北京市顺义区2012届九年级上学期期末考试数学试卷
- 格式:doc
- 大小:335.00 KB
- 文档页数:12
GEB A2.顺义区2012届初三第一次统一练习数学试卷考生须知1.本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、某某和某某号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.-3的相反数是A .3B .-3C .3±D .132.中国人民银行决定,从2012年2月24日.本次下调后,央行一次性释放约4000亿元人民币的资金.请把4000亿元用科学记数法表示应为A .110.410⨯元B .11410⨯元C .114010⨯元D .12410⨯元 3.下列图形中,是中心对称图形而不是轴对称图形的是A .等边三角形B .矩形C .菱形D .平行四边形 4.下列运算正确的是A .22423a a a +=B .2242a a a-=C .22422a a a =D .2222a a a ÷=5.某个公司有15名工作人员,他们的月工资情况如下表.则该公司所有工作人员的月工资的平均数、中位数和众数分别是A .520,2 000,2 000B .2 600, 800,800C .1 240,2 000,800D .1 240,800,800职务 经理 副经理 职员 人数 1 2 12 月工资(元)50002000800EDBCA6.如图,AB ∥CD ,点E 在AB 上,点F 在CD 上,且90FEG ∠=︒,55EFD ∠=︒,则AEG ∠的度数是A .25°B .35°C .45°D .55 °7.一个不透明的口袋里有4X 形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两X 卡片,分别写有数字2,3,现随机从口袋里取出一X 卡片,求这X 卡片与口袋外的两X 卡片上的数能构成三角形的概率是 A .14B .12C .34D .1 8.如图,在Rt △ABC 中,90ACB ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且30CDE ∠=︒.设AD=x ,BE=y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9.若2(2)0m n m ++-=,则m n -的值是 .10.分解因式:3225105x x y xy -+= .11.如图,用测角仪测得校园的旗杆顶点A 的仰角45α=︒,仪器高1.4CD =米,测角仪底部中心位置D 到旗杆根部B 的距离10BD =米,则旗杆AB 的高是米.12.如图,菱形ABCD 中,AB =2 ,∠C =60°,我们把菱形ABCD 的对称中心称作菱形的中心.菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O 所经过的路径长为;经过18次这样的操作菱形中心O 所经过的路B CαDCBA径总长为;经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长为.(结果都保留π)三、解答题(本题共30分,每小题5分) 13.计算:()10272cos30(3)3--︒+--.14.解方程组:2,2 1.x y x y +=⎧⎨-=⎩15.已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .16.已知2012x =,求代数式6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的值.17.如图,在平面直角坐标系xOy 中,反比例函数4y x=(0x >)的图象与一次函数y x b =-+的图象的一个交点为(4,)A m .(1)求一次函数的解析式;(2)设一次函数y x b =-+的图象与y 轴交于点B ,P 为一次函数y x b =-+的图象上一点,若OBP △的面积为5,求点P 的坐标.18.列方程或方程组解应用题:在城区改造项目中,区政府对某旧小区进行节能窗户改造.该小区拥有相同数量的A 、B 两种户型.已知所有A 户型窗户改造的总费用为54万元,所有B 户型窗户改造的总费用为48万元,且B 户型窗户的每户改造费用比A 户型窗户的每户改造费用便宜500元.问A 、B 两种户型的每户窗户改造费用各为多少元?ED CBA四、解答题(本题共20分,每小题5分)19.如图,在□ABCD 中,E 是对角线AC 的中点,EF ⊥AD于F ,∠B=60°,AB=4,∠ACB=45°,求DF 的长.20.如图,C 是⊙O 的直径AB 延长线上一点,点D 在⊙O 上,且∠A=30°,∠BDC =12ABD . (1)求证:CD 是⊙O 的切线;(2)若OF ∥AD 分别交BD 、CD 于E 、F ,BD =2,求OE 及CF 的长.21.某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格、条形统计图和扇形统计图(不完整),请你根据图表信息完成下列各题:(1)此次共调查了多少名学生? (2)请将表格填充完整;(3)请将条形统计图和扇形统计图补充完整.到校方式条形统计图 到校方式扇形统计图步行 骑自行车坐公共汽车其他 20F EDCBAFE DCO BA22.问题背景(1)如图1,△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点D 作DF ∥AC 交BC 于点F .请按图示数据填空:四边形DFCE 的面积S =, △DBF 的面积1S =, △ADE 的面积2S =. 探究发现(2)在(1)中,若BF a =,FC b =,D G与BC 间的距离为h .直接写出2S =(用含S 、1S 的代数式表示). 拓展迁移(3)如图2,□DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为4、8、1,试利用..(2.)中的结论....求□DEFG 的面积,直接写出结果.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程032)1(2=+++-k kx x k .(1)若方程有两个不相等的实数根,求k 的取值X 围;(2)当方程有两个相等的实数根时,求关于y 的方程2(4)10y a k y a +-++=的整数根(a 为正整数).24.如图,在平面直角坐标系xOy 中,抛物线y =mx 2+2mx +n 经过点A(-4,0)和点B (0,3). (1)求抛物线的解析式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点B ,求平移后抛物线的解析式; (3)在(2)的条件下,记平移后点A 的对应点为A’,点B 的对应点为B’,试问:在平移后的抛物线上是否存在一点P ,使'OA P △的面积与四边形AA ’B ’B 的面积相等,若存在,求出点P 的坐标;若不存在,说明理由.25.问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为,点E 落在,容易得出BE 与DE 之间的数量关系为;(2)当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.DB CAABC (D )图3图22.顺义区2012届初三第一次统一练习数学学科参考答案及评分细则一、选择题(本题共32分,每小题4分)图1D EBCA答 案 A B D C D B C C二、填空题(本题共16分,每小题4分,) 9.4; 10.25()x x y -; 11.11.4; 12.33π, (432)π+, 2313n π+. 三、解答题(本题共30分,每小题5分) 13.解:()1272cos30(3)3--︒+--31332123⎛⎫=-⨯+-- ⎪⎝⎭……………………………………………… 4分 133313=-++4233=+……………………………………………………………………5分14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分把1x =代入①,得12y +=.1y =. ………………………………………………………… 4分∴原方程组的解为 1,1.x y =⎧⎨=⎩………………………………………………… 5分 15.证明:∵AB=AC ,∴B C ∠=∠.…………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACE .……………………………………………………… 3分 ∴AD=AE . ……………………………………………………………… 4分∴∠ADE =∠AED . ……………………………………………………… 5分16.解:6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭2693x x x x x -+-=÷…………………………………………………… 2分2(3)3x x x x -=-3x =-……………………………………………………………………… 4分当2012x =时,原式=201232009-=.…………………………………… 5分17.解:(1)∵点(4,)A m 在反比例函数4y x=(0x >)的图象上, ∴414m ==. …………………………………………………………… 1分 ∴(4,1)A .将(4,1)A 代入一次函数y x b =-+中,得 5b =.∴一次函数的解析式为5y x =-+. …………………………………… 2分(2)由题意,得 (0,5)B , ∴5OB =.设P 点的横坐标为P x .∵OBP △的面积为5, ∴1552p x ⨯=.…………………………………………………………… 3分 ∴2P x =±.∴点P 的坐标为(2,3)或(-2,7).………………………………… 5分 18.解:设A 户型的每户窗户改造费用为x 元,则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 1分 根据题意,列方程得 5400004800005x x =-. 解得 4500x =.MF EDCBAFE DCO BA经检验,4500x =是原方程的解,且符合题意.……………………………4分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.……………………………………5分四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 6023CM CD D ==︒=cos 4cos602DM CD D ==︒=.………………………………… 2分在Rt △ACM 中,∵∠MAC=45°, ∴AMCM ==∴2AD AM DM =+=.…………………………………… 3分 ∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM . ∴12EF CM ==在Rt △AEF 中,AF EF ==4分∴22DF AD AF =-=-=.………………………5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°. ∴∠BDC =1302ABD ∠=︒. ∵OD=OB ,∴△ODB 是等边三角形. ∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分 ∴112DE BE BD ===. 在Rt △OEB 中,OB=2BE=2,223OE OB BE =-=.………… 4分 ∵OD=OB=2,∠C=∠ABD-∠BDC =30°,∠DOF=30°, ∴23CD =,2tan 3033DF OD =︒=. ∴24233333CF CD DF =-=-=. ……………………………5分 21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S =6,△DBF 的面积1S =6,步行 骑自行车 坐公共汽车其他 204530511 / 13△ADE 的面积2S =32. …………………………………… 3分(2)2S =214S S (用含S 、1S 的代数式表示). ………… 4分 (3)□DEFG 的面积为12.………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+……………………………………………………………… 1分 ∵方程有两个不相等的实数根, ∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值X 围是32k <且1k ≠. …………………………………… 3分 (2)当方程有两个相等的实数根时,△=812k -+=0. ∴32k =. ………………………………………………………………… 4分 ∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q =(p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=. 不妨设8,8.a m p a m q -+=⎧⎨--=⎩ 两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.12 / 13当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分 当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩∴3,8 3.m n ⎧=-⎪⎨⎪=⎩. ∴抛物线的解析式为:233384y x x =--+.………………………… 2分 (2)令3y =,得2333384x x --+=,得10x =,22x =-, ∵抛物线向右平移后仍经过点B , ∴抛物线向右平移2个单位.……… 3分∵233384y x x =--+ 233(21)388x x =-++++2327(1)88x =-++. ………… 4分 ∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236AA OB ==⨯=. 设P 点的纵坐标为P y ,由'OA P △的面积=6, ∴1'62P OA y =,即1262P y ⨯= ∴6P y =, 6P y =±.………………………………………………… 6分当6P y =时,方程2327(1)688x --+=无实根, 当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-. ∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数EABC (D )图213 / 13为 60°,点E 落在AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:BE DE =.证明:取AB 的中点F ,连结EF .∵90ACB ∠=︒,30ABC ∠=︒, ∴160∠=︒,12CF AF AB ==. ∴△ACF 是等边三角形. ∴AC AF =. ①…… 4分 ∵△ADE 是等边三角形, ∴260∠=︒,AD AE =. ②∴12∠=∠.∴12BAD BAD ∠+∠=∠+∠.即CAD FAE ∠=∠.③………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90ACD AFE ∠=∠=︒. ∵F 是AB 的中点, ∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴BE DE =. …………………………………………………… 8分21FEDB CA图3。
