不是;函数3y x =在R 上单调递增,在(0,)+∞上单调递增,D 是.故选:D4.已知关于x 的不等式20x ax b ++<的解集是()2,1-则a b +=()A.0B.1- C.1D.2-【答案】B 【解析】【分析】根据不等式的解集与相应方程的根的关系,利用韦达定理求解.【详解】由题意2-和1是方程20x ax b ++=的两根,所以21a -+=-,1a =,212b -⨯==-,∴1a b +=-.故选:B .5.“21x <”是“1x <”的()A .充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】首先求解21x <的解集,再根据集合的包含关系,结合充分,必要条件的定义,即可判断选项.【详解】由21x <,得0x <,因为{}0x x <{}1x x <,所以“21x <”是“1x <”的充分不必要条件.故选:A6.某中学高三年级共有学生800人,为了解他们的视力状况,用分层抽样的方法从中抽取一个容量为40的样本,若样本中共有女生11人,则该校高三年级共有男生()人A.220B.225C.580D.585【答案】C【分析】利用分层抽样比例一致得到相关方程,从而得解.【详解】依题意,设高三男生人数为n 人,则高三女生人数为()800n -人,由分层抽样可得8001180040n -=,解得580n =.故选:C.7.若0a b <<则()A.22a b <B.2ab b < C.22a b> D.2a bb a+>【答案】D 【解析】【分析】根据不等式的性质,以及指数函数的性质,基本不等式,即可判断选项.【详解】A.因为0a b <<,则a b >,则22a b >,故A 错误;B.因为0a b <<,所以2ab b >,故B 错误;C.2x y =在R 上单调递增,当0a b <<时,22a b <,故C 错误;D.因为0a b <<,所以b a 和a b都大于0,则2a b b a +≥=,当b aa b =时,即0a b =<时等号成立,所以“=”不能取到,所以2a b b a+>,故D 正确.故选:D8.已知函数()22log ,14,1x x x f x x -≥⎧=⎨<⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()A.1-B.0C.1D.2【答案】C 【解析】【分析】根据分段函数的定义区间,结合函数解析式,求函数值.【详解】函数()22log ,14,1x x x f x x -≥⎧=⎨<⎩,则()1221422log 212f f f f ⎛⎫⎛⎫⎛⎫===-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C9.已知函数()2log 1f x x x =-+,则不等式()0f x <的解集是()A.()0,1 B.()(),12,-∞+∞ C.()1,2 D.()()0,12,⋃+∞【答案】D【分析】由()0f x <可得2log 1x x <-,即1y x =-的图象在2log y x =图象的上方,画出2log ,1y x y x ==-图象,即可得出答案.【详解】因为()2log 1f x x x =-+的定义域为()0,∞+,因为()21log 1110f =-+=,()22log 2210f =-+=,由()0f x <可得2log 1x x <-,即1y x =-的图象在2log y x =图象的上方,画出2log ,1y x y x ==-的图象,如下图,由图可知:不等式()0f x <的解集是()()0,12,∞⋃+.故选:D .10.已知非空集合A ,B 满足以下两个条件:(1){}1,2,3,4,5,6A B = ,A B ⋂=∅;(2)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素.