初中毕业生学业考试试卷数学试卷(WORD版)及答案06
- 格式:doc
- 大小:279.00 KB
- 文档页数:7
2006年长春市初中毕业生学业考试数 学 试 题(含答案)一、选择题(每小题3分,共24分) 1.计算2(1)-的值是( ) A.1B.1-C.2D.2-2.化简()m n m n --+的结果是( )A.0 B.2m C.2n - D.22m n - 3.在数轴上表示不等式260x -≥的解集,正确的是( )4.如图,BD 为O e 的直径,30A =o∠,则CBD ∠A.30oB.45oC.60o5.从某班学生中随机选取一名学生是女生的概率为35,则该班女生与男生的人数比是( )A.32 B.35C.23 D.256.由6个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A.正视图的面积最大 B.左视图的面积最大 C.俯视图的面积最大 D.三个视图的面积一样大 7.如图,双曲线8y x=的一个分支为( ) A.① B.② C.③ D.④8.如图,将圆桶中的水倒入一个直径为40cm ,高为55cm 的圆口容器中,圆桶放置的角度与水平线的夹角为45o.若使容器中的水面与圆桶相接触,则容器中水的深度至少应为( ) A.10cm B.20cm C.30cm D.35cm二、填空题(每小题3分,共18分)A. B. C. (第4题)(第6题) (第8题)9_______=.10.函数2y x bx c =+-的图象经过点(12),,则b c -的值为 .11.5名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm ):2,2-,1-,1,0,则这组数据的极差为 cm .12.图中_______x =.13.两圆有多种位置关系,图中不存在的位置关系是 .14.如图,将AOB △绕点O 逆时针旋转90o,得到A OB ''△.若点A 的坐标为()a b ,,则点A '的坐标为 .三、解答题(每小题5分,共20分)15.将直尺与三角尺按如图所示的方式叠放在一起.在图中标记的角中,写出所有与1∠互余的角.16.计算:42xx x x ⎛⎫-⎪-⎝⎭g.17.下面的两个网格中,每个小正方形的边长均为1cm .请你分别在每个网格中画出一个顶点在格点上,且周长为12cm 的形状和大小不同的凸多边形.(第12题) 30o 45o30o105o1 2 x(第13题)(第14题)18.小刚想给小东打电话,但忘了电话号码中的一位数字,只记得号码是2849456□(□表示忘记的数字).(1)若小刚从0至9的自然数中随机选取一个数放在□位置,则他拨对小东电话号码的概率是 .(2分)(2)若□位置的数字是不等式组2110142x x x ->⎧⎪⎨+⎪⎩,≤的整数解,求□可能表示的数字.(3分)四、解答题(每小题6分,共12分)19.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服.20.如图,矩形ABCD 是供一辆机动车停放的车位示意图.请你参考图中数据,计算车位所占街道的宽度EF .(参考数据:sin 400.64cos 400.77tan 400.84ooo≈,≈,≈,结果精确到0.1m .)五、解答题(每小题6分,共12分) 21.如图,P 为抛物线2331424y x x =-+上对称轴右侧的一点,且点P 在x 轴上方,过点P 作PA 垂直x 轴于点A ,PB 垂直y 轴于点B ,得到矩形PAOB .若1AP =,求矩形PAOB 的面积.22.某班组织一次数学测试,全班学生成绩的分布情况如下图:(1)全班学生数学成绩的众数是 分,全班学生数学成绩为众数的有 人.(2分) (2)全班学生数学成绩的中位数是 分.(2分)(3)分别计算两个小组超过全班数学成绩中位数的人数占全班人数的百分比.(2分)六、解答题(每小题7分,共14分) 23.如图,P 为正比例函数32y x =图象上的一个动点,P e 的半径为3,设点P 的坐标为()x y ,.(1)求P e 与直线2x =相切时点P 的坐标.(4分)(2)请直接写出P e 与直线2x =相交、相离时x 的取值范围.(3分)24.如图,在ABCD Y中,E 为BC 边上一点,且AB AE =. (1)求证:ABC EAD △≌△.(4分) (2)若AE 平分DAB ∠,25EAC =o∠,求AED ∠的度数.(3分)某班数学成绩统计图学生数0 24 68 10 12 80 85 90 95100 分数 第一组 第二组 2x =32y x =xO Py AC七、解答题(每小题10分,共20分)25.小张骑车往返于甲、乙两地,距甲地的路程y (千米)与时间x (小时)的函数图象如图所示.(1)小张在路上停留 小时,他从乙地返回时骑车的速度为 千米/时.(3分) (2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止..,途中小李与小张共相遇3次.请在图中..画出小李距甲地的路程y (千米)与时间x (小时)的函数的大致图象.(3分)(3)小王与小张同时出发,按相同路线前往乙地,距甲地的路程y (千米)与时间x (小时)的函数关系式为1210y x =+.小王与小张在途中共相遇几次?请你计算第一次相遇的时间.(4分)26.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒.(1)求正方形ABCD 的边长.(2分)(2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度.(2分)(3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标.(4分) (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =o∠的点P 有 个.(2分)y(抛物线()20y ax bx c a=++≠的顶点坐标是2424b ac ba a⎛⎫-- ⎪⎝⎭,.)2006年长春市初中毕业生学业考试数学试卷参考答案及评分标准一、选择题(每小题3分,共24分)1.A2.C3.B4.C5.A6.C7.D8.D二、填空题(每小题3分,共18分)910.111.412.213.相交14.()b a-,三、解答题(每小题5分,共20分)15.234∠,∠,∠.(写对一个得2分,写对两个得4分,写对三个得5分,多写扣1分)16.42xxx x⎛⎫-⎪-⎝⎭g242x xx x-=-g(2分)()()222x x xx x+-=-g2x=+.(5分)17.提供以下方案供参考:图①图②(画对一个得3分,画对两个得5分) 18.(1)110. (2分)(2)由2110142x x x ->⎧⎪⎨+⎪⎩,≤,得5.58x <≤. x Q 是整数,∴所求的数字为6或7或8.(5分)四、解答题(每小题6分,共12分)19.设服装厂原来每天加工x 套演出服. 根据题意,得603006092x x-+=. (3分)解得20x =.