2013年高考数学试卷分析(理)
- 格式:doc
- 大小:633.50 KB
- 文档页数:8
2013年普通高等学校招生全国统一考试数学(理科)乐享玲珑,为中国数学增光添彩 免费玲珑3D 画板,全开放的几何教学软件,功能强大,好用实用 一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为(A )3 (B )4 (C )5 (D )62.()3=(A )8- (B )8 (C )8i - (D )8i3.已知向量()()1,1,2,2m n λλ=+=+,若()()m n m n +⊥- ,则=λ(A )4- (B )3- (C )2- (D )-1 4.已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭5.函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 6.已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A )()10613--- (B )()101139-- (C )()10313-- (D )()1031+3- 7.()()8411+x y +的展开式中22x y 的系数是(A )56 (B )84 (C )112 (D )1688.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦, (D )314⎡⎤⎢⎥⎣⎦,9.若函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,则a 的取值范围是 (A )[-1,0] (B )[1,)-+∞ (C )[0,3] (D )[3,)+∞10.已知正四棱柱1111ABCD A BC D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于(A )23 (B (C )3(D )13 11.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =(A )12 (B)2(C(D )2 12.已知函数()=cos sin 2f x x x ,下列结论中错误的是(A )()y f x =的图像关于(),0π中心对称 (B )()y f x =的图像关于直线2x π=对称(C )()f x的最大值为2(D )()f x 既奇函数,又是周期函数 二、填空题:本大题共4小题,每小题5分.13.已知α是第三象限角,1sin 3a =-,则cot a = .14.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)。
2013年高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2013•新课标Ⅰ)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选B.2.(5分)(2013•新课标Ⅰ)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4 B.C.4 D.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.3.(5分)(2013•新课标Ⅰ)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.4.(5分)(2013•新课标Ⅰ)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y= C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.5.(5分)(2013•新课标Ⅰ)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选A.6.(5分)(2013•新课标Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C. D.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选A.7.(5分)(2013•新课标Ⅰ)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6与a m,进而得到公差d,由前n项和公式【分析】由a n与S n的关系可求得a m+1及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,故选C.8.(5分)(2013•新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选A.9.(5分)(2013•新课标Ⅰ)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5 B.6 C.7 D.8【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.10.(5分)(2013•新课标Ⅰ)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E 的方程为()A.B.C.D.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选D.11.