则有序集合对(),A B 的个数为()A.12B.10C.6D.5【答案】B 【解析】【分析】首先讨论集合,A B 中的元素个数,确定两个集合中的部分元素,再结合组合数公式,即可求解.【详解】若集合A 中只有1个元素,则集合B 只有5个元素,1A ∉,5B ∉,即5A ∈,1B ∈,此时有04C 1=个;若集合A 中只有2个元素,则集合B 只有4个元素,2A ∉,4B ∉,即4A ∈,2B ∈,此时有14C 4=个;若集合A 中只有3个元素,则集合B 只有3个元素,3A ∉,3B ∉,不满足题意;若集合A 中只有4个元素,则集合B 只有2个元素,4A ∉,2∉B ,即2A ∈,4B ∈,此时有34C 4=个;若集合A 中只有5个元素,则集合B 只有1个元素,5A ∉,1B ∉,即1A ∈,5∈B ,此时有44C 1=个;故有序集合对(),A B 的个数是144110+++=.故选:B第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.函数()1lg 2y x x=-+的定义域为______.【答案】(2,)+∞【解析】【分析】利用函数有意义列式求解即得.【详解】函数()1lg 2y x x=-+有意义,则20x ->且0x ≠,解得2x >,所以函数()1lg 2y x x=-+的定义域为(2,)+∞.故答案为:(2,)+∞12.已知()2240x x y x x++=>,则当x =______时,y 取得最小值为______.【答案】①.2②.6【解析】【分析】由基本不等式求解即可.【详解】因为0x >,40x >,所以224422x x y x x x ++==++≥+426=+=,当且仅当4x x=,即2x =时取等,所以当2x =时,y 取得最小值为6.故答案为:2;6.13.不等式212xx ≤-的解集为__________.【答案】[)2,2-【解析】【分析】将分式不等式转化成整式不等式求解即可得出答案.【详解】根据不等式212x x ≤-整理可得2102xx -≤-,即202x x +≤-,等价于()()22020x x x ⎧+-≤⎨-≠⎩,解得22x -≤<;所以不等式212xx ≤-的解集为[)2,2-故答案为:[)2,2-14.写出一个值域为[)1,+∞的偶函数()f x =______.【答案】2x (答案不唯一)【解析】【分析】根据偶函数的性质,以及指数函数的性质,即可求解()f x 的解析式.【详解】设()2xf x =,函数的定义域为R ,且()()f x f x -=,即函数为偶函数,0x ≥,所以()21x f x =≥,即函数的值域为[)1,+∞,所以满足条件的一个函数()2xf x =.故答案为:2x15.已知函数()21,1,1x ax x f x ax x ⎧-++≤=⎨>⎩,(1)若0a =,则()f x 的最大值是______;(2)若()f x 存在最大值,则a 的取值范围为______.【答案】①.1②.(],0-∞【解析】【分析】(1)若0a =,则()21,10,1x x f x x ⎧-+≤=⎨>⎩,由二次函数的性质可得出答案;(2)当0a =时,由(1)知,()f x 存在最大值,当0a ≠时,若()f x 存在最大值,()f x ax =在()1,∞+应单调递减,所以a<0,即可得出答案.【详解】(1)若0a =,则()21,10,1x x f x x ⎧-+≤=⎨>⎩,当1x ≤时,()f x =21x -+,所以()(],1f x ∞∈-,则()f x 的最大值是1.(2)当0a =时,由(1)知,()f x 存在最大值,当0a ≠时,若()f x 存在最大值,()f x ax =在()1,∞+应单调递减,所以a<0,且当1x >时,()0f x ax a =<<,无最大值,当1x ≤时,()f x =2221124a a x ax x ⎛⎫-++=--++ ⎪⎝⎭,则()f x 在,2a ∞⎛⎫- ⎪⎝⎭上单调递增,在,12a ⎛⎤ ⎥⎝⎦上单调递减,所以()f x 存在最大值为2124a af a ⎛⎫=+> ⎪⎝⎭.