经检验,20x =是原方程的根.答:服装厂原来每天加工20套演出服.(6分)20.在Rt CDF △中, 5.440CD DCF ==o,∠,sin 40 5.40.64 3.46DF CD ∴=⨯o g ≈≈.(2分)在Rt ADE △中, 2.240AD ADE DCF ===o,∠∠,cos 40 2.20.77 1.69DE AD ∴=⨯o g ≈≈. (4分) 5.15 5.2(m)EF DF DE ∴=+≈≈.(6分)即车位所占街道的宽度为5.2m .五、解答题(每小题6分,共12分)21.PA x ⊥Q 轴,1AP =,∴点P 的纵坐标为1. 当1y =时,23311424x x -+=,即2210x x --=.解得1211x x ==(4分)Q 抛物线的对称轴为1x =,点P 在对称轴的右侧,1x ∴=∴矩形PAOB的面积为(1个平方单位.(6分)22.(1)95,20. (2分) (2)92.5. (4分)(3)121324265050==Q%,%, ∴第一、二小组超过全班数学成绩的中位数的人数占全班人数的百分比分别为2426%,%.(6分)六、解答题(每小题7分,共14分)23.(1)过P 作直线2x =的垂线,垂足为A .当点P 在直线2x =右侧时,23AP x =-=,得5x =,1552P ⎛⎫∴ ⎪⎝⎭,.(2分)当点P 在直线2x =左侧时,23PA x =-=,得1x =-,312P ⎛⎫∴-- ⎪⎝⎭,. (4分)∴当P e 与直线2x =相切时,点P 的坐标为1552⎛⎫ ⎪⎝⎭,或312⎛⎫-- ⎪⎝⎭,.(2)当15x -<<时,P e 与直线2x =相交.当1x <-或5x >时,P e 与直线2x =相离. (7分)24.(1)Q 四边形ABCD 为平行四边形, AD BC AD BC ∴=∥,. DAE AEB ∴=∠∠. AB AE AEB B =∴=Q ,∠∠. B DAE ∴=∠∠. ABC EAD ∴△≌△.(4分)(2)DAE BAE DAE AEB ==Q ∠∠,∠∠, BAE AEB B ∴==∠∠∠. ABE ∴△为等边三角形.60BAE ∴=o ∠.2585EAC BAC =∴=o o Q ∠,∠.ABC EAD Q △≌△,85AED BAC ∴==o ∠∠.(7分)七、解答题(每小题10分,共20分)25.(1)1,30.(2)所画图象如图所示.要求图象能正确反映起点与终点.(6分)(3)由函数1210y x =+的图象可知,小王与小张在途中共相遇2次,并在出发后 2小时到4小时之间第一次相遇. 当24x ≤≤时,2020y x =-.y由20201210y x y x =-⎧⎨=+⎩,,得154x =.所以第一次相遇的时间为154小时. (10分)26.(1)作BF y ⊥轴于F .()()01084A B Q ,,,,86FB FA ∴==,. 10AB ∴=.(2分)(2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=Q ,.P Q ∴,两点的运动速度均为每秒1个单位.(4分)(3)方法一:作PG y ⊥轴于G ,则PG BF ∥.GA AP FA AB ∴=,即610GA t=.35GA t ∴=.3105OG t ∴=-.4OQ t =+Q ,()113410225S OQ OG t t ⎛⎫∴=⨯⨯=+- ⎪⎝⎭.(6分)即231920105S t t =-++. 19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭Q ,且190103≤≤, ∴当193t =时,S 有最大值. 此时4763311051555GP t OG t ===-=,, ∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.(8分)方法二:当5t =时,1637922OG OQ S OG OQ ====g ,,.设所求函数关系式为220S at bt =++.Q 抛物线过点()63102852⎛⎫⎪⎝⎭,,,,1001020286325520.2a b a b ++=⎧⎪∴⎨++=⎪⎩,31019.5a b ⎧=-⎪⎪∴⎨⎪=⎪⎩,231920105S t t ∴=-++. (6分)19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭Q ,且190103≤≤, ∴当193t =时,S 有最大值. 此时7631155GP OG ==,,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.(8分) (4)2. (10分)阿。
2006年浙江省衢州市初中毕业生学业水平考试数 学 试 卷(全卷满分为150分,考试时间为120分钟)参考公式:二次函数2y ax bx c =++图像的顶点坐标是24(,)24b ac b a a-- 一.选择题(本题共10小题,每小题4分,共40分)请选出各题中一个符合题意的正确选项,不选﹑多选﹑错选均不给分。
1.计算3—5的结果是( )A .2 B. —2 C. 8 D. —5 2 )3.方程x (x+1)=0的解是( )A .x= —1 B. x=0C. x 1=0, x 2=1D. x 1=0, x 2= —1A .81.42 B. 68.25 C.54.45 D.45.525.某种物体的三视图是如下的三个图,那么该物体的形状是( )主视图 左视图 右视图A .圆柱体 B.圆锥体 C.立方体 D.长方体6.小明和小亮口袋里都放有五张不同的2008北京奥运会福娃纪念卡,小明从口袋里摸出一张福娃贝贝,小亮从口袋里摸出一张福娃也是贝贝的概率是( )A .125B. 25C. 15D. 1107.如图,A ﹑B 两点分别位于一个池塘的两端,小明想用绳子测量A ﹑B 间的距离,但绳子不够,于是他想了一个办法:在地上取一点C ,使它可以直接到达A ﹑B 两点,在AC的延长线上取一点D ,使CD=12CA ,在BC 的延长线上取一点E ,使CE=12CB ,测得DE 的长为5米,则AB 两点间的距离为( )A .6米B 。
8米C 。
10米D 。
12米8.如图所示,把一张矩形纸片二次对折后沿虚线剪下,则所得图形是( )9.2005年10月12日,我国自主研制的神舟六号载人飞船上天,运行在距地球大约343千米的圆形轨道上,速度大约为468千米/分。
14日,航天员费俊龙在返回仓内连续做了4个前滚翻,用时约3分钟。
那么费俊龙的一个前滚翻飞越的行程相当于哪种交通工具5小时的行程( )A .自行车B 。
汽车C 。
2011年广东省初中毕业生学业考试数 学 试 题全卷共6页,考试用时100分钟,满分为120分。