(5分)(2013•新课标Ⅰ)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D12.(5分)(2013•新课标Ⅰ)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n 的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,又由题意,b n+1﹣c n+1=,∴=a1﹣b n,∴b n+1﹣a1=,∴b n﹣a1=,∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选B.二.填空题:本大题共4小题,每小题5分.13.(5分)(2013•新课标Ⅰ)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.14.(5分)(2013•新课标Ⅰ)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣115.(5分)(2013•新课标Ⅰ)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣16.(5分)(2013•新课标Ⅰ)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅰ)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.18.(12分)(2013•新课标Ⅰ)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.19.(12分)(2013•新课标Ⅰ)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:故EX=400×+500×+800×=506.2520.(12分)(2013•新课标Ⅰ)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.21.(12分)(2013•新课标Ⅰ)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(2013•新课标Ⅰ)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.23.(2013•新课标Ⅰ)(选修4﹣4:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)【分析】(Ⅰ)对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;(Ⅱ)先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标.【解答】解:(Ⅰ)曲线C1的参数方程式(t为参数),得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,即x2+y2﹣8x﹣10y+16=0.将x=ρcosθ,y=ρsinθ代入上式,得.ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;(Ⅱ)曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,由,解得或.∴C1与C2交点的极坐标分别为(,),(2,).24.(2013•新课标Ⅰ)(选修4﹣5:不等式选讲)已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当时,f(x)≤g(x),求a的取值范围.【分析】(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x ﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,画出函数y的图象,数形结合可得结论.(Ⅱ)不等式化即1+a≤x+3,故x≥a﹣2对都成立.故﹣≥a ﹣2,由此解得a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y=,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对都成立.故﹣≥a﹣2,解得a≤,故a的取值范围为(﹣1,].。
逐题分析1、 考查集合、不等式,属于送分题,但要注意1不在所求范围内;(预测1)2、 考查复数,属于送分题;(预测2)3、 考查三角函数图像变换、诱导公式,由于=k ϕπ 时,函数名不变,变换后依然过坐标原点,所以=ϕπ是其中的一种情况;(预测4)4、 考查算法程序框图,只要按部就班计算就没有问题;(预测5)5、 考查图像变换,由已知曲线关于y 轴对称后得到x y e -= ,向左移动一个单位即可得到,但一定注意左右平移是针对x 的变化,所以不论x 前面有什么系数,都要先提出来;(预测10)6、 考查双曲线的性质,离心率和渐近线方程有特定的关系221k e +=(焦点在横轴);(预测13)7、 考查微积分,用矩形面积减去曲线与x 轴围成面积,因为要求原函数,所以要计算准确;(预测9)8、 考查线性规划,关键在于对参数m 的讨论,直线y m =和直线x m =-随着m 的变化同时向左上方或者右下方移动,在移动的过程中寻找临界位置,即y m =、x m =-、220x y --=三条直线交与一点的时候,注意临界点取不到;(预测6)9、 考查极坐标,条件中的极坐标方程表示平行于极轴的直线;(预测11)10、考查等比数列,把条件中的等式拆解成用基本项1a q 、表示,剩下的代入公式即可;(预测3)11、考查圆,利用切割线定理和勾股定理可以求得;(预测12)12、考查分类计数,连续两号共四种情况,分别为{1,2}{2,3}{3,4}{4,5},于是把5个数分成了四堆,再进行全排列;(预测7)13、考查平面向量基本定理,先作图,再求值;(预测0)14、考查立体几何,两异面直线之间,公垂线最短,把公垂线平移到上下底面求解即可;(预测8)15、考查解三角形,利用正弦定理,解方程3sin sin 2A A=即可;(预测15) 16、考查统计概率,前两问看似比较容易,但是注意因为要停留两天,所以选择到达的日期只有13种情况,第三问,不难看出5,6,7,三天的空气质量指数相差最大;(预测16)17、考查立体几何,第一问易证,后两问用向量法也不难证明,只是计算量较大,要注意计算的准确性。
2013辽宁高考数学试卷分析与点评(理科)
2013辽宁高考数学试卷分析与点评(理科)
2013年辽宁高考数学的一个明显变化是:在试卷中增设了选考题,旨在体现学生的个性及自主选择性。
与去年相比,2013年辽宁高考数学试题相对难度比较大。
主要原因是:和去年不同,去年是前面的客观题相对简单,后面主观题相对难, 2013年则相反,前面的客观题难,后面的主观题相对简单。
2013年的试卷中,文科数学和理科数学都是选择和填空题相对较难,其中选择题的后两道题较难,文科数学考的是函数,理科数学则是函数和导数结合的题。
而后面大题方面则相对简单,其中立体几何部分相对简单。
文科数学第20题大题打破了常规,之前5年都是考的椭圆,2013年考的是抛物线,这让很多老师和考生都没有预料到。
这在答题方面,“先易后难”和“先难后易”对考生来说,显然有个心态的变化过程。
2013年这种“先难后易”的模式对考生的心理素质是个极大的考验。
不过先难后易,学生后面答题会相对轻松些。
由此可见,辽宁高考的命制越来越注重对考生个人综合素质的考查。
建议考生和老师在2014备考过程中在注重知识学习的同时,勿忘各方面综合素质的提升。
2013年山东高考数学试卷分析
一、整体分析:
1、总体评价
2013高考整体难度和2012年相差不大。
但稍微比2011年和2012年的难一些。
今年的理科考题传承了山东省考题的一贯风格,但对于导数的考察和去年相比变得稍微容易一些,但最后一题对圆锥曲线的考察较去年稍难,选择题中对命题的考察变得比较灵活,填空题中把概率和分段函数结合起来充分体现了素质教育的思想及方向,最后一个填空题扔然是给出新题型来用已有知识解答,为学生进入大学学习的内容做了很好的交接,和去年不同的是选择填空题中没有出现数列题。
大题中17、18题和往年一样,都是考察三角函数、立体几何中的经典题型,用的都是常见、经典解法,突出了高考题中数学基本能力的地位,第19题为概率题,和往年难度相差不大,但比2010年的简单,也是属于概率题中的中等难度题型。
最后一道大题和去年相比难度变大。
所以综合今年整套试卷来说,难度系数仍为中等。
2
- 2 -
二、逐题分析
- 3 -
- 4 -
三、教学反思
- 5 -
1.今后更要加强对中等题目的训练
2.在教学中多讲解一些各模块相结合的题目,训练学生解题技巧的能力
3.在教学中加大对模块的训练,使学生掌握知识循序渐近、系统完整。
- 6 -。
2013年高考数学试卷分析(理)一选择题1、答案 B解析:i i i i i i i 3113222)2)(1(2-=+--=----=-+-2、答案 C解析:]1,(],1,4[),,2(-∞=⋃-=+∞-=T S C T S R )则(3、答案 D解析D y x y x xy 故选,2222lg lg lg lg )lg(==+4、答案 B解析不充分条件为奇函数,所以是必要时,当)为奇函数时,(当)(2,2k 2x f x f πϕππϕ=+=5、答案 A解析 S k 关系如图所示 k S123 2 35 3 47 4 59 由程序框图结果是59 ,答案A6、答案 C解析 25cos 4cos sin 4sin ,210cos 2sin 22=++=+a a a a a a 两边平方得,25cos sin cos 4cos sin 4sin 2222=+++a a a a a a 则,两边同时除以a 2cos ,得到251tan tan 41,251tan 1tan 4tan 222=++=+++a a a a a 既,则432tan -=a7 答案 D解析 由题意得,既在4等分点时,取最小值,过C 点在AB 边上做垂线CD ,则,)(=+=既在四等分点处,使PB*PD 取最大值,则当D 点为中点时,取最大值,既AC=BC8、答案 C解析 当k=2时,0)(1,0)()1,0(),1)(1(2)1()(''2'>><∈--+-=x f x x f x e x x e x f x x 时,当时,当,则C 选项正确9、答案 D解析 若四边形21BF AF 为矩形,则三角形21AF F 为直角三角形,有双曲线与椭圆的定义得,2212212124,2,3,4c AF AF a AF AF c AF AF =+=-==+,则通过解方程的方法可以解得26,2==e a 则10、答案 A解析 用带特殊选项的思维来看,将每一个选项进行带入,很容易发现A 选项为符合题意的。
【真题在线】2013年普通高等学校招生全国统一考试(广东卷)数学(理科) 试卷类型:A参考公式:台体的体积公式V=31h 错误!未找到引用源。