故a 的取值范围为:(],0-∞.故答案为:1;(],0-∞.三、解答题共5小题,共40分.解答应写出文字说明,演算步骤或证明过程.16.已知集合{}2340A x x x =-->,集合{}0B x a x =-≤(1)当2a =时,求A B ⋃;(2)若R B A ⋂≠∅ð,求实数a 的取值范围.【答案】(1){1A B x x ⋃=<-或2}x ≥;(2)4a ≤【解析】【分析】(1)分别求集合,A B ,再求A B ⋃;(2)根据(1)的结果,首先求R A ð,再根据集合的运算结果,求实数a 的取值范围.【小问1详解】当2a =时,{}2B x x =≥,2340x x -->,得>4x 或1x <-,即{1A x x =<-或4}x >,所以{1A B x x ⋃=<-或2}x ≥;【小问2详解】由(1)可知,{}R 14A x x =-≤≤ð,{}B x x a =≥,若R B A ⋂≠∅ð,则4a ≤.17.已知甲投篮命中的概率为0.6,乙投篮不中的概率为0.3,乙、丙两人都投篮命中的概率为0.35,假设甲、乙、丙三人投篮命中与否是相互独立的.(1)求丙投篮命中的概率;(2)甲、乙、丙各投篮一次,求甲和乙命中,丙不中的概率;(3)甲、乙、丙各投篮一次,求恰有一人命中的概率.【答案】(1)0.5(2)0.21(3)0.29【解析】【分析】(1)首先设甲,乙,丙投篮命中分别为事件,,A B C ,根据独立事件概率公式,即可求解;(2)根据(1)的结果,根据公式()()()()P ABC P A P B P C =,即可求解;(3)首先表示3人中恰有1人命中的事件,再根据概率的运算公式,即可求解.【小问1详解】设甲投篮命中为事件A ,乙投篮命中为事件B ,丙投篮命中为事件C ,由题意可知,()0.6P A =,()0.3P B =,()()()0.35P BC P B P C ==,则()()10.7P B P B =-=,()0.350.50.7P C ==,所以丙投篮命中的概率为0.5;【小问2详解】甲和乙命中,丙不中为事件D ,则()P D =()()()()0.60.70.50.21P ABC P A P B P C ==⨯⨯=,所以甲和乙命中,丙不中的概率为0.21;【小问3详解】甲、乙、丙各投篮一次,求恰有一人命中为事件E ,则()()P E P ABC ABC ABC =++,()()()()()()()()()P A P B P C P A P B P C P A P B P C =++0.60.30.50.40.70.50.40.30.5=⨯⨯+⨯⨯+⨯⨯0.29=18.已知函数()322x mf x x -=+的图像过点()1,1.(1)求实数m 的值;(2)判断()f x 在区间(),1-∞-上的单调性,并用定义证明;【答案】(1)1m =-(2)()f x 在区间(),1-∞-上单调递增,证明见解析【解析】【分析】(1)将()1,1代入解析式,得到m 的值;(2)利用定义法证明函数单调性步骤:取值,作差,判号,下结论.【小问1详解】将点()1,1代入函数()322x m f x x -=+中,可得3122m-=+,解得1m =-.【小问2详解】单调递增,证明如下.由(1)可得()()()3123131222121x x f x x x x +-+===-+++,任取()12,1x x <∈-∞-,则()()121231312121f x f x x x ⎛⎫⎛⎫-=---⎪ ⎪++⎝⎭⎝⎭()()122112111111x x x x x x -=-=++++,因为()12,1x x <∈-∞-,则120x x -<,110x +<,210x +<,即()()12110x x ++>,所以()()1212011x x x x -<++,即()()12f x f x <,所以()f x 在区间(),1-∞-上单调递增.19.