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的, 1.-3的相反数是( )A .3B .31C .-3D .31-2.如图,已知∠1 = 70º,如果CD ∥BE ,那么∠B 的度数为( )A .70ºB .100ºC .110ºD .120º3.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( ) A .6,6B .7,6C .7,8D .6,84.左下图为主视方向的几何体,它的俯视图是( )5.下列式子运算正确的是( )A .123=-B .248=C .331=D .4321321=-++二、填空题(本大题5小题,每小题4分,共20分)6. 据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次。
试用科学记数法表示8000000=_______________________。
7.化简:11222---+-y x y xy x=_______________________。
8.如图,已知Rt △ABC 中,斜边BC 上的高AD=4,cosB=54,则AC=____________。
9.已知一次函数b x y -=与反比例函数xy 2=的图象,有一个交点的纵坐标是2,则b 的值为________。
10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________。
西青区2023年初中毕业生学业考试数学调查试卷(二)本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第3页,第Ⅱ卷第4页至第8页.试卷满分120分.考试时间100分钟.答卷前,考生务必将自己的姓名、班级、学校、考场号、座位号、准考证号填写在“答题卡”上;用2B铅笔将考试科目对应的信息点涂黑;在指定位置用2B铅笔将准考证号对应的信息点涂黑.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回.祝各位同学考试顺利!第Ⅰ卷(选择题共36分)注意事项:每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)计算(-2)+(-7)的结果等于(A)-5(B)5(C)-9(D)9(2)sin45°的值等于(A(B)22(C)1(D)2(3)将696000000用科学记数法表示应为(A)6.96×108(B)6.96×107(C)69.6×107(D)696×1061828(4)下面4个图案中是轴对称图形的是阿基米德螺旋线(A )笛卡尔心形线(B )赵爽弦图(C )太极图(D)(5)右图是一个由6个相同的正方体组成的立体图形,它的主视图是第(5)题(B )(A )(C )(D )(6)估计47的值在(A )3和4之间(B )4和5之间(C )5和6之间(D )6和7之间(7)计算13121++++b ab a b a -的结果是(A )1+b a (B )11+b (C )1(D )0(8)若点) ,(2 1x A ,)- ,(1 2x B ,),-(5 3x C 都在反比例函数xy 5-=的图象上,则1x ,2x ,3x 的大小关系是(A )123x x x <<(B )231x x x <<(C )132x x x <<(D )312x x x <<(9)方程2690x +-=()的两个根是(A )1 3x =,2 9x =(B )1 3x =-,2 9x =(C )1 3x =,2 9x =-(D )1 3x =-,2 9x =-38(10)如图,在平面直角坐标系中,△ABC 的顶点A (3,0),B (0,-1),点C 在第四象限,且AB =BC ,∠ABC =90°,则点C 的坐标是(A )(-4,1)(B )(1,-4)(C )(-1,4)(D )(4,-1)(11)如图,将ABC △绕点A 逆时针旋转后得到△ADE ,点B ,C 的对应点分别为D ,E ,点B 恰好在AE 边上,且点D 在CB 的延长线上,连接CE ,若∠ABC =110°,则下列结论一定正确的是(A )CE DE =(B )CE ⊥DE (C )旋转角是70°(D )DE ‖AC(12)已知抛物线21 y a x k ()=++(a ,k 是常数,k >1)经过点(-3,0).下列结论:①关于x 的方程012=++k x a )(有两个不相等的实数根,即1 3x =-,21x =;②a +k >0;③a <14-.其中,正确的个数是(A )3(B )2(C )1(D )0第(11)题第(10)题48第Ⅱ卷(非选择题共84分)注意事项:用黑色墨水的钢笔或签字笔将答案直接写在“答题纸”上.二、填空题(本大题共6小题,每小题3分,共18分)(13)计算252x x ⋅的结果等于.(14)计算))((122122-+的结果等于.(15)不透明袋子中装有10个球,其中有4个红球、3个绿球、3个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.(16)若直线y =kx +3经过第一、二、四象限,则k 的值可以是.(17)如图,四边形ABCD 是正方形,点E 在BC 边上,点F 在CD的延长线上,满足BE =DF ,连接EF 与对角线BD 交于点G ,连接AF ,AG ,若AF=10,则AG 的长为.(18)如图,在每个小正方形的边长为1的网格中,四边形ABCD 的顶点B ,C ,D 均落在格点上,点A 是小正方形一边的中点,连接AC .(Ⅰ)线段AC 的长等于;(Ⅱ)以线段AC 为直径作⊙O ,试确定圆心O 的位置,并在线段CD 上找一点P ,满足PC =AC ,请用无.刻度..的直尺,在如图所示的网格中,画出点O 和点P ,并简要说明点O ,点P 的位置是如何找到的(不要求证明).第(18)题第(17)题58三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)(19)(本小题8分)请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:1-021342-(Ⅳ)原不等式组的解集为.(20)(本小题8分)在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,调查统计了部分学生一周的课外阅读时长(单位:小时),整理数据后绘制出如下的统计图①和图②.学生人数第(20)题图①图②一周课外阅读时长6109246请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的学生人数为,图①中m 的值为;(Ⅱ)求统计的这部分学生一周课外阅读时长的平均数、众数和中位数.68x /小时y /人5327468已知AB 是⊙O 的直径,点C 是⊙O 上一点,点D 是⊙O 外一点,DC 是⊙O 的切线,C 为切点,连接DA ,CB .(Ⅰ)如图①,若DA 与⊙O 相切,A 为切点,∠ADC =70°,求∠ABC 的大小;(Ⅱ)如图②,若DA 与⊙O 相交于点E ,恰有AD ⊥CD ,且CD=4,AB=10,求ED 的长.第(21)题图①图②(22)(本小题10分)某校学生开展综合实践活动,测量某小区公园内路灯MN 的高度.