(S 1 +21s s +S 2错误!未找到引用源。
),其中S 1,S 2分别表示台体的 上、下底面积,h 表示台体的高。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N=( )A.{0}B.{0,2}C.{-2,0}D.{-2,0,2}2、定义域为R 的四个函数y=x 3,y=2x ,y=x 2+1,y=2sinx 中,奇函数的个数是( )A. 4B.3C.2D.13、若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )A.(2,4)B.(2,-4)C. (4,-2)D(4,2)4、已知离散型随机变量X 的分布列为( ) 则X 的数学期望E (X )=( )A.23错误!未找到引用源。
B. 2C. 错误!未找到引用源。
D 、3 4题5题5、某四棱太的三视图如图1所示,则该四棱台的体积是( )A .4B .314错误!未找到引用源。
C .316错误!未找到引用源。
D .66、设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的A .若α⊥β,m ⊂α,n ⊂β,则m ⊥nB .若α∥β,m ⊂α,n ⊂β,则m ∥nC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若m ⊥α,m ∥n ,n ∥β,则α⊥β 7、已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于,则C 的方程 是( )A .15422=-y x 错误!未找到引用源。
B .15422=-y x 错误!未找到引用源。
C .15222=-y x D .15222=-y x8、设整数n ≥4,集合X={1,2,3…,n },令集合S={(x,y,z )|x ,y ,z ∈X , 且三条件x<y<z,y<z<x ,z<x<y 恰有一个成立},若(x ,y ,z )和(z ,w ,x ) 都在s 中,则下列选项正确的是( )A.(y ,z ,w )∈s ,(x ,y ,w )∉SB.(y ,z ,w )∈s ,(x ,y ,w )∈SC.(y ,z ,w )∉s ,(x ,y ,w )∈SD. (y ,z ,w )∉s ,(x ,y ,w )∉S二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2013年高考数学(理科)试卷分析2013年考题在题型、题量、分值、难度、知识分布与覆盖上与2012年类似,保持相对稳定;其中函数知识、立体几何约、解析几何、数理统计、概率、二项式定理所占分值均为22分,三角函数为17分,数列为10分,集合、复数、程序框图、平面向量分别占5分,选修占10分,还有一道选择题融合了数列、三角、圆锥曲线三大知识点占5分,共150分。
数学试题整体结构稳定,知识覆盖面广,突出重点注重对概念本质的考察,深化能力立意,突出思维能力和创新意识的考查,强化思想,突出对考生的能力和数学素养的考查;试卷紧扣新课程标准的考试说明,基础知识考察全面。
选择题没有偏题、怪题,全部立足考察学生的基础知识,11,12题稍难一些,尤其是12题,具有较高的综合度和能力要求;解答题仍然考察五个重点类型:解三角形、立体几何、概率统计分布列、解析几何、导数。
试卷立足现行高中教材,在注重对基础知识和基本方法全面考查的同时,又突出了对数学思想、数学核心能力进行综合考查,贯彻了有利于中学数学教学与有利于高校选拔人才相结合的原则,凸显了高考的选拔功能,又贯彻了“总体保持稳定,深化能力立意,积极改革创新”的指导思想,充分体现了高考“能力立意”的中心思想,具体四个鲜明特点。
1、结构合理,突出重点,回归传统。
常规题型依然是试卷的主流,考查的几乎都是现行高中数学教材中最基本、最重要的数学知识和数学思想方法。
高三复习应改变以往片面追求“新、奇、怪”的极端做法,回归教材,狠抓基础,灵活运用知识处理分析问题。
2、梯度明显,区分有效,难度设置合理。
选择题第1题到第8题有的较容易,有的是稍微有点计算量的中档题,是绝大部分同学都能解决的题目;9、10、11题需要一些基础知识和技巧才能做出的,12题偏难;填空题中的13、14应该属于简单题,15、16题有一定难度。
解答题中17题是三角题,题目不难,但手法新颖,学生容易发慌;18、19题都是常规题目,对于成绩中等学生应该不难解决。
2013年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题,第二部分为非选择题.。
2. 考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.。
3. 所有解答必须填写在答题卡上指定区域内。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R ,函数()f x M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-【答案】D【解析】()f x 的定义域为M=[-1,1],故2. 根据下列算法语句, 当输入x 为60输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 61【答案】C【解析】故选择C3. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的 (A) 充分不必要条件(B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件【答案】A 【解析】4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 (A) 11 (B) 12 (C) 13 (D) 14 【答案】B【解析】由题设可知区间[481,720]长度为240,落在区间内的人数为12人。