甲、乙两个篮球队在4次不同比赛中的得分情况如下:甲队88919396乙队89949792(1)在4次比赛中,求甲队的平均得分;(2)分别从甲、乙两队的4次比赛得分中各随机选取1次,求这2个比赛得分之差的绝对值为1的概率;(3)甲,乙两队得分数据的方差分别记为21S ,22S ,试判断21S 与22S 的大小(结论不要求证明)【答案】(1)92(2)516(3)2212S S =【解析】【分析】(1)根据平均数公式,即可求解;(2)利用列举样本空间的方法,结合古典概型概率公式,即可求解;(3)结合方差的定义和公式,即可判断.【小问1详解】设甲队的平均分为1x ,则188919396924x +++==所以甲队的平均分为92;【小问2详解】分别从甲、乙两队的4次比赛得分中各随机选取1次,有()()()()88,89,88,94,88,97,88,92,()()()()91,89,91,94,91,97,91,92,()()()()93,89,93,94,93,97,93,92,()()()()96,89,96,94,96,97,96,92,共包含16个基本事件,这2个比赛得分之差的绝对值为1包含()()()()()88,89,91,92,93,94,93,92,96,97,共5个基本事件,所以这2个比赛得分之差的绝对值为1的概率516P =;【小问3详解】乙队的平均分为289949792934x +++==,则()()()()22222188929192939296928.54S -+-+-+-==,()()()()22222289939493979392938.54S -+-+-+-==2212S S =20.已知函数()e e x xf x a -=+,其中e 为自然对数的底数,R a ∈.(1)若0是函数()f x 的一个零点,求a 的值并判断函数()f x 的奇偶性;(2)若函数()f x 同时满足以下两个条件,求a 的取值范围.条件①:x ∀∈R ,都有()0f x >;条件②:[]01,1x ∃∈-,使得()04f x ≤.【答案】20.1a =-;奇函数.21.[]0,4【解析】【分析】(1)由()00f =可求出1a =-;再由奇偶函数的定义即可判断;(2)条件①,x ∀∈R ,都有()0f x >,即2e x a -<在R 上恒成立,由2e 0x >,即可求出a 的取值范围,条件②,[]01,1x ∃∈-,使得()04f x ≤,即()0024e e x x a ≤-,令0e x t =,由二次函数的性质即可得出答案,综合两个条件①②可得出a 的取值范围.【小问1详解】因为0是函数()f x 的一个零点,所以()000e e 10f a a =+=+=,解得:1a =-,所以()e e x x f x -=-,因为()f x 的定义域为R ,()()ee x xf x f x --=-=-,所以()f x 为奇函数.【小问2详解】条件①:x ∀∈R ,都有()0f x >,即e e 0x x a -+>,所以()2e 0e x x a+>,即()2e 0x a +>,则2e x a -<在R 上恒成立,因为2e 0x >,所以0a -≤,则0a ≥.故a 的取值范围为[)0,∞+.条件②:[]01,1x ∃∈-,使得()04f x ≤,即00e e 4x x a -+≤,即()002e 4e 0x x a -+≤,即()0024e e x x a ≤-,令0e x t =,[]01,1x ∈-,则1,e e t ⎡⎤∈⎢⎥⎣⎦,令()()22424g t t t t =-=--+,1,e et ⎡⎤∈⎢⎥⎣⎦,当2t =时,()()max 24g t g ==,所以4a ≤.若函数()f x 同时满足两个条件①②可得:故a 的取值范围为[]0,4.。
高一第一学期期末考试试卷
考试时间:120分钟;
学校:___________姓名:___________班级:___________考号:___________
注息事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.