如图,已知观测点A ,B 与路灯底端N 位于同一直线的水平线上,在点A 处测得路灯MN 顶端M 的仰角为33°,在点B 处测得路灯MN 顶端M 的仰角为58°,两个观测点A ,B 相距3.8m ,求路灯MN 的高度(结果精确到0.1).参考数据:tan 330.65︒≈,tan 58 1.60︒≈.第(22)题在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.第(23)题小明和小亮相约到公园游玩.已知小明家,小亮家到公园的距离相同,小明先骑车6 min到达超市,购买了一些食物和饮用水,然后再骑车10min到达公园.小明出发10miny(单位:m)反映了这个过程中小后,小亮骑车从家出发直接到达公园.给出的图象中1y(单位:m)反映了这个过程中小亮骑行的路程,x(单位:min)表示明骑行的路程,2小明离开家的时间.请根据相关信息,解答下列问题:(Ⅰ)填表:小明离开家的时间∕min462031小明骑行的路程∕m1500(Ⅱ)填空:①小明购物的超市到公园的距离是m;②小亮骑车的速度为m/min;③在小明和小亮从各自的家到公园的途中,当两人到公园的距离相同时,小明离开家的时间为min;④当小亮到达公园时,小明距公园还有m.y关于x的函数解析式.(Ⅲ)当0≤x≤31时,请直接写出17888(24)(本小题10分)将直角三角形纸片AOB 放置在平面直角坐标系中,点A 在x 轴的正半轴上,点00O ,(),点02B ,(),∠BAO =30°,点C 在边OB 上(点C 不与点O ,B 重合),折叠该纸片,使折痕所在的直线经过点C ,并与边AB 交于点D ,且∠BCD =60°,点B 的对应点为点E .设OC=t .(Ⅰ)如图①,当t =1时,求∠OCE 的大小和点E 的坐标;(Ⅱ)如图②,若折叠后重合部分为四边形,CE ,DE 分别与OA 交于点F ,G ,试用含有t 的式子表示FE 的长,并直接写出t 的取值范围;(Ⅲ)请直接写出折叠后重合部分面积的最大值.第(24)题图①图②(25)(本小题10分)已知抛物线2y ax ax c =-+(a ,c 为常数,a ≠0)过点Q (1,1),顶点为点P .(Ⅰ)当a =-1时,求此抛物线顶点P 的坐标;(Ⅱ)当a <0时,若△OPQ 的面积为34,求此抛物线的解析式;(Ⅲ)将抛物线2y ax ax c =-+向左平移1个单位,向下平移(a +1)个单位(a >0),得到新抛物线的顶点为A ,与y 轴交点为B ,点M 在直线x =12上,点N 在直线y =-3上,当四边形ABMN 的周长最小时,恰好有MN ∥AB ,求平移后抛物线的解析式.西青区2023年初中毕业生学业考试数学调查试卷(二)参考答案一、选择题:本大题共12小题,每小题3分,共36分.(1)C (2)B (3)A (4)B (5)C (6)D (7)D(8)C(9)D(10)B(11)A(12)A二、填空题:三、解答题:本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程.(19)解:(Ⅰ)x ≤3;(Ⅱ)x ≥-2;(Ⅲ)(Ⅳ)-2≤x ≤3.……………………………………………………8分(20)(本题8分)解:(Ⅰ)20,30;……………………………………………………2分(Ⅱ)∵x ,∴统计的这部分学生一周课外阅读时长的平均数是8.观察条形统计图,∵在这组数据中,9出现了6次,出现的次数最多,∴统计的这部分学生一周课外阅读时长的众数是9.将这组数据按照由小到大的顺序排列,其中处于中间位置的两个数都是8,有888=+,(13)310x (14)7(15)52(16)-1(答案不唯一,满足k<0即可)(17)5(18)(Ⅰ)253;(1分)(Ⅱ)如图,取圆与格线的交点E ,连接BE 交AC 于点O ,取AD 与格线的交点F ,连接OF 交⊙O 于点G ,连接AG 并延长,交CD 于点P ,则点O ,点P 即为所求.(点O ,点P 画图与文字描述各1分)3-30121-2-∴统计的这部分学生一周课外阅读时长的中位数是8.…………………………………8分(21)(Ⅰ)(本小题5分)解:连接AC .∵DA ,DC 分别与⊙O 相切于点A ,点C ,AB 是⊙O 的直径,∴DA =DC ,DA ⊥AB .∴∠DAB =90°,∠DAC =∠DCA=1802ADC- ∠=55°.∴∠BAC=∠DAB -∠DAC=35°.∵AB 是⊙O 的直径,∴∠ACB =90°.∴∠ABC=90°-∠BAC=55°.………………………………5分(Ⅱ)(本小题5分)解:连接OC ,过点O 作OF ⊥AE 于点F .∵OF ⊥AE ,∴∠OFA =∠OFD=90°,AF=EF .∵DC 与⊙O 相切于点C ,∴OC ⊥DC .∴∠DCO =90°.∵AD ⊥CD ,∴∠D =90°.∴四边形OFDC 是矩形.∴OF=DC=4,FD=OC=12AB =5.在Rt △AFO 中,OA=12AB =5,∴223AF AO OF =-=.∴EF=AF=3.∴ED=FD -EF=2.……………………………10分(22)(本题10分)解:根据题意,∠A=33°,∠MBN=58°,∠ANM=90°,AB =3.8.∵在Rt △AMN 中,ANMNA =tan ,∴︒==33tan tan MNA MN AN .∵在Rt △BMN 中,tan ∠MBN BNMN=,∴︒==58tan MNMN BN .∵AN -BN =AB ,∴8.358tan 33tan =︒︒MNMN -.解得︒︒︒⋅︒⋅=33tan 58tan 58tan 33tan 8.3-MN ≈4.2………………10分答:路灯MN 的高度约为4.2m .(23)(本题10分)解:(Ⅰ)1000,1500,3600.…………………………………………3分(Ⅱ)①2100;②240;③16.25;④1260.……………………………………7分tan ∠MBN(Ⅲ)当0≤x ≤6时,1y =250x ;当6<x ≤21时,1y =1500;当21<x ≤31时,1y =210x -2910.……………………………………10分(24)(Ⅰ)(本小题5分)解:∵B (0,2),∴OB =2.∵OC=t=1,∴BC =OB -OC=1.根据折叠,知△CED ≌△CBD ,∴∠ECD=∠BCD =60°,CE =CB =1.∴∠OCE =180°-∠ECD -∠BCD =60°.过点E 作EM ⊥y 轴,垂足为M ,则∠EMC =90°.在Rt △CME 中,有∠CEM =90°-∠OCE =30°.∴CM =1122CE =.∴OM =OC -CM =12,EM .∴点E 12).……………………………………5分(Ⅱ)(本小题3分)解:∵OC =t ,OB =2,∴BC=OB -OC=2-t .同(Ⅰ)知∠OCE=60°,CE =BC=2-t .在Rt △COF 中,∠CFO =90°-∠OCE=30°.∴CF =2CO =2t .∴EF =CE -CF =2-3t .其中t 的取值范围是0<t <23.