顺义区2012---2013学年度第一学期九年级期末教学检测数学试卷一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的,请你把正确答案前的字母填写在相应的括号中.1.如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是 ( ) A .2cmB .4cmC .6cmD .8cm2.若两个相似三角形的周长之比为1∶4,则它们的面积之比为( ) A .1∶2 B .1∶4 C .1∶8 D .1∶16 3.反比例函数2ky x-=的图象,当0x >时,y 随x 的增大而减小,则k 的取值范围是(). A.2k < B. k ≤2 C.2k > D. k ≥24.在平面直角坐标系xOy 中,将抛物线22y x = 先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为 ( )A.2=2(-1)-3y x B.2=2(-1)+3y x C.2=2(+1)-3y x D.2=2(+1)+3y x5.如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E ,则下列结论中不成立...的是 ( ) A.A D ∠=∠ B.CE DE = C.90ACB ∠= D.CE BD = 6.如图,PA 、PB 是O 的切线,切点分别为A 、B ,C 为O 上一点,若50P ∠=︒, 则ACB ∠=( )A .40︒B .50︒C .65︒D .130︒7.双曲线1y 、2y 在第一象限的图象如图所示,已知14y x=,过1y 上的任意一点A ,作x 轴的平行线交2y 于B ,交y 轴于C ,若1AOB S =△,则2y 的解析式是( )A .22y x =B . 23y x = C .25y x = D . 26y x=8.如图,等腰Rt ABC ∆(90ACB ∠=︒)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让ABC ∆沿这条直线向右BCOPBA平移,直到点A 与点E 重合为止.设CD 的长为x ,ABC ∆与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )二、填空题 (本题共16分,每小题4分)9.若某人沿坡角是30︒的斜坡前进20m ,则他所在的位置比原来的位置升高 m. 10.在Rt ABC ∆中,90C ∠=︒,3sin 5A =,则tan B = . 11.若80︒的圆心角所对的弧长是83πcm ,则该圆的半径为 cm .12. 如图所示,ABC ∆的三个顶点的坐标分别为A (4,3)、 B (-2,1)、C (0,-1),则ABC ∆外接圆的圆心坐标是 ;ABC ∆外接圆的半径为 . 三、解答题 (共72分) 13.(5分) 如图,在ABC △中,D 是AB 边上一点,连结CD ,BCD A ∠=∠,2BD =,6AB =,求BC 的长.14.(5分)一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31°的方向上,沿河岸向北前行40米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:3tan315︒≈)D C BA15.(5分)如图,一次函数图象与x 轴相交于点B ,与反比例函数图象相交于点(16)A -,,AOB △的面积为6.求一次函数和反比例函数的解析式.16.(5分) 已知:如图,在ABC ∆中 ,120A ∠=︒ ,4AB = ,2AC =,求边BC 的长.17. (5分)如图,在ABC ∆中,12AB =,10AC BC ==,点D 、E 分别在边AB 、AC 上,且CDE A ∠=∠,设BD x =,CE y = . 求y 与x 的函数关系式;18.(5分)已知:如图,AB 是O ⊙的直径,弦CD AB ⊥,垂足为E ,60AOC ∠=︒,2AC =.(1)求弦CD 的长; (2)求图中阴影部分的面积.19.(5分)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少时,才能使每天所获销售利润最大?最大利润是多少?DE CACBA20.(5分)如图,⊙O 中,弦AB CD 、相交于AB 的中点E ,连接AD 并延长至点F ,DF AD =,连接BC 、BF .(1)求证:CBE AFB △∽△; (2)当58BE FB =时,求CBAD的值.21.(5分)在ABC ∆中,6AB =cm ,12AC =cm ,动点D 以1cm/s 的速度从点A 出发到点B 止,动点E 以2cm/s 的速度从点C 出发到点A 止,且两点同时运动,当以点A 、D 、E 为顶点的三角形与ABC ∆相似时,求运动的时间t .22.(5分)如图,ABC △是等腰三角形,AB AC =,以AC 为直径的O 与BC 交于点D ,DE AB ⊥,垂足为E ,ED 的延长线与AC 的延长线交于点F . (1)求证:DE 是O 的切线;(2)若O 的半径为2,1BE =,求cos A 的值.23.(7分)已知关于x 的方程2(31)220mx m x m --+-= (1)求证:无论m 取任何实数时,方程恒有实数根;(2)若关于x 的二次函数2(31)22y mx m x m =--+-的图象与x 轴两交点间的距离为2时,求抛物线的解析式.FBE24.(7分)如图,O 的直径AB 为10cm ,弦AC 为6cm ,ACB ∠的平分线交AB 于E ,交O 于D .求弦AD CD ,的长及CEDE的值.25.(8分)已知:如图,抛物线22y ax ax c =-+ (0a ≠)与y 轴交于点C ( 0 ,4) ,与x 轴交于点A ,B ,点A 的坐标为( 4 ,0). (1) 求该抛物线的解析式;(2) 点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ . 当CQE ∆的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2 ,0). 问: 是否存在这样的直线l ,使得ODF ∆是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.顺义区2012---2013学年度第一学期九年级期末教学检测数学试题参考答案及评分参考二、填空题 9. 10; 10.43;11. 6 ; 12. (1 ,2); 三、解答题13. 解:在ABC △和CBD △中, ∵ BCD A ∠=∠ ,B B ∠=∠, ∴ ABC CBD △∽△ ------------------3分 ∴AB BCBC BD = ------------------------4分即22612BC BDAB ==⨯=·. ∴.BC = -----------------------5分14. 解:过点C 作CD AB ⊥于D ,-----------------1分由题意31DAC ∠=︒,45DBC ∠=︒,设CD BD x ==米,则(40)AD AB BD x =+=+米,--2分 在Rt ACD △中,tan DAC ∠=ADCD,----------------3分 则5340=+x x ,解得x = 60(米).------------------4分 答:这条河的宽度是60米. ------------------------5分 15. 解:设反比例函数为1k y x=点(16)A -,在反比例函数图象上, ∴161k -=,即16k =- ∴反比例函数的解析式为6y x =-----------2分1662AOB S OB ==△··,∴2DB =∴点B 的坐标为(20)-,. --------------------3分 设一次函数的解析式为2y k x b =+,D CBA点(16)(20)A B --,,,在函数图象上,∴22620k b k b +=-⎧⎨-+=⎩ --------------------------4分解得224k b =-⎧⎨=-⎩∴一次函数解析式为24y x =--.------------5分 16.解: 过点C 作CD BA ⊥,垂足为D ----------------1分∵120A ∠=︒∴60DAC ∠=︒ --------------------------------------------2分 在Rt ACD ∆中cos 2cos601AD AC DAC =⋅∠=⨯︒=s i n 2s i n 63C D A C D A C =⋅∠=⨯------------------------------------------------4分 ∴415BD AB AD =+=+= 在Rt BCD ∆中2BD ====分17.解: ∵AC BC =∴ A B ∠=∠----------------------------------------------------1分∵BDE CDE BDC A AED ∠=∠+∠=∠+∠CDE A ∠=∠∴AED BDC ∠=∠ ------------------------------------------2分 ∴ADE ∆∽BCD ∆ ------------------------------------------3分∴AE ADBD BC = -------------------------------------------------4分 ∴ 101210y xx --= ∴21610105y x x =-+ -------------------------------------5分 18.解:(1)∵AB 是O ⊙的直径,弦CD AB ⊥ ∴12CE DE CD ===分9060CEO AOC ∠=︒∠=︒,∴2s i n 60CEOC ===︒ -----------2分 又∵ OA OC =∴AOC ∆是等边三角形CD BADE CBA∴2AC = ---------------------------3分 (2)∵11422ABC S AB CE ==⨯△·------4分 ∴21π22π2S =⨯-=阴影 ----------5分19.解:设销售单价定为x 元(0x ≥1),每天所获利润为y 元.----------------1分 则[]10010(10)(8)y x x =---· --------------------------------------3分2102801600x x =-+-210(14)360x =--+ -----------------------------------------------4分所以将销售定价定为14元时每天所获销售利润最大,且最大利润是360元.--------5分 20.(1)证明:,,AE EB AD DF ==ED ∴是ABF △的中位线,ED ∴,BF ∥ ------------------------------------1分,CEB ABF ∴∠=∠又,C A ∠=∠,CBE AFB ∴△∽△ ----------------------------------3分(2)解:由(1)知, C B EA FB △∽△,5.8C B B E A F F B ∴== ------------------------------------------4分又2,AF AD =54CB AD ∴= ---------------------------------------------------5分21.解:当动点D 、E 同时运动时间为t 时, 则有AD t =,2CE t = ,122AE t =-. (1)当ADE B ∠=∠时,有 AD AEAB AC=,即122612t t -=,FB∴ 3t = ------------------------------------------------------------------3分 (2)当 ADE C ∠=∠时有AD AE AC AB =,即122126t t-= ∴ 4.8t = --------------------------------------------------------------5分∴当点D 、E 同时运动3s 和4.8s 时,以点A 、D 、E 为顶点的三角形与ABC ∆相似 22.(1)证明:连接AD 、OD . ∵AC 是直径,∴AD BC ⊥.--------------------------------------------1分 ∵AB AC =,∴D 是BC 的中点. 又∵O 是AC 的中点,∴OD AB ∥.---------------------------------------------2分 ∵DE AB ⊥, ∴OD DE ⊥.∴DE 是O 的切线.-----------------------------------3分 (2)由(1)知OD AE ∥,∴FO ODFA AE =, ----------------------------------------4分 ∴FC OC ODFC AC AB BE +=+-,∴22441FC FC +=+-.解得2FC =. ∴6AF =∴411cos 62AE AB BE A AF AF --====.----------5分 23. 解:(1)分两种情况讨论.1︒当0m =时,方程为x 20-= 2∴= 方程有实数根 --------------------------------1分2︒当0m ≠,则一元二次方程的根的判别式()()2222314229618821m m m m m m m m m ∆=----=-+-+=++⎡⎤⎣⎦=()21m +≥0不论m 为何实数,∆≥0成立,∴方程恒有实数根综合1︒、2︒,可知m 取任何实数,方程()231220mx m x m --+-=恒有实数根-------------------------------------------------3分 (2)设12x x ,为抛物线()23122y mx m x m =--+-与x 轴交点的横坐标.则有 12x = ,21m x m-=-------------------------------------------------------------------4分BE∴ 抛物线与x 轴交点的坐标为(2 ,0)、(1m m- ,0) ∵ 抛物线与x 轴两交点间的距离为2∴10m m -= 或14m m-= -------------------------------------------------------------------- 5分 ∴1m =或13m =-, --------------------------------------------------------------------6分 ∴所求抛物线的解析式为22182233y x x y x x =-=-+-或 ---------------------------------------------------7分24. 