3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·
4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R ,集合{}{}0107|,73|2<+-=<≤=x x x B x x A ,则)(B A C R ⋂=
( ) A .()),5(3,+∞⋃∞-
B .()),5[3,+∞⋃∞-
C .),5[]3,(+∞⋃-∞
D .),5(]3,(+∞⋃-∞ 2.3a a a ⋅⋅的分数指数幂表示为 ( )
A .23
a B . a 3 C .43
a D .都不对
3.下列指数式与对数式互化不正确的一组是( )
A. 01ln 10==与e
B. 3121log 218
8)31(-==-与 C. 3929log 21
3==与 D. 7717log 17==与
4.下列函数()f x 中,满足“对任意的12,(,0)x x ∈-∞,当12x x <时,总有12()()f x f x >”的是
A .2
()(1)f x x =+ B .()ln(1)f x x =- C .1()f x x
= D .()x f x e = 5.已知函数)(x f y =是奇函数,当0>x 时,,lg )(x x f =则))1001((f f 的值等于( ) A .2lg 1 2lg 1.-B C .2lg D .-2lg
6.对于任意的0>a 且1≠a ,函数()31+=-x a x f 的图象必经过点 ( )
A. ()2,5
B. ()5,2
C. ()1,4
D. ()4,1
7.设a =0.7log 0.8,b = 1.1log 0.9,c =0.91.1,那么( )
A .a<b<c
B .b<a<c
C .a<c<b
D .c<a<b 8.下列函数中哪个是幂函数
( )
A .31-⎪⎭⎫ ⎝⎛=x y
B .22-⎪⎭
⎫ ⎝⎛=x y C .32-=x y D .()32--=x y 9. 函数|lg(1)|y x =-的图象是 ( )
10.已知函数223y x x =--+在区间] ,[2a 上的最大值为4
33, 则a 等于( ) A . -23 B . 21 C . -21 D . -21或-23 11..函数x
e x
f x 1)(-=的零点所在的区间是( ) A.)21,0( B.)1,21( C.)2
3,1( D.)2,23( 12.在一个倒置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是 ( )
第Ⅱ卷
本卷包括必考题和选考题两部分。
第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。
二.填空题:本大题共4小题,每小题5分。
13.已知()21f x +定义域为[2,3],则()1y f x =+的定义域是 14.函数(5)||y x x =--的递增区间是 .
15.已知22)1(++=-x x x f ,则()f x =
16.一个正三棱柱的三视图如右图所示,则该三棱柱的侧面积...
是 2cm .
三、解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.
(1)当a =-4时,分别求A ∩B 和A ∪B ;
(2)若(∁R A)∩B =B ,求实数a 的取值范围.
18.(本小题满分12分) 已知()x
x x f -+=11log 2
. (Ⅰ)求)(x f 的定义域;
(Ⅱ)判断)(x f 的奇偶性;
(Ⅲ)求使0)(>x f 的x 的取值范围。
19.(本小题满分12分)二次函数)(x f 满足x x f x f 2)()1(=-+,且1)0(=f .
(1)求)(x f 的解析式;
(2)若不等式()2f x x m >+在区间[]1,1-上恒成立,求实数m 的取值范围. 20.(本小题满分12分)某公司为了实现2011年1000万元的利润的目标,准备制定一个激励销售人员的奖励方案:销售利润达到10万元时,按销售利润进行奖励,且奖金数额y (单位:万元)随销售利润x (单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过利润的25%,现有二个奖励模型:10.0025,ln 12
y x y x ==+,问其中是否有模型能完全符合公司的要求?说明理由。
(解题提示:公司要求的模型只需满足:当
[10,1000]x ∈时,①函数为增函数;②函数的最大值不超过5;参考数据:82.71828,2981e e =≈)
21.(本题满分12分)
已知函数)(x f =1-2a x - a 2x (a > 1 )
(1)求函数)(x f 值域
(2)若∈x [-2,1]时,函数)(x f 最小值为 -7 ,求a 值,并求出函数的最大值。
请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号。
22.
(本小题满分10分)已知全集U R =,集合{|14}A x x =≤<,{|315}B x x x =-<+, 求:(Ⅰ)A B ; (Ⅱ)()U C A B ;
23.(本小题满分10分)
已知函数⎪⎩⎪⎨⎧<-=>-=.0 ,21,0 ,2,0 ,4)(2x x x x x x f
(Ⅰ)求)]2([-f f 的值;
(Ⅱ)求
)1(2+a f (a R ∈)的值; (Ⅲ)当34<≤-x 时,求函数)(x f 的值域。
24.(本小题满分10分)已知函数()f x 在定义域()0,+∞上为增函数,且满足)()()(y f x f xy f +=, 1)3(=f .
(Ⅰ) 求()()9,27f f 的值;
(Ⅱ) 解不等式()()82f x f x +-<.。