……………………………………8分(Ⅲ)(本小题2……………………………………10分(25)(Ⅰ)(本小题3分)解:∵抛物线2y ax ax c =-+过点Q (1,1),∴c =1.当a =-1时,4521122+=++=)--(-x x x y ,∴此抛物线顶点P 的坐标为(12,54).……………………………………3分(Ⅱ)(本小题4分)解:由221()124a y ax ax c a x =-+=-+-可知顶点P (12,14a -).由Q (1,1)可知直线OQ 的解析式为y =x ,∴当12x =时得12y =.可设直线OQ 与抛物线对称轴12x =交点为C ,则点C 的坐标为(12,12).∴PC=1142a --=124a -.∴1111×1222448OPQ a a S PC ==-=-△().∵△OPQ 的面积为34,即34OPQ S =△,∴13484a -=.解得a =-4.∴此抛物线的解析式为1442++=x x y -.……………………………7分(Ⅲ)(本小题3分)解:平移后的抛物线解析式为22115(1)11()2424a y a x a a x a =-++---=+-.∴点A 坐标为(12-,a 45-),点B 坐标为(0,-a ).作点B 关于直线x =12的对称点B ′,作点A 关于直线y =-3的对称点A ′,得点B ′坐标为(1,-a ),点A ′坐标为(12-,564a -).连接A ′B ′分别与直线x =12,直线y =-3交于点M ,N ,此时四边形ABMN 的周长最小.由点A (12-,a 45-),点B (0,-a )可得直线AB 解析式为a ax y -=21.由点B ′(1,-a ),点A ′(12-,564a -)可得直线A ′B ′的解析式为31(4)(4)22y a x a =-+-.∵MN ∥AB ,即A ′B ′∥AB ,∴13422a a =-.解得a =2.∴平移后抛物线的解析式为2152(24y x =+-×2=2222x x +-.…………………………………10分。
吉林省2021年初中毕业生学业考试数学试卷一、单选题(每小题2分,共12分)1.计算-2+1的结果是( )A.1 B .-1 C.3 D .-32.不等式2-1>3的解集是( )A. >1B. <1C. >2D. <23.用6个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为( )4.如图所示,体育课上,小丽的铅球成绩为6.4m,她投出的铅球落在( )A.区域① B.区域② C.区域③ D.区域④5.端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是( )A.22B.24C.25D.276.如图,在平面直角坐标系中,抛物线所表示的函数解析式为,则下列结论正确的是( )A. >0,>0B. <0,>0C. <0,<0D. >0,<0二、填空题(每小题3分,共24分)7.计算: .8.若-2=3,则2-4-5= .9.若将方程化为,则m=.x x x x x ()k h x y +--=22h k h k h k h k =⨯62a b a b 762=+x x ()162=+mx日A B C D(第4题)(第5题)(第6题)10.分式方程的解为= .11.如图,把Rt ⊿ABC 绕点A 逆时针旋转40°,得到Rt ⊿AB ′C ′,点C ′恰好落在边AB 上,连接BB ′,则∠BB ′C ′= 度.12.如图,在平面直角坐标系中,点A,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交正半轴于点C,则点C 的坐标为 .13.如图,AB是⊙O 的弦,OC ⊥AB 于点C,连接OA 、OB.点P 是半径OB 上任意一点,连接AP.若OA=5cm,OC=3cm,则AP 的长度可能是 cm (写出一个符合条件的数值即可)14.如图,在矩形ABCD中,AB ,BC <<.将此矩形纸片按下列顺序折叠,则C ′D ′的长度为 (用含、的代数式表示).三、解答题(每小题5分,共20分)15.先化简,再求值:其中=3,=116.在一个不透明的箱子中装有3个小球,分别标有A,B,C.这3个小球除所标字母外,其它都相同.从箱子中随机地摸出一个小球,然后放回。
2006年福建省三明市初中毕业生学业考试数学试卷(梅列、永安、沙县课改实验区)考生注意:本卷中凡涉及实数运算,若无特别要求,结果应该为准确数。
一、填空题:本大题共10小题,1~6题,每小题3分,7~10题,每小题4分,计34分。
把答案填在题中横线上。
1.化简:=--)3(_________。
2.“今年十月七日会下雨”是_________事件。
(填“确定”或“不确定”)3.如图,在梯形ABCD 中,AD//BC ,E 、F 分别为AB 、DC 的中点,AD=3,BC=7,则EF 的长为_________。
4.计算:=⋅22mnn m _________。
5.如图,CD 是圆O 的直径,弦AB ⊥CD ,E 为垂足,AB=8,则AE=_________。
6.下列图形①等腰三角形、②矩形、③正五边形、④正六边形中,只有三个是可以通过切正方体(如图)而得到的切口平面图形,这三个图形的序号是__________________。
7.若关于x 的方程062=-+mx x 有一个根是2,则m 的值为_________。
8.文娱委员随机调查班级里7天内,每天收听综艺或音乐节目的人数,制成折线统计图。
如图,判断收听人数比较稳定的是_________节目。
9.一家商店计划出售60件衬衫,要使销售总额不低于5100元,则每件衬衫的售价至少应为_________元。
10.已知0242=-+x x ,那么20001232++x x 的值为_________。
二、选择题:本大题共6小题,每小题4分,计24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
11.下列计算错误的为( ) A .224)2(a a =-B .523)(a a =C .120=D .8123=- 12.下列用科学记数法表示2006(保留两个有效数字),正确的是( ) A . 0.20×104B . 1.01×103C . 2.0×104D . 2.0×10313.圆柱体茶叶筒的照片如图所示,这个茶叶筒的正视图是( )14.三明市“小交警”为了调查执勤路口小轿车的通过量,在星期日上午从7:00—12:00按每小时统计一次,记录经过的小轿车数量,数据如下:96,168,165,123,93。