解:连结BDAB 是直径,90ACB ∴∠=.在Rt ABC △中,8BC ==(cm ).--------------------1分 CD 平分ACB ∠,AD BD ∴=,AD BD =.-------------------------2分在Rt ABD △中,AD BD AB ===cm ).------------------3分 方法一过A 作AM CD ⊥于M在Rt ACM △中,cos 456AM CM AC ==⋅︒==分在Rt ADM △中 ,DM =分∴CD CM DM =+=cm ) -----------------------------------------------6分 ∵45EAD ACD ∠=∠=︒ ,ADE CDA ∠=∠ ∴ADE ∆∽CDA ∆ ∴AD DECD AD=∴2AD DE CD ===∴7CE CD DE =-= ∴ 2425CE DE = ------------------------------------------------7分 方法二过E 作EF AC ⊥于F ,EG BC ⊥于G ,F G ,是垂足,则四边形CFEG 是正方形. 设EF EG x ==,由三角形的面积公式,得111222AC x BC x AC BC +=, 即1116868222x x ⨯+⨯=⨯⨯,解得247x =. 7CE ∴==. -------------------------4分 由ADE CBE △∽△,得DE AE AD BE CEBC ==,即7DE BE == 解得307AE =,30401077BE AB AE =-=-=,∴DE =----------------------------------5分∴CD CE DE =+==cm ).------------------6分2425CE DE = -------------------------------------------7分25. 解:(1)∵抛物线22y ax ax c =-+(0a ≠)与y 轴交于点C ( 0 ,4),与x 轴交于点A ( 4 ,0)∴41680c a a c =⎧⎨-+=⎩ 解得 124a c ⎧=-⎪⎨⎪=⎩ ∴该抛物线的解析式为2142y x x =-++ --------------------------------------------------2分 (2) 令0y =,则21402x x -++= ,解得,12x =-, 24x = ∴(2,0)B - ∴ 6AB =,AC =BC =设AQ x =,CQE ∆的面积用y 表示, 方法一 ∵ QE ∥ACBB∴CE BE AQ BQ = , 即 CE x =∴CE =----------------------------------------------------------------------------3分 过点Q 作QM BC ⊥,垂足为M在Rt BOC ∆中,sin5OC B BC ∠===在Rt BMQ ∆中 sin (6)QM BQ B x =⋅∠=-=----------------------4分∴ 2211111(6)2(3)322333y CE QM x x x x x =⋅==-=-+=--+ ∴ 当3x =时,CQE ∆的面积最大是3,即点Q 的坐标为(1 ,0)----------------------5分 解法二1122ABC S AB OC ∆=⋅= , 122AQC S AQ OC x ∆=⋅= 过点E 作EN AB ⊥,垂足为N ,则EN ∥CO ∴EN BECO BC = ------------------------------------------3分 ∵QE ∥AC∴66BE BQ xBC BA -== ∴EN BQ CO BA = 即646EN x-= ∴ 2(6)3EN x =----------------------------------------4分∴ 211(6)23BQE S BQ EN x ∆=⋅=-∴ 2211122(6)(3)333ABC AQC BQE y S S S x x x ∆∆∆=--=---=--+∴ 当3x =时,CQE ∆的面积最大是3,即点Q 的坐标为(1 ,0)----------------------5分 (3)① 当OD 为底边时,点F 的横坐标是1,又点F 在直线AC 上,直线AC 的解析式为4y x =-+,所以,点F 的坐标是(1,3),所以点P 的纵坐标为3,,代入2142y x x =-++,得点P 的坐标为(13)或(13)----------------------------------6分②当OD 为腰,D ∠为顶角时,此时点F 是以点D 为圆心,2OD =为半径的圆与直线AC 的交点,有两个点,点F (4,0)与点A 重合,舍去,点F (2,2),所以点P 的纵坐标为2,,代入2142y x x =-++,得点P 的坐标为(12)或(12)-------7分 ③当OD 为腰,O ∠为顶角时,此时点F 应是以点O 为圆心,2OD =为半径的圆与直线AC 的交点,但是点O 到AC 的距离为2>,所以不存在满足条件的点F .---------8分。
2012-2013学年度北师大版九年级数学上册期末试卷(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2012-2013学年度北师大版九年级数学上册期末试卷(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2012-2013学年度北师大版九年级数学上册期末试卷(推荐完整)的全部内容。
2012—2013学年度北师大版九年级数学上册期末试卷(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 2012-2013学年度北师大版九年级数学上册期末试卷(推荐完整)这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈2012-2013学年度北师大版九年级数学上册期末试卷(推荐完整)〉这篇文档的全部内容.2012—2013学年九年级(上)期末试卷一、选择题(10小题,每题3分,共30分)。
1、下列三角形中,是正三角形的为( )①有一个角是60°的等腰三角形; ②有两个角是60°的三角形; ③底边与腰相等的等腰三角形; ④三边相等的三角形. A .①④B .②③C .③④D .①②③④2、如图1,在Rt △ACB 中,∠C=90°,BE 平分∠CBA 交AC 于点E ,过E 作ED ⊥AB 于D 点,当∠A=_____时,ED 恰为AB 的中垂线( )A .10°B .15°C .30°D .45°3、如图2,在平行四边形ABCD 中(AB >BC ),点E 、F 分别在AB 、CD 上移动,且AE=CF,则四边形BFDE 的形状不可能是( ) A .矩形B .菱形C .平行四边形D .梯形4、如图3,反比例函数y= xk(k >0)在第一象限内的图象如图,点M 是图象上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( )A 、1B 、2C 、3D 、25、如图4,▱ABCD 的周长为16cm ,AC 与BD 相交于点O,OE⊥AC 交AD 于E ,则△DCE 的周长为( )A .4cmB .6cmC .8cmD .10cm6、下列三角形中,是正三角形的为( )①有一个角是60°的等腰三角形; ②有两个角是60°的三角形; ③底边与腰相等的等腰三角形; ④三边相等的三角形. A .①④B .②③C .③④D .①②③④7、下列四个命题中,假命题的是( )A .有三个角是直角的四边形是矩形B .对角线互相垂直平分且相等的四边形是正方形C .四条边都相等的四边形是菱形 D .顺次连接一个四边形各边中点,得到一个菱形,那么这个四边形是等腰梯形8、电影院呈阶梯或下坡形状的主要原因是( ) A .为了美观B .减小盲区C .增大盲区D .盲区不变9、面积为20平方厘米的矩形,其长宽分别为x 厘米和y 厘米,则y 与x 之间的函数关系式的图象为( )A .B .C .D .10、x 1,x 2是方程2x 2—4x+1=0的两根,则x 1+x 2=( ) A .2B .—2C 、21D 、31二、填空题(6小题,每题4分,共24分)11、请写出一个根为x=1,另一根满足-1<x <1的一元二次方程_____。
北京市顺义区2018届初三上学期期末考试数学试卷一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是A. aB. bC.cD. d2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为A.513B.1213C.512D.1253.右图是百度地图中截取的一部分,图中比例尺为1:60000,则卧龙公园到顺义地铁站的实际距离约为(注:比例尺等于图上距离与实际距离的比)A.1.5公里 B.1.8公里C.15公里 D.18公里4.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位A)与电阻R(单位Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为A.3IR=B.IR=-6C .3I R=- D .I R=65.二次函数的部分图象如图所示,对称轴是1x =-, 则这个二次函数的表达式为A. 223y x x =-++B. 223y x x =++C. 223y x x =-+-D. 223y x x =--+6. 如图,已知⊙O 的半径为6,弦AB 的长为8, 则圆心O 到AB 的距离为A .5B .25C .27D .107.已知△ABC ,D ,E 分别在AB ,AC 边上,且DE ∥BC , AD=2,DB=3,△ADE 面积是4,则四边形DBCE 的面积 是A .6B .9C .21D .258.如图1,点P 从△ABC 的顶点A 出发,沿A-B-C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度与运动时间的函数关系如图2所示,其中D 为曲线部分的最低点,则△ABC 的面积是A .10B .12C .20D .24二、填空题(共8道小题,每小题2分,共16分) 9.分解因式:22a b ab b -+= .10.如图,利用成直角的墙角(墙足够长),用10m 长的栅栏围成y x一个矩形的小花园,花园的面积S (m 2)与它一边长a (m )的 函数关系式是 ,面积S 的最大值是 .11.已知∠α,∠β如图所示,则tan ∠α与tan ∠β的大小关系是 .12.如图标记了 △ABC 与△DEF 边、角的一些数据,如果再添加一个条件使△ABC ∽△DEF , 那么这个条件可以是 .(只填一个即可)13.已知矩形ABCD 中, AB=4,BC=3,以点B 为圆心 r 为半径作圆,且⊙B 与边CD 有唯一公共点,则r 的取值 范围是 .14.已知y 与x 的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数: .15.在ABC △中,45A ∠=,6AB =,2BC =,则AC 的长为 .16.在平面直角坐标系xOy 中,抛物线2122y x x =++可以看作是抛物线2221y x x =---经过若干次图形的变化(平移、翻折、旋转)得到的,写出一种由抛物线y 2得到抛物线y 1的过程: .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式组:()52365142x xxx-≤+⎧⎪⎨-<+⎪⎩.18.计算:2212sin458tan60-+︒-+︒.19.如图,E是□ABCD的边BC延长线上一点,AE交CD于点F,FG∥AD交AB于点G.(1)填空:图中与△CEF相似的三角形有;(写出图中与△CEF相似的所有三角形)(2)从(1)中选出一个三角形,并证明它与△CEF相似.20.制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB的长为3 000mm,弯形管道部分BC,CD弧的半径都是1 000mm,∠O=∠O’=90°,计算图中中心虚线的长度.21.已知二次函数243y x x=-+.(1)在网格中,画出该函数的图象.(2)(1)中图象与x轴的交点记为A,B,若该图象上存在一点C,且△ABC的面积为3,求点C的坐标.22.已知:如图,在△ABC的中,AD是角平分线,E是AD上一点,且AB :AC = AE :AD.求证:BE=BD.23.如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米) (参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18,2≈1.41,3≈1.73)24.已知:如图, AB 为⊙O 的直径,CE ⊥AB 于E ,BF ∥OC ,连接BC ,CF . 求证:∠OCF =∠ECB .25.如图,在平面直角坐标系xOy 中,直线2y x =-与双曲线ky x=(k ≠0)相交于A ,B 两点,且点A 的横坐标是3. (1)求k 的值;(2)过点P (0,n )作直线,使直线与x 轴平行, 直线与直线2y x =-交于点M ,与双曲线ky x =(k ≠0)交于点N ,若点M 在N 右边, 求n 的取值范围.26.已知:如图,在△ABC 中,AB=AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 于点E ,交AC 的延长线于点F .(1)求证:DE ⊥AB ; (2)若tan ∠BDE=12, CF=3,求DF 的长.27.综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC ,同学们通过构造直角三角形的办法求出三角形三边的长,则AB= ;(2)如图2,已知直角三角形纸片△DEF ,∠DEF =90°,EF=2DE ,求出DF 的长;(3)在(2)的条件下,若橫格纸上过点E 的横线与DF 相交于点G ,直接写出EG 的长. 28.在平面直角坐标系xOy 中,抛物线219y x bx =+经过点A (-3,4). (1)求b 的值;(2)过点A 作x 轴的平行线交抛物线于另一点B ,在直线AB 上任取一点P ,作点A 关于直线OP 的对称点C ;①当点C 恰巧落在x 轴时,求直线OP 的表达式;②连结BC ,求BC 的最小值.顺义区2017——2018学年度第一学期期末九年级教学质量检测数学答案一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.二、填空题(共8道小题,每小题2分,共16分)9.