5. 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是(A)14π-(B)12π-(C) 22π-(D) 4π【答案】A【解析】由题设可知矩形ABCD 面积为2,曲边形DEBF 的面积为22124ππ-=-,选A.6. 设z 1, z 2是复数, 则下列命题中的假命题是 (A) 若12||0z z -=, 则12z z = 2z =(C) 若12||z z =, 则2112··z z z z =(D) 若12||||z z =, 则2122z z =【答案】D【解析】设12,,z a bi z c di =+=+若12||0z z -=,则12||()()z z a c b d i -=-+-,12z z =,则,a c b d ==-,所以12z z =,故22c d =+,所以1122..z z z z =,故C 项正确;a ,b ,c , 若cos cos sin b C c B a A +=, 则△ABC 的形 (A) 锐角三角形 (B) 直角三角形(C) 钝角三角形(D) 不确定【答案】B【解析】因为cos cos sin b C c B a A +=,所以由正弦定理得2sin cos sin cos sin B C C B A +=,所以2sin()sin B C A +=,所以2sin sin A A =,所以sin 1A =,所以△ABC 是直角三角形。
2013年高考数学试卷分析(理)承担校区 试卷分析人三、解答题18、本题主要考查等差数列、等比数列的概念,等差数列通项公式、求和公式等基础知识,同时考查运算求解能力。
满分14分。
(Ⅰ)由题 意得**22213,64,11,41.043)22(5Nn n a N n n a d d d d a a a n n ∈+=∈+-==-==--+=⋅或所以 或故 即 (Ⅱ)设数列{}由因为项和为的前,0,<d S n a n n (Ⅰ)得则,11,1+-=-=n a d n 当.22121112321n n S a a a a n n n +-=+⋯⋯+++≤=时, 当.11022121212211321+-=+-+⋯⋯+++≥n n S S a a a a n n n =时,综上所述,.)12(11022121)11(2212122321⎪⎪⎩⎪⎪⎨⎧≥+-≤+-+⋯⋯+++n n n n n n a a a a n =19.本题主要考查随机事件的概率和随机量的分布列、数学期望、数学方差等概念,同时考查抽象概括、运算求解能力和应用意识。
满分14分。
(Ⅰ) ,由题意得.6,5,4,3,2=ξ 故 ;1856622132)4(;3166232)3(;416633)2(=⨯⨯+⨯⨯===⨯⨯⨯===⨯⨯==ξξξP P P3616611)6(;9166122)5(=⨯⨯===⨯⨯⨯==ξξP P 所以ξ的分布列为(Ⅱ)由题意知η的分布列为 所以.95)353()352()351()(222=++⋅-+++⋅-+++⋅-=c b a c c b a b c b a a D η化简得:⎩⎨⎧=-+=--0114042c b a c b a解得.1:2:3::,2,3===c b a c b c a 故 20.(本题满分15分)如图,在四面体A BCD -中,AD BCD ⊥平面,BC CD ⊥,2AD =,BD =M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =. (1)证明://PQ BCD 平面;(2)若二面角C BM D --的大小为60︒,求BDC ∠的大小.BAPCDMQ【分析】本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的运用,同时考查空间想象能力和运算求解能力。
【解析】方法一:(1)取BD 的中点O ,在线段CD 上取点F ,使得3DF FC =,连结,,OP OF FQ ,因为3AQ QC =,所以//QF AD ,且14QF AD =. 因为,O P 分别为BD ,BM 的中点,所以OP 是BDM ∆的中位线,所以//OP DM ,且12OP DM =.又因为点M 是AD 的中点,所以//OP AD ,14OP AD =. 从而//OP FQ .所以四边形OPQF 为平行四边形,故//PQ OF .又PQ BCD ⊄平面,OF BCD ⊂平面,所以//PQ BCD 平面. (2)作CG BD ⊥于点G ,作GH BM ⊥于点H ,连结CH . 因为AD BCD ⊥平面,CG BCD ⊂平面,所以AD CG ⊥.又CG BD ⊥,AD BD D = ,故CG ABD ⊥平面,又BM ABD ⊂平面,所以CG BM ⊥. 又GH BM ⊥,CG GH G = ,故BM CGH ⊥平面,所以GH BM ⊥,CH BM ⊥. 所以CHG ∠为二面角C BM D --的平面角,即60CHG ∠=︒. 设=BDC θ∠.在Rt BCD ∆中,cos CD BD θθ==sin sin CG CD θθθ==2sin BG BC θθ==.