湖北省咸宁市2020年初中毕业生学业考试数学试卷(满分120分,考试时间120分钟)一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×1083.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a44.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣27.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.10.因式分解:mx2﹣2mx+m=.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)15.按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.(8分)如图,已知一次函数y 1=kx+b 与反比例函数y 2=的图象在第一、三象限分别交于A (6,1),B (a ,﹣3)两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式;(2)△AOB 的面积为 ;(3)直接写出y 1>y 2时x 的取值范围.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t (单位:min ),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表根据以上图表,解答下列问题:(1)这次被调查的同学共有 人,a = ,m = ;(2)求扇形统计图中扇形D 的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min ?21.(9分)如图,在Rt △ABC 中,∠C =90°,点O 在AC 上,以OA 为半径的半圆O 交AB 于点D ,交AC 于点E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF =DF ;(2)若AC =4,BC =3,CF =1,求半圆O 的半径长.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?组别 在线阅读时间t 人数 A 10≤t <30 4 B 30≤t <50 8 C 50≤t <70 a D 70≤t <90 16 E 90≤t <110 223.(10分)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?答案与解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)【知识考点】有理数的混合运算.【思路分析】分别按照有理数的加减法、有理数的乘除法法则计算即可.【解答过程】解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.【总结归纳】本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:305000000=3.05×108,故选:B.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a4【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.【解答过程】解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.【总结归纳】本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.4.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答过程】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.【总结归纳】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定【知识考点】折线统计图;加权平均数;中位数;方差.【思路分析】利用折线统计图可得甲、乙两名射击运动员5次射击的成绩,把他们的最好成绩进行比较,即可判断A;利用平均数、中位数、方差的意义分别求出他们的平均数、中位数、方差,即可判断B、C、D.【解答过程】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,=[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.【总结归纳】本题考查了折线统计图,平均数、中位数与方差.从折线图中得到必要的信息是解决问题的关键.6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣2【知识考点】扇形面积的计算.【思路分析】由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB可得出结论.【解答过程】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB=﹣=π﹣2.故选:D.【总结归纳】本题考查的是扇形面积的计算,根据题意求得三角形与扇形的面积是解答此题的关键.7.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x【知识考点】一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征;二次函数图象上点的坐标特征.【思路分析】根据横、纵坐标相等的点称为“好点”,即当x=y时,函数解析式变为方程后,方程有解即可判断.【解答过程】解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=﹣x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2﹣2x,解得x1=0,x2=3,不符合题意.故选:B.【总结归纳】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解决本题的关键是掌握每个函数的性质.8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE 沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.【知识考点】矩形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由矩形的性质得出∠B=90°,由勾股定理求出AE,由翻折变换的性质得出△AFE ≌△ABE,得出∠AEF=∠AEB,EF=BE=,因此EF=CE,由等腰三角形的性质得出∠EFC =∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.【解答过程】解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.【总结归纳】本题考查了矩形的性质,勾股定理,翻折变换的性质,等腰三角形的判定与性质,三角形的外角性质,三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF是解决问题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.