()21b a -; 10.220S a a =-+; 11.tan ∠α<tan ∠β; 12.略;13.35r ≤≤; 14.略; 15.1 16.略 .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式1得8x ≤…………………………………………………………….2分解不等式2得1x >-…………………………………………………………….4分 ∴不等式组的解集为18x -<<.………………………………………………….5分18.212sin 45tan 60+︒-︒.1232=+⨯-13=………………………………………………….4分(每项1分) 2=………………………………………………………………………….5分 19.(1)△ADF ,△EBA ,△FGA ;………………………….3分(每个一分)(2)证明:△ADF ∽△ECF ∵四边形ABCD 为平行四边形∴BE ∥AD …………………………………………………….4分 ∴∠1=∠E ,∠2=∠D∴△ADF ∽△ECF …………………………………………….5分 (其它证明过程酌情给分)20. 901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为 3000500230001000ππ+⨯=+…………………4分=30001000 3.14=6140+⨯……………………………………………..…5分 21. (1)…………………………….……….,…….2分(2)令y=0,代入243y x x =-+,则x=1,3,∴A (0,1),B (0,3),∴AB=2,……….……….,.………………..…….….3分 ∵△ABC 的面积为3,∴AB 为底的高为3, 令y=3,代入243y x x =-+,则x=0,4,∴C (0,3)或(4,3).…………….……….,…………………….….……….5分(各1分) 22.证明:∵AD是角平分线,∴∠1=∠2,……………………………………….1分又∵AB AD = AE AC,……………………….2分∴△ABE∽△ACD,………………………………………..…….3分∴∠3=∠4,……………………………………………………….4分∴∠BED=∠BDE,∴BE=BD.………………………………………………………..5分23.解:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°,………………………….…..1分∴AE=DE× tan∠1=40×tan30°=40×3≈40×1.73×13≈23.1……………………..2分在Rt△DEB中,∠DEB=90°,tan∠2=BEDE,∠2=10°,……………………………...3分∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2………………………………..………..4分∴AB=AE+BE≈23.1+7.2=30.3米.………………………………………………………..5分24.证明:延长CE交⊙O于点G.∵AB为⊙O的直径,CE⊥AB于E,∴BC=BG,∴∠ G=∠2,……………………………………………..2分∵BF ∥OC ,∴∠1=∠F ,………………………………………………3分 又∵∠G=∠F ,………………………………………..….5分 ∴∠1=∠2.…………………………………………….…6分(其它方法对应给分) 25.解:(1)令x=3,代入2y x =-,则y=1,∴A (3,1),…………………………………………………………….....1分∵点A (3,1),在双曲线ky x=(k ≠0)上,∴3k =.………………………..………………..………………………...3分 (2)………………………………….…..4分(画图)如图所示,当点M在N右边时,n的取值范围是1n>或30n-<<.………6分26.(1)证明:连接OD.………………………………………..1分∵EF切⊙O于点D,∴OD⊥EF.……………………………………….……..2分又∵OD=OC,∴∠ODC=∠OCD,∵AB=AC,∴∠ABC=∠OCD,∴∠ABC=∠ODC,∴AB∥OD,∴DE⊥AB.…………………………………….………..3分(2)解:连接AD.…………………………….…………….…4分∵AC为⊙O的直径,∴∠ADB=90°,…………………………………..…5分∴∠B+∠BDE=90°,∠B+∠1=90°,∴∠BDE=∠1,∵AB=AC,∴∠1=∠2.又∵∠BDE =∠3,∴∠2=∠3.∴△FCD∽△FDA…………………………………….6分∴FC CD FD DA=,∵tan∠BDE=12,∴tan∠2=12,∴1=2CD DA ,∴1=2FC FD , ∵CF=3,∴FD=6.……………………………….…7分27.(1)AB=26;……………………….2分(2)解:过点E 作横线的垂线,交l 1,l 2于点M ,N ,……………………………..….3分∴∠DME=∠EDF= 90°,∵∠DEF=90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME ∽△ENF ,………….…….4分∴DM ME DE EN NF EF==, ∵EF=2DE ,∴12DM ME DE EN NF EF ===, ∵ME=2,EN=3,∴NF=4,DM=1.5,根据勾股定理得DE=2.5,EF=5,552DF =.……………………….5分 (3)EG=2.5.…………………………………………………………..…….7分28.(1)∵抛物线219y x bx =+经过点A (-3,4) 令x=-3,代入219y x bx =+,则()14939b =⨯+⨯-, ∴b=-3.………………………………………………………………………....2分(2)①…………………………………….....3分由对称性可知OA=OC,AP=CP,∵AP∥OC,∴∠1=∠2,又∵∠AOP=∠2,∴∠AOP=∠1,∴AP=AO,∵A(-3,4),∴AO=5,∴AP=5,∴P1(2,4),同理可得P2(-8,4),∴OP的表达式为2y x=或12y x=-.………………………………….5分(各1分)…………………………………….....6分②以O为圆心,OA长为半径作⊙O,连接BO,交⊙O于点C∵B(12,4),∴OB=∴BC的最小值为5.………………………….7分。
顺义区2012—2013学年度第一学期期末七年级教学质量检测数学试卷一、选择题(共12道小题,每小题3分,共36分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.25-的相反数是( ) A .52- B . 25- C .25 D .522.据中国交通新闻网报道,2012年9月30日是中秋、国庆长假的第一天,全国道路旅客运输量同比增长13.3%,达到85 600 000人,其中85 600 000用科学记数法表示为( ) A .80.85610⨯ B .685.610⨯ C .88.5610⨯ D . 78.5610⨯ 3.下列各式中结果为负数的是A .(4)--B .2(4)-C .4--D .()34-- 4.计算()115555⎛⎫-⨯÷-⨯ ⎪⎝⎭结果正确的是( ) A .25 B . 25- C . 1- D . 1 5.下列比较大小错误的个数是( ) ①031.12>-,②()4422-<,③4332-<-, ④0.330.33>-,⑤10.000110>A .1个B .2个C .3个D .4个6.如图,图中锐角共有( )A .4个B .6个C .7个D .8个7.下列等式的变形正确的是( )A .由126x -=,得261x =-B .由22n m -=-,得0m n -=C .由182x =,得4x = D .由nx ny =,得x y = 8.下列叙述正确的是( )A .连结两点间的线段叫做这两点间的距离B .不相交的两条直线是平行线C .直线外一点与直线上各点的连线中垂线最短D .两点之间线段最短 9.用一副三角板不能画出( )A . 75°角B .135°角C .160°角D .165°角10.一家商店将某种服装按成本价每件a 元提高50%标价,又以8折优惠卖出,则这种服装每件的售价是( )A .0.8a 元B .0.4a 元C .1.2a 元D .1.5a 元AB CD11.若4m =,2n =,且m n >,则mn 的值为( )A .16B .16或-16C .8或-8D . 812.已知a 、b 为两个不相等的有理数,根据流程图中的程序,若输入的a 值是10,输出的c 值为20,则输入的b 值是( )A . 15B .10C . 0D .20二、填空题:(共10道小题,每小题3分,共30分)13.计算:()5+5--= ;1022-⨯⨯= ;()312-= . 14.如图,已知OC 平分AOE ∠,OB 平分AOC ∠,OD 平分COE ∠,则图中度数等于1∠度数的2倍的角共有 个.15.65.24°= 度 分 秒. 16.绝对值小于2的最小整数是 . 17.若()2320k x x k ++-=是关于x 的一元一次方程,则k = ,这个方程的解为 .18.已知线段AC=10cm ,点B 是线段AC 的中点,点D 是线段AC 上一点,且BD=2 cm ,则线段CD 的长为 .19.若使用竖式做有理数加法运算的过程如图所示,则m n -的值为 .1OEABC Dx n 15417++m 9579x 520.在有理数范围内定义运算“☆”,其规则是3aa b b =-☆,若x ☆2与x 4☆相等,则x 的值是____________.21.关于x 的一元一次方程(1)30m x --=的根为整数,则m 的整数值为 . 22.1a 是不为1的有理数,我们把111a -记作2a ,211a -记作3a ……依此类推,若已知114a =- ,则2013a =____________.三、计算题(共3道小题,每小题5分,共15分) 23. ()()101126⨯--÷-24. ()315336()+31294-⨯---25. ()2431(10.5)444⎛⎫⎡⎤---÷-⨯-- ⎪⎣⎦⎝⎭四、解方程(共2道小题,每小题5分,共10分) 26. 44(3)2(9)x x --=-27.21123x x ---=五、解答题(共5道小题,28小题5分, 29、30、31、32题每小题6分,共29分) 28.阅读小明解方程的过程回答问题. 解方程: 2+9=3(2)x x + 步骤① 2+9=36x x + 步骤② 26=39x x -- 步骤③ 2(3)=3(3)x x --步骤④ 2=3(1)上述变形中,由步骤①到步骤②变形的依据是 . (2)你认为上述变形正确吗,如果不正确请指出错误的步骤,并说明不正确的理由.29.已知3x =-,13y =-,求代数式22123(2)33x y x y --+()的值.30.已知:如图, AB ⊥CD 于点O ,12∠=∠,OE 平分BOF ∠,55EOB ∠=︒,求DOG ∠的度数.OGF E DCBA1231.某地居民生活用电基本价格为0.5元/度,并规定了每月基本用电量,超过部分的电量每度电价比基本用电量的每度价格增加0.05元,某户8月份用电量为240度,应缴电费为122元,求每月的基本用电量.32.已知数轴上两点A 、B 对应的数分别是 6,-8,M 、N 、P 为数轴上三个动点,点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,点P 从原点出发速度为每秒1个单位.B A(1)若点M 向右运动, 同时点N 向左运动,求多长时间点M 与点N 相距54个单位?(2)若点M 、N 、P 同时都向右运动,求多长时间点P 到点M ,N 的距离相等?附加题:(本题5分) 已知2426y x x x =-+---且28x ≤≤,求y 最小值与最大值.顺义区2012—2013学年度第一学期期末七年级教学质量检测数学答案三、计算题(共3道小题,每小题5分,共15分) 23. ()()101126⨯--÷-102=-+…………………………………………………………………………………4分 8=-………………………………………………………………………………………5分24. ()315336()+31294-⨯---15336()271294=-⨯---…………………………………………………………………1分3202727=-++-………………………………………………………………………4分 17=………………………………………………………………………………………5分25. ()2431(10.5)444⎛⎫⎡⎤---÷-⨯-- ⎪⎣⎦⎝⎭[]31(10.5)4164⎛⎫=---÷-⨯- ⎪⎝⎭………………………………………………………1分 ()1311224⎛⎫=--÷-⨯- ⎪⎝⎭………………………………………………………………2分()1411223⎛⎫=--⨯-⨯- ⎪⎝⎭………………………………………………………………3分18=--……………………………………………………………………………………4分 9=-………………………………………………………………………………………5分四、解方程(共2道小题,每小题5分,共10分) 26. 44(3)2(9)x x --=-4412182x x -+=-…………………………………………………………………2分 4218412x x -+=--………………………………………………………………3分22x -=…………………………………………………………………………4分 1x =-………………………………………………………………………5分27.21123x x ---=()()32216x x ---=……………………………………………………………………2分63226x x --+=……………………………………………………………………3分 32662x x --=--52x -=-……………………………………………………………………4分52x =………………………………………………………………………5分五、解答题(共5道小题,28、29每小题5分, 30、31每小题6分,32题7分,共29分)28. (1)等式的基本性质或移项法则………………………………………………………2分(2)不正确,由步骤③到步骤④的变形不正确………………………………………3分 理由是等式的基本性质说等式的两边都除以同一个非零数等式依然成立,显然小明没有考虑到(3x -)的值可能为零,所以不能两边同时除以(3x -).……………………………5分(学生回答合理即可给分) 29.解: 22123(2)33x y x y --+() 22142=333x y x y ---………………………………………………………………… 2分21=3x y --…………………………………………………………………………… 3分当3x =-,13y =-时原式21=3x y --()211=333⎛⎫-⨯--- ⎪⎝⎭………………………………………………………… 4分11=933-⨯+1=33-+………………………………………………………………………… 5 分8=3-……………………………………………………………………………… 6分30. 解:∵OE 平分BOF ∠∴BOF ∠=2EOB ∠ ∵55EOB ∠=︒∴BOF ∠=110………………………………………………………………………… 2分∵AB ⊥CD∴90AOD BOC ∠=∠=……………………………………………………………… 3分 ∴1∠=20……………………………………………………………………………… 4分 又∵12∠=∠∴2∠=20……………………………………………………………………………… 5分 ∴=70DOG ∠……………………………………………………………………………6分 31.解:设每月的基本用电量为x 度.………………………………………………………1分依题意可列 0.50.55(240)122x x +-= ………………………………4分 解方程,得 200x =. ………………………………………6分答:每月的基本用电量为200度.32.(1)解:设经过x 秒点M 与点N 相距54个单位.依题意可列 26+1454x x +=……………………………………………… 2 分解方程,得 5x =. ………………………………………………3分 答:经过5秒点M 与点N 相距54个单位.(算术方法对应给分)(2)解:设经过x 秒点P 到点M ,N 的距离相等.()()2668t t t t +-=--或()()2668t t t t +-=--…………………… 5分658t t +=-或685t t +=-72t =或13t = …………………………………………………………………7分答:经过72或13秒点P 到点M ,N 的距离相等.附加题:解:①当23x ≤<时,()246224y x x x x =-+---=-当23x ≤<时,可得02y ≤<………………………………………………………1分②当34x ≤<时()242628y x x x x =-+---=-+当34x ≤<时,可得02y <≤………………………………………………………2分 ③当48x ≤≤时,()24260y x x x =-+---=当48x ≤≤时,可得y 值恒为0………………………………………………………3分 综上所述,当28x ≤≤时,y 的最大值是2,最小值是0. ………………………5分。