在Rt BDM ∆中,23BG DM HG BM θ⋅==.在Rt CHG ∆中,3cos tan sin CG CHG HG θθ∠===.所以tan θ=60θ=︒,即=60BDC ∠︒.方法二:(1)如图,取BD 的中点O ,以O 为原点,,OD OP 所在射线分别为,y z 轴的正半轴建立空间直角坐标系Oxyz .由题意知(0,A B D .设点C 的坐标为00(,,0)x y ,因为3AQ QC =,所以00331(,,)4442Q x y +.因为M 是AD 的中点,故M ,又P 是BM 的中点,,故1(0,0,)2P ,所以0033(,,0)444PQ x y =+ .又平面BCD 的一个法向量为(0,0,1)u =,故0PQ u ⋅=.又PQ BCD ⊄平面,所以//PQ BCD 平面. (2)设平面BMC 的一个法向量为(,,)m x y z =,由00(,1),)CM x y BM =-=知:00)0,0.x x y y z z ⎧-++=⎪⎨+=⎪⎩取1y =-得00(y m x =-. 易知平面BDM 的一个法向量为(1,0,0)n =,于是1cos ,2m n m n m n⋅<>===,即200(3y x =① 又BC CD ⊥,所以0CB CD ⋅=,故0000(,,0)(,0)0x y x y -⋅=,即22002+=x y ②联立①,②解得00000)x x y y ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎪⎩=⎪⎩舍去或,所以tan BDC ∠==又BDC ∠是锐角,所以=60BDC ∠︒.21.(本题满分15分)如图,点(0,1)P -是椭圆221221(0)x y C a b a b+=>>:的一个顶点,1C 的长轴是圆2224C x y +=:的直径.12,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于,A B 两点,2l 交椭圆1C 于另一点D . (1)求椭圆1C 的方程;(2)求ABD ∆面积取最大值时直线1l 的方程.【分析】本题主要考查椭圆的几何性质,直线与圆的位置关系,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。
【解析】(1)由题意得12b a =⎧⎨=⎩,所以椭圆1C 的方程为2214x y +=. (2)设112200(,),(,),(,)A x y B x y D x y .由题意知直线1l 的斜率存在,不妨设为k ,则直线1l 的方程为1y kx =-. 又圆2224C x y +=:,故点O 到直线1l的距离为d=,所以AB ==又21l l ⊥,故直线2l 的方程为0x ky k ++=. 由2244x ky k x y ++=⎧⎨+=⎩消去y ,整理得22(4)80k x kx ++=.故0284k x k =-+.所以PD =.设ABD ∆的面积为S ,则12S AB PD=⋅=,所以32=S≤=, 当且仅当k =所以所求的1l 的方程为1y =-22.(本题满分14分)已知a R ∈,函数32()3333f x x x ax a =-+-+. (1)求曲线()y f x =在点(1,(1))f 处的切线方程; (2)当[]0,2x ∈时,求()f x 的最大值.【分析】本题主要考查导数的几何意义、导数的应用等基础知识,同时考查推理论证能力,分析解决问题的能力。
【解析】(1)由题意2'()363f x x x a =-+,故'(1)33f a =-. 又(1)1f =,所以所求的切线方程为(33)34y a x a =--+. (2)由于2'()3(1)3(1),02f x x a x =-+-≤≤,故①当0a ≤时,有'()0f x ≤,此时()f x 在[]0,2上单调递减,故{}max ()max (0),(2)33f x f f a ==-.②当1a ≥时,有'()0f x ≥,此时()f x 在[]0,2上单调递增,故{}max ()max (0),(2)31-f x f f a ==③当01a <<时,设1211x x == 1202x x <<<,12'()3()()f x x x x x =--. 列表如下:x1(0,)x 1x12(,)x x2x2(,2)x2'()f x+- +()f x 33a -极大值1()f x极小值2()f x31a -由于12()12(1()12(1f x a f x a =+-=--故1212()()20,()()4(10f x f x f x f x a +=>-=->, 从而12()()f x f x >,所以{}1max ()max (0),(2),()f x f f f x =, 1)当203a <<时,(0)(2)f f >.又21()(0)2(1(23)0f x f a a -=--=>,故1max ()()12(1f x f x a ==+-. 2)当213a ≤<时,(2)(2)f f =,且(2)(0)f f ≥.又21()(2)2(1(32)f x f a a -=--=①当2334a ≤<时,1()(2)f x f >,故1max ()()12(1f x f x a ==+- ②当314a ≤<时,1()(2)f x f ≤,故max ()(2)31f x f a ==-综上:max33,0,3()12(1,4331,.4a a f x a a a a ⎧⎪-≤⎪⎪=+-<<⎨⎪⎪-≥⎪⎩。