【知识考点】数轴;相反数.【思路分析】A在数轴上表示的数是3,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答过程】解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.【总结归纳】此题主要考查了在数轴上表示数的方法,相反数的定义.解题的关键是熟练掌握在数轴上表示数的方法,以及相反数的含义和求法.10.因式分解:mx2﹣2mx+m=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提公因式,再利用完全平方公式进行因式分解即可.【解答过程】解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2,【总结归纳】本题考查提公因式法、公式法因式分解,确定多项式的公因式是提公因式的关键,掌握公式的结构特征是正确使用公式的前提.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.【知识考点】平行线的判定.【思路分析】要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.【解答过程】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.【总结归纳】考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.【知识考点】根的判别式.【思路分析】将原方程变形为一般式,根据方程的系数结合根的判别式△≥0,即可得出关于n 的一元一次不等式,解之即可得出n的取值范围(利用偶次方的非负性也可以找出n的取值范围).【解答过程】解:原方程可变形为x2+4x+4﹣n=0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n)≥0,解得:n≥0.故答案为:n≥0.【总结归纳】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.【知识考点】列表法与树状图法.【思路分析】用列表法表示所有可能出现的结果,进而求出相应的概率.【解答过程】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.【总结归纳】本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果,是正确解答的关键.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过P作PD⊥AB于D,易证△ABP是等腰三角形,得到BP=AB=24nmile.然后在直角△PBD中,利用三角函数的定义求得PD的长即可.【解答过程】解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,等腰三角形的判定与性质等知识,正确作出高线,转化为直角三角形的计算是解决本题的关键.15.按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.【知识考点】规律型:数字的变化类.【思路分析】首项判断出这列数中,3的指数各项依次为1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,每个数的指数都是前两数指数之差;可得这列数中的连续三个数,满足a÷b=c,据此解答即可.【解答过程】解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a÷b=c.故答案为:a÷b=c.【总结归纳】此题主要考查了规律型:数字的变化类,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出a、b、c的指数的特征.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)【知识考点】二次函数的最值;全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【思路分析】①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME=135°,再利用等角的余角相等得到∠BAE=∠FEC,于是根据“ASA”可判断△AME≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,利用三角形面积公式得到S△AME=•x•(2﹣x),则根据二次函数的性质可得S△AME的最大值,便可对④进行判断.【解答过程】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,当x=1时,S△ECF有最大值,故④错误.故答案为:①②③.【总结归纳】本题考查了四边形的综合题:熟练掌握正方形的性质和二次函数的性质;能灵活运用全等三角形的知识解决线段线段的问题.构建△AME与△EFC全等是关键.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:【知识考点】实数的运算;零指数幂;解一元一次不等式组;特殊角的三角函数值.【思路分析】(1)先去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=﹣1﹣2×+1=﹣1﹣+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.【总结归纳】本题考查的是解一元一次不等式组和实数的运算,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)【知识考点】平行四边形的性质;菱形的判定与性质;圆周角定理;作图—复杂作图.【思路分析】(1)根据平行四边形的性质和判定,菱形的判定即可证明;(2)连结AE,BF,根据菱形的性质可得AE和BF的交点即为点P.【解答过程】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:【总结归纳】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是作出图形,属于中考常考题型.19.(8分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A (6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为;(3)直接写出y1>y2时x的取值范围.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)首先把A(6,1)代入反比例函数解析式中确定m,然后把B(a,﹣3)代入反比例函数的解析式确定a,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)求得一次函数与x轴的交点,根据S△AOB=S△AOC+S△BOC即可求解;(3)根据图象,写出直线y1=kx+b落在双曲线y2=上方的部分对应的自变量的取值范围即可.