GEFDCB A顺义区2012届初三第一次统一练习数学试卷一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.-3的相反数是A .3B .-3C .3±D .132.中国人民银行决定,从2012年2月24日起,下调存款类金融机构人民币存款准备金率0.5个百分点.本次下调后,央行一次性释放约4 000亿元人民币的资金.请把4 000亿元用科学记数法表示应为A .110.410⨯元 B .11410⨯元 C .114010⨯元 D . 12410⨯元 3.下列图形中,是中心对称图形而不是轴对称图形的是A .等边三角形B .矩形C .菱形D .平行四边形 4.下列运算正确的是A .22423a a a+=B .2242a a a-=C .22422a a a =D .2222a a a ÷=5.某个公司有15名工作人员,他们的月工资情况如下表.则该公司所有工作人员的月工资的平均数、中位数和众数分别是C .1 240,2 000,800D .1 240,800,8006.如图,AB ∥CD ,点E 在AB 上,点F 在CD 上,且90FEG ∠=︒,55EFD ∠=︒,则AEG ∠的度数是A .25°B .35°C .45°D .55 °EDBCA 7.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是A .14B .12 C . 34D .1 8.如图,在Rt △ABC 中,90ACB ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上 一点,且30CDE ∠=︒.设AD=x , BE=y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)92(2)0m -=,则m n -的值是 . 10.分解因式:3225105x x y xy -+= . 11.如图,用测角仪测得校园的旗杆顶点A 的仰角45α=︒,仪器高1.4CD =米,测角仪底部中心位置D 到旗杆根部B 的距离10BD =米,则旗杆AB 的高是 米. 12.如图,菱形ABCD 中,AB =2 ,∠C =60°,我们把菱形ABCD 的对称中心称作菱形的中心.菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O 所经过的路径长为 ;经过18次这样的操作菱形中心O 所经过的路径总长为 ;经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长为 .(结果都保留π)三、解答题(本题共30分,每小题5分)13()12cos303-︒+--.14.解方程组:2,2 1.x y x y +=⎧⎨-=⎩lαDC BA15.已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .16.已知2012x =,求代数式6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的值.17.如图,在平面直角坐标系xOy 中,反比例函数4y x=(0x >)的图象与一次函数y x b =-+的图象的一个交点为(4,)A m .(1)求一次函数的解析式;(2)设一次函数y x b =-+的图象与y 轴交于点B ,P 为一次函数y x b =-+的图象上一点,若OBP △的面积为5,求点P 的坐标.18.列方程或方程组解应用题:在城区改造项目中,区政府对某旧小区进行节能窗户改造.该小区拥有相同数量的A 、B 两种户型.已知所有A 户型窗户改造的总费用为54万元,所有B 户型窗户改造的总费用为48万元,且B 户型窗户的每户改造费用比A 户型窗户的每户改造费用便宜500元.问A 、B 两种户型的每户窗户改造费用各为多少元?四、解答题(本题共20分,每小题5分) 19.如图,在□ABCD 中,E 是对角线AC 的中点,EF⊥AD 于F ,∠B=60°,AB=4,∠ACB=45°,求DF 的长.20.如图,C 是⊙O 的直径AB 延长线上一点,点D 在⊙O 上,且∠A=30°,∠BDC =12ABD ∠.(1)求证:CD 是⊙O 的切线;(2)若OF ∥AD 分别交BD 、CD 于E 、F ,BD =2,求OE 及CF 的长.ECBAF EDCBA FE DCO BA21.某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格、条形统计图和扇形统计图(不完整),请你根据图表信息完成下列各题:(1)此次共调查了多少名学生?(2)请将表格填充完整;(3)请将条形统计图和扇形统计图补充完整.到校方式条形统计图 到校方式扇形统计图22.问题背景(1)如图1,△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点D 作DF ∥AC 交BC 于点F .请按图示数据填空:四边形DFCE 的面积S = , △DBF 的面积1S = ,△ADE 的面积2S = .探究发现(2)在(1)中,若BF a =,FC b =,D G与BC 间的距离为h .直接写出2S = (用含S 、1S 的代数式表示). 拓展迁移(3)如图2,□DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为4、8、1,试利用..(2.)中的结论....求□DEFG 的面积,直接写出结果.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程032)1(2=+++-k kx x k .(1)若方程有两个不相等的实数根,求k 的取值范围;(2)当方程有两个相等的实数根时,求关于y 的方程2(4)10y a k y a +-++=的整数根(a 为正整数).24.如图,在平面直角坐标系xOy 中,抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3). (1)求抛物线的解析式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点B ,求平移后抛物线的解析式;(3)在(2)的条件下,记平移后点A 的对应点为A’,点B 的对应点为B’,试问:在平移后的抛物线上是否存在一点P ,使'OA P △的面积与四边形AA ’B ’B 的面积相等,若存在,求出点P 的坐标;若不存在,说明理由.25.问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E 落在 ,容易得出BE 与DE 之间的数量关系为 ; (2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.DB CAABC (D )图3图2图1D EBCA。
北京市顺义区2018届初三上学期期末考试数学试卷考生须知1.本试卷共6页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号.3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效.4.在答题纸上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷和答题纸一并交回.一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是A. aB.b C.c ﻩD. d2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cos C的值为A.513ﻩﻩB.1213C.512ﻩD.1253.右图是百度地图中截取的一部分,图中比例尺为1:60000,则卧龙公园到顺义地铁站的实际距离约为(注:比例尺等于图上距离与实际距离的比)ﻩA.1.5公里B.1.8公里C.15公里D.18公里4.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I 的函数表达式为A .3I R =ﻩB.I R=-6 C .3I R=- ﻩﻩD .I R=65.二次函数的部分图象如图所示,对称轴是1x =-, 则这个二次函数的表达式为A . 223y x x =-++ﻩ B . 223y x x =++ C . 223y x x =-+- D . 223y x x =--+6. 如图,已知⊙O 的半径为6,弦AB 的长为8,则圆心O 到AB 的距离为A .5B .25 C.27 D.107.已知△ABC ,D,E分别在A B,A C边上,且DE ∥BC , AD =2,DB =3,△A DE 面积是4,则四边形DBCE 的面积 是A .6 B.9 C .21 D.258.如图1,点P从△A BC 的顶点A 出发,沿A -B-C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则△AB C 的面积是A.10 B.12 C .20 D .24二、填空题(共8道小题,每小题2分,共16分) 9.分解因式:22a b ab b -+= .10.如图,利用成直角的墙角(墙足够长),用10m长的栅栏围成一个矩形的小花园,花园的面积S(m2)与它一边长a (m )的 函数关系式是 ,面积S 的最大值是 .11.已知∠α,∠β如图所示,则tan ∠α与tan ∠β的大小关系是 .12.如图标记了 △ABC 与△DEF 边、角的一些数据,如果再添加一个条件使△ABC ∽△DEF ,那么这个条件可以是 .(只填一个即可)13.已知矩形AB CD 中, A B=4,BC =3,以点B 为圆心r为半径作圆,且⊙B 与边C D有唯一公共点,则r的取值范围是 .14.已知y 与x的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数: .15.在ABC △中,45A ∠=,6AB =,2BC =,则AC 的长为 .16.在平面直角坐标系xOy 中,抛物线2122y x x =++可以看作是抛物线2221y x x =---经过若干次图形的变化(平移、翻折、旋转)得到的,写出一种由抛物线y2得到抛物线y1的过程: .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式组:()52365142x xxx-≤+⎧⎪⎨-<+⎪⎩.18.计算:2212sin458tan60-+︒-+︒.19.如图,E是□ABCD的边BC延长线上一点,AE交CD于点F,FG∥AD交AB于点G.(1)填空:图中与△CEF相似的三角形有;(写出图中与△CEF相似的所有三角形)(2)从(1)中选出一个三角形,并证明它与△CEF相似.20.制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB的长为3 000mm,弯形管道部分BC,CD弧的半径都是1 000mm,∠O=∠O’=90°,计算图中中心虚线的长度.21. 已知二次函数243y x x =-+.(1)在网格中,画出该函数的图象.(2)(1)中图象与x 轴的交点记为A ,B ,若该图象上存在一点C,且△ABC 的面积为3,求点C 的坐标.22.已知:如图,在△AB C的中,AD是角平分线,E是AD 上一点, 且AB :AC = AE :AD . 求证:BE =BD .23.如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼A B的高度.(精确到0.1米) (参考数据:sin10°≈0.17, cos10°≈0.98, t an10°≈0.18,2≈1.41,3≈1.73)24.已知:如图, AB为⊙O 的直径,CE ⊥A B于E ,BF ∥OC ,连接BC ,CF .求证:∠OCF =∠ECB .25.如图,在平面直角坐标系xO y中,直线2y x =-与双曲线k y x=(k ≠0)相交于A,B 两点,且点A 的横坐标是3. (1)求k的值;(2)过点P(0,n )作直线,使直线与x轴平行,直线与直线2y x =-交于点M,与双曲线ky x=(k ≠0)交于点N ,若点M在N右边,求n 的取值范围.26.已知:如图,在△A BC 中,AB=AC ,以AC 为直径作⊙O 交BC于点D ,过点D 作⊙O 的切线交AB 于点E ,交AC 的延长线于点F . (1)求证:DE ⊥AB ; (2)若tan ∠BDE =12, CF =3,求DF的长.27.综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB=;(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.28.在平面直角坐标系xOy 中,抛物线219y x bx =+经过点A(-3,4). (1)求b 的值;(2)过点A 作x 轴的平行线交抛物线于另一点B ,在直线AB 上任取一点P ,作点A关于直线OP 的对称点C ;①当点C恰巧落在x 轴时,求直线OP 的表达式; ②连结BC ,求BC 的最小值.顺义区2017——2018学年度第一学期期末九年级教学质量检测数学答案一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的. 答案 1 2 3 4 5 6 7 8CABDDBCB二、填空题(共8道小题,每小题2分,共16分)9.()21b a -; 10.220S a a =-+; 11.tan ∠α<tan ∠β; 12.略;13.35r ≤≤; 14.略; 15.221+ 16.略 .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式1得8x ≤ (2)解不等式2得1x >-…………………………………………………………….4分 ∴不等式组的解集为18x -<<.………………………………………………….5分18.计算:2212sin 458tan 60-+︒-+︒. 22122232=-+⨯-+ 212223=-+-+………………………………………………….4分(每项1分)2=………………………………………………………………………….5分19.(1)△ADF ,△E BA ,△F GA ;………………………….3分(每个一分) (2)证明:△ADF ∽△ECF∵四边形A BCD 为平行四边形∴BE ∥AD…………………………………………………….4分 ∴∠1=∠E,∠2=∠D∴△A DF ∽△EC F…………………………………………….5分(其它证明过程酌情给分)20. 901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为 3000500230001000ππ+⨯=+…………………4分=30001000 3.14=6140+⨯……………………………………………..…5分21.(1)…………………………….……….,…….2分(2)令y =0,代入243y x x =-+,则x =1,3,∴A(0,1),B (0,3),∴AB =2,……….……….,.………………..…….….3分∵△AB C的面积为3,∴AB 为底的高为3,令y =3,代入243y x x =-+,则x=0,4,∴C (0,3)或(4,3).…………….……….,…………………….….……….5分(各1分)22.证明:∵AD 是角平分线,∴∠1=∠2,……………………………………….1分又∵A B AD = A E AC , (2)∴△A BE ∽△A CD ,………………………………………..…….3分 ∴∠3=∠4,……………………………………………………….4分 ∴∠ B ED =∠BDE ,∴BE=BD. (5)23.解:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°, (1)分∴AE=DE×tan∠1=40×tan30°=40×3≈40×1.73×13≈23.1 (2)在Rt△DEB中,∠DEB=90°,tan∠2=BEDE, ∠2=10°,……………………………...3分∴BE=DE×tan∠2=40×tan10°≈40×0.18=7.2………………………………..………..4分∴AB=AE+BE≈23.1+7.2=30.3米.………………………………………………………..5分24.证明: 延长CE交⊙O于点G.∵AB为⊙O的直径,CE⊥AB于E,∴BC=BG,∴∠ﻩG=∠2,……………………………………………..2分∵BF∥OC,∴∠1=∠F,………………………………………………3分又∵∠G=∠F,………………………………………..….5分∴∠1=∠2.…………………………………………….…6分(其它方法对应给分)25.解:(1)令x=3,代入2y x =-,则y =1,∴A (3,1),…………………………………………………………….....1分 ∵点A (3,1),在双曲线k y x=(k ≠0)上, ∴3k =.………………………..………………..………………………...3分(2)………………………………….…..4分(画图)如图所示,当点M 在N右边时,n 的取值范围是1n >或30n -<<.………6分26.(1)证明: 连接OD .………………………………………..1分∵E F切⊙O 于点D ,∴OD ⊥EF .……………………………………….……..2分又∵OD =O C,∴∠ODC =∠OCD ,∵AB =AC ,∴∠ABC =∠OC D,∴∠ABC=∠ODC,∴AB∥OD,∴DE⊥AB.…………………………………….………..3分(2)解:连接AD.…………………………….…………….…4分∵AC为⊙O的直径,∴∠ADB=90°,…………………………………..…5分∴∠B+∠BDE=90°,∠B+∠1=90°,∴∠BDE=∠1,∵AB=AC,∴∠1=∠2.又∵∠BDE=∠3,∴∠2=∠3.∴△FCD∽△FDA…………………………………….6分∴FC CD FD DA=,∵tan∠BDE=12,∴tan∠2=12,∴1=2CDDA,∴1=2FCFD,∵CF=3,∴FD=6.……………………………….…7分27.(1)AB=26;……………………….2分(2)解:过点E作横线的垂线,交l1,l2于点M,N,……………………………..….3分∴∠DME=∠EDF= 90°,∵∠DEF=90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME∽△ENF,………….…….4分∴DM ME DE EN NF EF==,∵EF=2DE , ∴12DM ME DE EN NF EF ===, ∵ME =2,E N=3,∴NF =4,DM =1.5,根据勾股定理得DE =2.5,EF =5,552DF =.……………………….5分 (3)EG=2.5.…………………………………………………………..…….7分28.(1)∵抛物线219y x bx =+经过点A(-3,4) 令x =-3,代入219y x bx =+,则()14939b =⨯+⨯-, ∴b=-3.………………………………………………………………………....2分(2)①…………………………………….....3分由对称性可知OA =OC ,A P=CP ,∵AP ∥O C,∴∠1=∠2,又∵∠AO P=∠2,∴∠A OP =∠1,∴AP =AO ,∵A (-3,4),∴AO =5,∴AP =5,∴P1(2,4),同理可得P 2(-8,4),∴O P 的表达式为2y x =或12y x =-. ………………………………….5分(各1分)…………………………………….....6分②以O为圆心,OA长为半径作⊙O,连接BO,交⊙O于点C∵B(12,4),∴OB=,∴BC的最小值为5.………………………….7分。
中题(朝阳)7. △ABC其中A (1, 2),B (1, 1),C (3, 1),将△ABC 绕原点O 顺时针旋转90后得到△'''C B A ,则点A 旋转到点'A 所经过的路线长为 A .π25 B .π45 C.π25D . (第7题图) (东城)16.在平面直角坐标系xoy 中,已知ABC △三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C ---⑴ 画出ABC △;⑵ 画出ABC △绕点A 顺时针旋转90后得到的11AB C △,并求出1CC 的长..(通县)12.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC 方向平移得到DEF △.如果8cm AB =,6cm,4cm BE DH ==, 则图中阴影部分面积为 2cm .(东城)8. 已知二次函数2y ax bx c =++的图象如图所示,那么一次函数24y b x b a c =+-与反比例函数2c by x-=在同一坐标系内的图象大致为(丰台)8.如图,在矩形ABCD 中,AB =4cm ,AD =2cm ,动点M 自点A 出发沿A →B 的方向,以每秒1cm 的速度运动,同时动点N 自点A 出发沿A →D →C 的方向以每秒2cm 的速度运动,当点N 到达点C 时,两点同时停止运动,设运动时间为x (秒),△AMN 的面积为y (cm 2),则下列图象中能反映y 与x 之间的函数关系的是A B C D(房山)8、根据图1所示的程序,得到了y 与x 的函数图象,如图2.若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图象于点P ,Q ,连接OP ,OQ .则以下结论: ①x <0 时,②△OPQ 的面积为定值. ③x >0时,y 随x 的增大而增大.④MQ=2PM .⑤∠POQ 可以等于90°.其中正确结论是( )A 、①②④B 、②④⑤C 、③④⑤D 、②③⑤NMA B CDQ PNMOCBA2 (2) 当x 为何值时,y 有最小值,最小值是多少?(3) 若A (m ,y 1),B (m +2, y 2)两点都在该函数的图象上,计算当m 取何值时,12?y y >(朝阳)9. 如图,△ABC 为等边三角形,D 是△ABC 内一点,且AD =3,将△ABD 绕点A 旋转到△ACE 的位置,连接DE ,则DE 的长为 .(东城)12.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,直角∠MON 的顶点O 在AB 上, OM 、ON 分别交CA 、CB 于点P 、Q ,∠MON 绕点O 任意旋转.当12OA OB =时, OP OQ 的值为 ;当1OA OB n=时,OP OQ 的值为 .(用含n 的式子表示)(丰台)14.我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形” .已知:在Rt △ABC 中,∠C =90°,AC =6,BC =3.(1)如图1,四边形CDEF 是△ABC 的内接正方形,则正方形CDEF 的边长a 1是 ;(2)如图2,四边形DGHI 是(1)中△EDA 的内接正方形,则第2个正方形DGHI 的边长a 2= ;继续在图2中的△HGA 中按上述方法作第3个内接正方形;…以此类推,则第n 个内接正方形的边长a n = .(n 为正整数)(丰台)17.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,联结BD ,过点C 作CE ⊥BD 于交AB 于点E ,垂足为点H ,若AD =2,AB =4,求sin ∠BCE .图1 图2 GI H F AB CDE F AB CD EHA ED(通县)20.把两个含有30°角的直角三角板如图放置,点D 在BC 上,连结BE 、AD ,AD 的延长线交BE 于点F .问AF 与BE 是否垂直?并说明理由.(西城北)11.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4 .以斜边AB 的中点D 为旋转中心,把△ABC 按逆时针方向旋转α角(0120α︒<<︒),当点A 的对应点与点C 重合时,B ,C 两点的对应点分别记为E ,F ,EF 与AB 的交点为G ,此时α等于° ,△DEG的面积为 .(朝阳)10. 如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若该圆的半径为1,扇形的圆心角等于60°,则这个扇形的半径R 的值是 .(海淀)8. 已知O 为圆锥顶点, OA 、OB 为圆锥的母线, C 为OB 中点, 一只小蚂蚁从点C 开始沿圆锥侧面爬行到点A , 另一只小蚂蚁绕着圆锥侧面爬 行到点B ,它们所爬行的最短路线的痕迹如右图所示. 若沿OA 剪开, 则得到的圆锥侧面展开图为 ( )A B C D (大兴)12. 如图所示,长为4cm ,宽为3cm 的长方形木板在桌面上做 无滑动的翻滚(顺时针方向),木板上点A 位置变化为12A A A →→, 由12A A 翻滚到时被桌面上一小木块挡住,此时长方形木板的边2A C 与桌面成30°角,则点A 翻滚到A 2位置时所经过的路径总长度为 cm.O B(A )C ABO A B(A )C O A B (A )C O A B (A )C C (A )B A O B A(大兴)17.已知:如图,将正方形ABCD纸片折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),点B落在点Q处,折痕为EF,PQ与BC交于点G.求证:△PCG∽△ED P.(朝阳)11. 如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则这个扇形的面积是.(海淀)12.用两个全等的含30︒角的直角三角形制作如图1所示的两种卡片, 两种卡片中扇形的半径均为1, 且扇形所在圆的圆心分别为长直角边的中点和30︒角的顶点, 按先A后B 的顺序交替摆放A、B两种卡片得到图2所示的图案. 若摆放这个图案共用两种卡片8张,则这个图案中阴影部分的面积之和为; 若摆放这个图案共用两种卡片(2n+1)张( n为正整数), 则这个图案中阴影部分的面积之和为. (结果保留π )……A种B种(大兴)21.作图题(要求用直尺和圆规作图,不写出作法,只保留作图痕迹,不要求写出证明过程).已知:圆.求作:一条线段,使它把已知圆分成面积相等的两部分.(石景山)12.如图,⊙A与x轴交于B(2,0)、C(4,0)两点,OA=3,点P是y轴上的一个动点,PD切⊙O于点D,则PD的最小值是.:如图,AD平分BAC∠,ACDE//,且cmAB5=,求DE的长.(怀柔)21. 如图,AB 是⊙O 的直径,AD 是弦,22.5A ∠=,延长到点C ,使得∠ACD =45°.(1)求证:CD 是⊙O 的切线; (2)若AB =OC 的长. 证明:(房山)21、如图,在△ABC 中,∠A=90°,O 是BC 边上一点,以O 为圆心的半圆分别与AB 、AC 边相切于D 、E 两点,连接OD .已知BD=2,AD=3. 求:(1)tanC ; (2)图中两部分阴影面积的和.(西城北)12.已知二次函数212y x x =-+,(1)它的最大值为 ;(2)若存在实数m ,n 使得当自变量x 的取值范围是m ≤x ≤n 时,函数值y 的取值范围恰好是3m ≤y ≤3n ,则m= ,n= .(房山)24.探究 : (1) 在图1中,已知点E ,F 分别为线段AB ,CD 的中点. ①若A (-1,0), B (3,0),则E 点坐标为__________;②若C (-2,2), D (-2,-1),则F 点坐标为__________;(2)若已知线段AB 的端点坐标为A (1,3), B (5,1) 则线段AB 的中点D 的坐标为 ; (3)在图2中,已知线段AB 的端点坐标为A (a ,b ) ,B (c ,d ), 则线段AB 的中点D 的坐标为 .(用含a ,b ,c ,d 的代数式表示). 归纳 : 无论线段AB 处于直角坐标系中的哪个位置, 当其端点坐标为A (a ,b ),B (c ,d ), AB 中点为D (x ,y ) 时, x =_________,y =___________.(不必证明)●运用 : 在图2中,一次函数2-=x y 与反比例函数xy 3=的图象交点为A ,B .①求出交点A ,B 的坐标;②若以A ,O ,B ,P 为顶点的四边形是平行四边形,第24题图2第24题图1AC请利用上面的结论求出顶点P 的坐标. 解:①23.如图,在平面直角坐标系中,⊙P 的圆心是()a ,2(a >0),半径为2,函数x y =的图象被⊙P 截得的弦AB 的长为2.(1)试判断y 轴与圆的位置关系,并说明理由.(2)求a 的值.(平谷)13.如图,在直角三角形ABC 中,∠ACB =90°,CA =4点P 是 半圆弧AC 的中点,联结BP ,线段BP 把图形 APCB (指半圆和三角形ABC 组成的图形)分成两部分, 则这两部分面积之差的绝对值是________.(顺义)22.已知:如图,AB 是⊙O 的弦,2=OB ,︒=∠30B ,点C 是弦AB 上一动点(不与点A 、B 重合),连结CO 并延长交⊙O 于点D ,连结AD . (1)求弦AB 的长;(2)当︒=∠20D 时,求BOD ∠的度数;(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、O 、C 为顶点的三角形相似?(顺义)19.如图,AB 为⊙O 的弦,C 、D 分别是OA 、OB延长线上的点,且CD ∥AB ,CD 交⊙O 于点E 、F ,若3=OA ,2=AC . (1)求OD 的长;B第24题图3D OCBA(2)若55sin =C ,求弦EF 的长.(通县)19.已知:如图,AB 为半圆O 的直径,C 、D 是半圆上的两点,E 是AB 上除O 外的一点,AC 与DE 交于点F .①AD DC =;②DE ⊥AB ;③AF=DF .请你写出以①、②、③中的任意两个条件,推出第三个(结论)的一个正确命题.并加以证明.(大兴)22.已知:如图,△ABC 内接于⊙O ,且AB=AC=13,BC=24PA ∥BC ,割线PBD 过圆心,交⊙O 于另一个点D ,联结CD.⑴求证:PA 是⊙O 的切线; ⑵求⊙O 的半径及CD 的长.(顺义)23.如图,AB 是⊙O 的直径,AC 是弦,∠ACD=21∠AOC ,AD ⊥CD 于点D . (1)求证:CD 是⊙O 的切线;(2)若AB=10,AD =2,求AC 的长.(丰台)20.如图,在Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,以AB 上一点O 为圆心,AD 为弦作⊙O .(1)求证:BC 为⊙O 的切线; (2)若AC = 6,tan B =43,求⊙O 的半径.(东城)20. 如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 点C 为⊙O 上一点,且AC 平分∠P AE ,过C 作CD PA ⊥DOCB ABD C B AD .(1) 求证:CD 为⊙O 的切线;(2) 若CD =2AD ,⊙O 的直径为10,求线段AC 的长.(西城南)24.已知:⊙O 是△ABC 的外接圆,点M 为⊙O 上一点. (1)如图,若△ABC 为等边三角形,BM =1,CM =2, 求AM 的长;(1) 若△ABC 为等腰直角三角形,∠BAC =90︒,BM a =,CM b =(其中b a >),直接写出AM 的长(用含有a ,b 的代数式表示).(东城)15.如图,在△ABC 中,点D 在边AB 上,满足且∠ACD =∠ABC ,若AC= 2,AD = 1,求DB 的长.(海淀)21. 如图,AB 是⊙O 的直径, 点C 在⊙O 上,CE ⊥ AB 于E , CD 平分∠ECB , 交过 点B 的射线于D , 交AB 于F , 且BC=BD . (1)求证:BD 是⊙O 的切线;(2)若AE =9, CE =12, 求BF 的长.(石景山)22. 如图, △ABC 中,以AB 为直径的⊙O 交AC 于点D ,∠AOD =∠C . (1)求证:BC 为⊙O 的切线;(2)若32cos12==C AE ,,求OD 的长.(平谷)23. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 于点D ,过点D 作EF ⊥AC 于点E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线;(2)当AB =5,BC =6时,求DE 的长.(燕山)23.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点M 、N ,在AC 的延长线上取点P ,使∠CBP =21∠A . (1)判断直线BP 与⊙O 的位置关系,并证明你的结论; (2)若⊙O 的半径为1,tan ∠CBP =0.5,求BC 和BP 的长.(朝阳)14. 如图,已知4=AC ,求AB 和BC 的长.(朝阳)15. 如图,□ABCD 中,点E 在BA 的延长线上,连接CE ,与AD 相交于点F . (1)求证:△EBC ∽△CDF ;(2)若BC =8,CD =3,AE =1,求AF 的长.(海淀) 16. 如图, 在正方形网格中,△ABC 的顶点和O 点都在格点上.(1)在图1中画出与△ABC 关于点O 对称的△A ′B ′C ′;(2)在图2中以点O 为位似中心,将△ABC 放大为原来的2倍(只需画出一种即可). 解:(顺义)12.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与图中格点的连线中,能够与该圆弧相切的连线所对应的格点的坐标为 .(顺义)8.如图,将抛物线221x y -=平移后经过原点O 和A BPCNM O·点)0,6(A ,平移后的抛物线的顶点为点B ,对称轴与抛物线221x y -=相交于点C ,则图中直线BC 与两条抛物线围成的阴影部分的面积为 A .221 B .12 C .227 D .15(平谷)22. 如图,Rt △OAB 中,∠OA B =90°,O 为坐标原点, 边OA 在x 轴上,OA =AB =1个单位长度.把Rt △OAB 沿x 轴正方向平移1个单位长度后得△11AA B . (1)求以A 为顶点,且经过点1B 的抛物线的解析式; (2)若(1)中的抛物线与OB 交于点C ,与y 轴交于 点D ,求点D 、C 的坐标.(燕山)24. 已知:如图,正方形纸片ABCD 的边长是4,点M 、N 分别在两边AB 和CD上(其中点N 不与点C 重合),沿直线MN 折叠该纸片,点B 恰好落在AD 边上点E 处. (1)设AE =x ,四边形AMND 的面积为 S ,求 S 关于x 的函数解析式,并指明该函数的定义域;(2)当AM 为何值时,四边形AMND 的面积最大?最大值是多少? (3)点M 能是AB 边上任意一点吗?请求出AM 的取值范围.(朝阳)16. 如图,在平面直角坐标系中,△ABC 和△坐标原点O 为位似中心的位似图形,且点B (3,1),B ′(6,2).(1)若点A (25,3),则A ′的坐标为 ;(2)若△ABC 的面积为m ,则△A ′B ′C ′的面积= . (海淀)17.已知关于x 的方程(k -2)x 2+2(k -2)x +k +1=0(朝阳)17. 二次函数2y ax bx c =++的部分图象如图所示,其中图象与E C C M NAD·x 轴交于点A (-1,0),与y 轴交于点C (0,-5),且经过点 D (3,-8).(1)求此二次函数的解析式;(2)将此二次函数的解析式写成2()y a x h k =-+的形式,并直接写出此二次函数图象的顶点坐标以及它与x 轴的另一个交点B 的坐标.(平谷)25.已知关于x 的二次函数2y ax bx c =++(a >0)的图象经过点C (0,1),且与x轴交于不同的两点A 、B ,点A 的坐标是(1,0). (1)求c 的值;(2)求a 的取值范围;(3)该二次函数的图象与直线y =1交于C 、D 两点,设A 、B 、C 、D 四点构成的四边形的对角线相交于点P ,记△PCD 的面积为S 1,△PAB 的面积为S 2,当01a <<时,求12S S -的值. 解:(通县)22.如图,在平面直角坐标系中,以点C (1,1)为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在⊙C 上. (1)求ACB ∠的大小;(2)写出A B ,两点的坐标;(3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.(丰台)22.小明喜欢研究问题,他将一把三角板的直角顶点放在平面直角坐标系的原点O 处,两条直角边与抛物线2(0)y ax a =<交于A 、B 两点. (1)如图1,当2OA OB ==时,则a = ;(2)对同一条抛物线,当小明将三角板绕点O 旋转到如图2所示的位置时,过点B 作BC x ⊥轴于点C ,测得1OC =,求出此时点A 的坐标;(3)对于同一条抛物线,当小明将三角板绕点O 旋转任意角度时,他惊奇地发现,若三角板的两条直角边与抛物线有交点,则线段A B 总经过一个定点,请直接写出该定点的坐标.(石景山)21.如图,抛物线与x 轴交于A (1,0),B (3-,0)两点,与y 轴交于点C (0,3).(1)求此抛物线的解析式;(2)在x 轴上找一点D ,使得以点A 、C 、D 为顶点的三角形是直角三角形,求点D 的坐标. (朝阳)21. 已知抛物线4)1(21-+++=m x m x y 与x 轴交于A 、B两点(点A 在点B 左侧),且对称轴为x =-1. (1)求m 的值;(2)画出这条抛物线; (2)若直线b kx y +=2过点B P (-2m ,-3m ),根据图象回答:当x 取 什么值时,1y ≥2y .(石景山)24.已知函数232+-=x mx y (m (1)求证:不论m 为何值,该函数的图象都经过 (2)若一次函数1+=x y 交点的坐标.y(西城北)18.如图,在Rt △ABC 中,90C ∠=︒,AB 的垂直平分线与BC ,AB 的交点分别为D ,E .(1)若AD =10,4sin 5ADC ∠=,求AC 的长和tan B 的值; (2)若AD=1,ADC ∠=α,参考(1)的计算过程直接写 出tan2α的值(用sin α和cos α的值表示).(西城北)19.如图所示,在平面直角坐标系xOy 中,正方形PABC 的边长为1,将其沿x轴的正方向连续滚动,即先以顶点A 为旋转中心将正方形PABC 顺时针旋转90°得到第二个正方形,再以顶点D 为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n 个正方形.设滚动过程中的点P 的坐标为(,)x y .(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P 的坐标; (2)画出点(,)P x y 运动的曲线(0≤x ≤4),并直接写出该曲线与x 轴所围成区域的面积.(怀柔)24. 把边长分别为4和6的矩形ABCO 如图放在平面直角坐标系中,将它绕点C 顺时针旋转α角, 旋转后的矩形记为矩形EDCF .在旋转过程中,(1)如图①,当点E 在射线CB 上时,E 点坐标为 ;(2)当CBD ∆是等边三角形时,旋转角α的度数是 (α为锐角时); (3)如图②,设EF 与BC 交于点G ,当EG =CG 时,求点G 的坐标.(4) 如图③,当旋转角90α=时,请判断矩形EDCF 的对称中心H 是否在以C 为顶点,且经过点A 的抛物线上.图① 图② 图③(石景山)23.如图1,在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕顶点C 顺时针旋转30°,得到△A ′B ′C .联结A ′A 、B ′B ,设△ACA ′和△BCB ′的面积分别为S △ACA ′ 和θA A 'C BB '30︒B 'A 'CB A S △BC B′.(1)直接写出S △ACA ′ ︰S △BC B′ 的值 ;(2)如图2,当旋转角为θ(0°<θ<180°)时,S △ACA ′ 与S △BC B′ 的比值是否发生变化,若不变请证明;若改变,写出变化后的比值(可用含θ的代数式表示).图1 图220.(石景山)某超市按每袋20元的价格购进某种干果.销售过程中发现,每月销售量y (袋)与销售单价x (元)之间的关系可近似地看作一次函数:10500y x =-+(2050x <<).(1)当x=45元时,y= 袋;当y=200袋时,x= 元;(2)设这种干果每月获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(丰台)21.某工厂设计了一款产品,成本为每件20元.投放市场进行试销,得到如下数据:(1)若日销售量y (件)是售价x (元∕件)的一次函数,求这个一次函数的解析式; (2)设这个工厂试销该产品每天获得的利润为W (元),当售价定为每件多少元时,工厂每天获得的利润最大?最大利润是多少元?(朝阳)22. 某超市销售一款进价为50元/个的书包,物价部门规定这款书包的售价不得高于70元/个,市场调查发现:以60元/个的价格销售,平均每周销售书包100个;若每个书包的销售价格每提高1元,则平均每周少销售书包2个.(1)求该超市这款书包平均每周的销售量y (个)与销售价x (元/个)之间的函数关系式;(2)求该超市这款书包平均每周的销售利润w (元)与销售价x (元/个)之间的函数关系式;(3)当每个书包的销售价为多少元时,该超市这款书包平均每周的销售利润最大?最大利润是多少元?(东城)22.李经理在某地以10元/千克的批发价收购了2 000千克核桃,并借一仓库储存.在存放过程中,平均每天有6千克的核桃损耗掉,而且仓库允许存放时间最多为60天.若核桃的市场价格在批发价的基础上每天每千克上涨0.5元。
顺义区2011——2012学年度第一学期期末九年级教学质量检测数学试卷一、选择题(共8道小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.21-的绝对值是 A .2- B .2 C .21 D .21- 2.若一个多边形的内角和等于︒540,则这个多边形的边数是 A .4 B .5 C .6 D .73.在△ABC 中,∠C =90°,AB =5,BC =4,则sin B 的值是A .53 B .54 C .43 D .354.若两个相似三角形的相似比为1∶2,则它们面积的比为A .2∶1B .1∶2C .1∶4D .1∶5 5.如图,在⊙O 中,弦AB 的长为10,圆周角45ACB ∠=︒,则这个圆的直径AD 为A .25B .210C .215D .220 6.对于函数xm y 4-=,当0<x 时, y 的值随x 值的增大而减小,则m 的取值范围是A .4>mB .4<mC .4->mD .4-<m7.某中学在建党九十周年时,举行了“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是D CBA A .12B .13C .14D .168.如图,将抛物线221x y -=平移后经过原点O 和点)0,6(A ,平移后的抛物线的顶点为点B ,对称轴与抛物线221x y -=相交于点C ,则图中直线BC 与两条抛物线围成的阴影部分的面积为 A .221 B .12 C .227 D .15二、填空题(共4道小题,每小题4分,共16分) 9.分解因式:=++x x x 4423 . 10.抛物线322+-=x x y 的顶点坐标是 . 11.如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,若9=MN ,则=BC .12.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与图中格点的连线中,能够与该圆弧相切的连线所对应的格点的坐标为 .三、解答题(共5道小题,每小题5分,共25分) 13.计算:)21(30tan )2(60sin 21--︒---︒-.14.已知02=-b a ,求代数式2(2)2()()()a a b a b a b a b -++-++的值.15.已知:如图,△ABC 中,D 是AB 的中点,且B ACD ∠=∠,若 AB=10,求AC 的长.16.抛物线c bx x y ++-=2过点(0,-3)和(2,1),试确定抛物线的解析式,并求出抛物线与x 轴的交点坐标.N M E D CBA17.甲、乙、丙三位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学打第一场比赛的概率.四、解答题(共3道小题,每小题5分,共15分) 18.已知:如图,在Rt ABC △中,︒=∠90ACB ,点D 是斜边AB 上的一点,且CD=AC=3,AB=4,求B cos ,ADC ∠sin 及DCA ∠21cos的值.19.如图,AB 为⊙O 的弦,C 、D 分别是OA 、OB 延长线上的点,且CD ∥AB ,CD 交⊙O 于点E 、F ,若3=OA ,2=AC . (1)求OD 的长;(2)若55sin =C ,求弦EF 的长.20.已知:反比例函数xm y 2-=(2≠m 且m 为正整数)的图象分布在第二、四象限,与一次函数b x y +-=2(b 为常数)的图象相交于点),1(n P .试确定反比例函数和一次函数的解析式.五、解答题(共2道小题,21小题5分,22小题6分,共11分) 21.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°, ∠A =60°,AC=6,试求BC 、CD 的长.22.已知:如图,AB 是⊙O 的弦,2=OB ,︒=∠30B ,点C 是弦AB 上一动点(不与点A 、B 重合),连结CO 并延长FEDCBA OD OBBADFEACBDP N M B B B A A A C C C (E )交⊙O 于点D ,连结AD . (1)求弦AB 的长;(2)当︒=∠20D 时,求BOD ∠的度数;(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、O 、C 为顶点的三角形相似?六、解答题(共3道小题,23小题6分,24小题7分,25小题8分,共21分) 23.如图,AB 是⊙O 的直径,AC 是弦,∠ACD =21∠AOC ,AD ⊥CD 于点D .(1)求证:CD 是⊙O 的切线;(2)若AB=10,AD =2,求AC 的长.24.在Rt ABC △中,︒=∠90ACB ,30=BC ,40=AC ,点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或B C 相交于点E .点M 在线段AP 上,点N 在线段BP 上,且PM=PN ,3tan =∠EMP .(1)如图①,当点E 与点C 重合时,求MP 的长;(2)设x AP =,△ENB 的面积为y ,求y 与x 的函数关系式,并求出当x 取何值时,y 有最大值,最大值是多少?图① 备用图 备用图25.已知:如图,在平面直角坐标系xOy 中,边长为32的等边ABC △随着顶点A 在抛物线x x y 322-=上运动而运动,且始终有BC ∥x 轴.DOCBA(1)当顶点A 运动至与原点重合时,顶点C 是否在该抛物线上?(2)ABC △在运动过程中有可能被x 轴分成两部分,当上下两部分的面积之比为1∶8(即8:1:=下部分上部分S S )时,求顶点A 的坐标;(3)ABC △在运动过程中,当顶点B 落在坐标轴上时,直接写出顶点C 的坐标.9.顺义区2011——2012学年度第一学期期末九年级教学质量检测数学学科参考答案及评分细则一、选择题(共8道小题,每小题4分,共32分)二、填空题(共4道小题,每小题4分,共16分)9.2)2(+x x ; 10.(1,2); 11.12; 12.(1,3)或(5,1). 三、解答题(共5道小题,每小题5分,共25分) 13.解:)21(30tan )2(60sin 21--︒---︒-2133)21(232+---⨯= …………………………………………………4分 2133213+-+= 1332+=……………………………………………………………………5分 14.解:2(2)2()()()a a b a b a b a b -++-++222222222b ab a b a ab a +++-+-= …………………………………3分 224b a -= ……………………………………………………………………4分∵02=-b a ,∴ 原式)2)(2(b a b a -+==0.…………………………………………………5分 15.解:∵B ACD ∠=∠,A A ∠=∠,∴△ACD ∽△ABC . ……………………………………………………………2分 ∴ACADAB AC =. …………………………………………………………………3分 ∵D 是AB 的中点,AB=10,∴521==AB AD . ……………………………………………………………4分 ∴ACAC 510=. ∴502=AC . ∴25=AC (舍负). ………………………………………………………5分16.解:∵抛物线c bx x y ++-=2过点(0,-3)和(2,1),∴ ⎩⎨⎧=++--=.124,3c b c …………………………………………………………2分解得 ⎩⎨⎧-==.3,4c b抛物线的解析式为342-+-=x x y .…………………………………………3分 令0=y ,得 0342=-+-x x ,即 0342=+-x x . ∴ 11=x ,32=x .∴抛物线与x 轴的交点坐标为(1,0)、(3,0). ……………………………5分17.解:方法一: 画树状图如下:其中一人 甲 乙 丙另一人 乙 丙 甲 丙 甲 乙 ………………3分 结果 (甲乙)(甲丙)(乙甲)(乙丙)(丙甲)(丙乙)所有可能出现的情况有6种,其中甲乙两位同学组合的情况有两种,所以P (甲乙)=3162=. …………………………………………………………5分 方法二:EDBCAGFEDCBA O列表法如下: 甲 乙 丙甲 乙甲 丙甲乙 甲乙 丙乙丙 甲丙 乙丙所有可能出现的情况有6种,其中甲乙两位同学组合的情况有两种, 所以P (甲乙)=3162=.…………………………………………………………5分 四、解答题(共3道小题,每小题5分,共15分) 18.解:在Rt △ABC 中,∵︒=∠90ACB ,AC=3,AB=4,∴722=-=AC AB BC . ……………………………………………1分∴47sin cos ===AB BC A B .……………………………………………2分 ∵CD=AC ,∴A ADC ∠=∠.∴47sin sin ==∠A ADC .……………3分过点C 作AD CE ⊥于E ,∴DCA ACE ∠=∠21,︒=∠+∠90A ACE .∴47sin cos 21cos ==∠=∠A ACE DCA . ……………………………5分 19.解:(1)∵3=OA ,2=AC ,∴5=OC . ………………………………………………………………1分 ∵CD ∥AB ,∴ODOBOC OA =.∵3==OA OB . ∴5=⋅=OAOCOB OD . …………………………………………………2分 (2)过点O 作OG ⊥CD 于G ,连结OE .∴3==OA OE .∵55sin =C , ∴55=OC OG .∴5=OG .………………………………………………………………3分 在Rt △OEG 中,有 25922=-=-=OG OE EG . ……………4分 ∵EF OG ⊥,EF 是弦,∴42==EG EF . ………………………………………………………5分20.解:由已知,得 02<-m ,∴2<m . ………………………………………………………………………2分 ∵m 为正整数, ∴1=m .∴反比例函数的解析式为xy 1-=. …………………………………………3分 ∵点),1(n P 在反比例函数的图象上,∴1-=n . ………………………………………………………………………4分 把)1,1(-P 代入一次函数b x y +-=2中,得 b +⨯-=-121. ∴1=b .∴一次函数的解析式为12+-=x y . ………………………………………5分五、解答题(共2道小题,21小题5分,22小题6分,共11分) 21.解:过点B 作BM ⊥FD 于点M .在Rt △ABC 中,∵∠ACB =90°,∠A =60°,AC=6, ∴ACBCA =tan ,∠ABC =90°-∠A =30°. ∴3660tan 6tan =︒⨯=⋅=A AC BC . …………………………………2分 ∵AB ∥CF ,∴∠BCM =∠ABC =30°.∴33213630sin =⨯=︒⋅=BC BM , 9233630cos =⨯=︒⋅=BC CM .…3分 在△EFD 中,∠F =90°, ∠E =45°, ∴∠EDF =45°.∴33==BM DM . ………………………………………………………4分ED O C BA∴339-=-=DM CM CD . ……………………………………………5分22.解:(1)过点O 作AB OE ⊥于点E ,在Rt △OEB 中,2=OB ,︒=∠30B ,∴323230cos =⨯=︒⋅=OB BE . ………1分 ∴322==BE AB . …………………………2分(2)连结OA ,∵OD OB OA ==, ∴︒=∠=∠30B OAB ,︒=∠=∠20D OAD . ∴︒=︒+︒=∠+∠=∠502030OAD OAB BAD .∴︒=∠=∠1002BAD BOD . …………………………………………4分 (3)∵∠BCO=∠DAB +∠D ,∴∠BCO >∠DAB ,∠BCO >∠D .∴要使△DAC 与△BOC 相似,只能∠DCA=∠BCO=90°. 此时,∠BOC=60°,∠BOD=120°,∴∠DAC=60°. ∴△DAC ∽△BOC .∵∠BCO =90°,即OC ⊥AB ,∴AC =21AB =3. ∴当3=AC 时,以A 、C 、D 为顶点的三角形与以B 、O 、C 为顶点的三角形相似 . ………………………………………………………………6分六、解答题(共3道小题,23小题6分,24小题7分,25小题8分,共21分) 23.(1)证明:∵OC OA =,∴OAC OCA ∠=∠.∵︒=∠+∠+∠180OAC OCA AOC , ∴︒=∠+∠1802OCA AOC .∴︒=∠+∠9021OCA AOC . ∵∠ACD =21∠AOC ,∴︒=∠+∠90OCA ACD . 即︒=∠90DCO . 又∵OC 是半径,∴CD 是⊙O 的切线. ……………………………………………………3分(2)解:过点A 作OC AE ⊥,垂足为E . ∵AD ⊥CD ,︒=∠90DCO ,∴AD ∥CO ,AE ∥DC .∴四边形DCEA 是矩形. ED OC B A∴2==AD CE . …………………………4分 ∵AB 是直径,且AB=10, ∴5==OC OA .∴325=-=-=CE OC OE .∴在Rt △AEO 中,4352222=-=-=OE OA AE . …………………5分 ∴在Rt △ACE 中,52422222=+=+=AE CE AC . ……………6分24.解:(1)∵在Rt ABC △中,︒=∠90ACB ,30=BC ,40=AC ,∴5040302222=+=+=AC BC AB . …………………………1分由面积公式可得 AC BC EP AB ⋅=⋅.∴24504030=⨯=⋅=AB AC BC EP . ……………………………………2分 ∵PE ⊥AB ,3tan =∠EMP ,∴8tan =∠=EMPEPMP . ………………………………………………3分 (2)分两种情况考虑:①当点E 在线段AC 上时,如图②,在Rt △AEP 和Rt △ABC 中,∵︒=∠=∠90ACB APE ,A A ∠=∠,∴△APE ∽△ACB .∴AC AP BC EP =,即 4030x EP =, ∴x EP 43=.∵3tan =∠EMP ,∴PN x EMP EP MP ==∠=41tan . ∴x x x PN AP AB BN 45504150-=--=--=.∴x x x x EP BN y 475321543)4550(21212+-=⋅-=⋅=.………………4分 当点E 与点C 重合时,32244022=-=AP .∴自变量x 的取值范围是:320<<x . …………………………………5分 ②当点E 在线段BC 上时,如图③, 在Rt △BPE 和Rt △BCA 中,∵︒=∠=∠90BCA BPE ,B B ∠=∠,图②P N M ECA B 图③P NM EC AB∴△BPE ∽△BCA . ∴BC BP AC EP =,即 305040x EP -=, ∴)50(34x EP -=. ∵3tan =∠EMP , ∴PN x EMP EP MP =-=∠=)50(94tan . ∴)50(95)50(9450x x x PN AP AB BN -=---=--=. ∴2)50(2710)50(34)50(952121x x x EP BN y -=-⨯-⨯=⋅=. y 与x 的函数关系式为⎪⎪⎩⎪⎪⎨⎧<≤-<<+-=)5032()50(2710)320(475321522x x x x x y ……………6分 当点E 在线段AC 上时,2375)20(3215475321522+--=+-=x x x y , 此时,当20=x 时,y 有最大值为2375. 而当点E 在线段BC 上时,y 的最大值为点E 与点C 重合时,显然没有2375大. ∴当20=x 时,y 有最大值,最大值为2375.……………………………7分25.解:(1)当顶点A 运动至与原点重合时,设BC 与y 轴交于点D ,如图所示.∵BC ∥x 轴,BC=AC=32, ∴3=CD ,3=AD .∴C 点的坐标为)3,3(-. ……………1分 ∵当3=x 时,3332)3(2-=⨯-=y .∴当顶点A 运动至与原点重合时,顶点C 在抛物线上.……………2分(2)过点A 作BC AD ⊥于点D ,设点A 的坐标为(x ,x x 322-).∵8:1:=下部分上部分S S , ∴)32(32x x AD -=.∵等边ABC △的边长为32,∴360sin =︒⋅=AC AD . ∴3)32(32=-x x . ∴01322=--x x .解方程,得 =x 23±.∴顶点A 的坐标为)1,23(+或)1,23(-.…………………………5分(3)当顶点B 落在坐标轴上时,顶点C 的坐标为)0,632(-、)0,632(+、)6,32(-. …………………………………………………………… 8分。