【解答过程】解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,﹣3)代入y2=,解得a=﹣2,故B(﹣2,﹣3),把A(6,1),B(﹣2,﹣3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x﹣2;(2)如图,设一次函数y1=x﹣2与x轴交于点C,令y =0,得x =4. ∴点C 的坐标是(4,0), ∴S △AOB =S △AOC +S △BOC =×4×1+×4×3=8.故答案为8;(3)由图象可知,当﹣2<x <0或x >6时,直线y 1=kx+b 落在双曲线y 2=上方,即y 1>y 2,所以y 1>y 2时x 的取值范围是﹣2<x <0或x >6.【总结归纳】此题考查了一次函数与反比例函数的交点问题,待定系数法求一次函数与反比例函数的解析式,三角形的面积,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.利用了数形结合思想.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t (单位:min ),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表根据以上图表,解答下列问题:(1)这次被调查的同学共有 人,a = ,m = ; (2)求扇形统计图中扇形D 的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min ? 【知识考点】用样本估计总体;频数(率)分布表;扇形统计图.【思路分析】(1)根据B 组的频数和所占的百分比,可以求得这次被调查的同学总数,用被调查的同学总数乘以C 组所占百分比得到a 的值,用A 组人数除以被调查的同学总数,即可得到m ; (2)用360°乘以D 组所占百分比得到D 组圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min 的人组别 在线阅读时间t 人数 A 10≤t <30 4 B 30≤t <50 8 C 50≤t <70 a D 70≤t <90 16 E90≤t <1102数所占的百分比即可.【解答过程】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.【总结归纳】本题考查了频数分布表,扇形统计图,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.也考查了利用样本估计总体.21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.【知识考点】圆周角定理;切线的性质;相似三角形的判定与性质.(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B=90°,【思路分析】得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4﹣r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.【解答过程】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.【总结归纳】本题主要考查了切线的性质,等腰三角形的性质与判定,勾股定理,已知切线,往往连接半径为辅助线,第(2)题关键是由勾股定理列出方程.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?【知识考点】分式方程的应用;一次函数的应用.【思路分析】(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意列出分式方程即可;(2)根据配套问题,设购买水银体温计y盒能和口罩刚好配套,根据口罩的数量等于水银体温计数量的2倍列出方程即可用含m的代数式表示;(3)根据题意列出不等式:200m+50×5m≤1800,可得m≤4时,w=450m;当m>4时,w=1800+(450m﹣1800)×0.8=360m+360,进而可得w关于m的函数关系式.【解答过程】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;。
2024年荆州市中考数学试卷(含答案解析).doc某书签分享赚钱赏收藏原创保护版权申诉/ 16 立即下载加入VIP,备课更划算当前位置:首页> 初中 > 初中数学 > 数学中考 > 中考真题> 2024年荆州市中考数学试卷(含答案解析).docx 2024年荆州市中考数学试卷(含答案解析).docx文档编号:上传时间:2024-06-23 类型:DOCX 级别:精品资源页数:16 大小:1.82MB 价格:61.00积分(10积分=1元)《2024年荆州市中考数学试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2024年荆州市中考数学试卷(含答案解析).docx(16页珍藏版)》请在七彩学科网上搜索。
1、2024年荆州市初中学业水平考试数学(本试卷共6页,满分120分,考试时间120分钟)祝考试顺利注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B铅笔或黑色签字笔.4.考试结束后,请将本试卷和答题卡一并交回._一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中2、,只有一项符合题目要求)1. -15的相反数为 A. 15 B. -15 C. 5 D. -52. 据统计,2024 年国内全年出游人次为48.9亿,则数据4 890 000 000用科学记数法表示为 A.4.8910 B.48.910 C. 4.8910 D. 48.9103.某几何体的三视图如图所示,则该几何体可能是4.下列计算正确的是 A. 2a-a=1 B.aa=a C.a-1=a-1 D.a=a5.如图,将一块含60角的直角三角板斜边的两个顶点分别放在直尺的两条边上.若1=140,则2的度数为 A. 20 B. 25 C. 30 D. 35数学第1页(共6页)6.下列调查中,最适合3、采用全面调查(普查)方式的是A.调查某市初中学生每天课外锻炼的时间B.调查春节期间全国居民的花销情况C.调查某批次新能源汽车的续航能力D.调查乘坐飞机的乘客随身携带物品的安全性7. 如图,O是ABC的外接圆,ABC 的平分线交O于点D,连接AD,CD,若ADC=120,则tanACD= A. 33 B. 1 C. 3 D. 138.某同学在物理实验课上做“小孔成像”实验时,将一支长约3cm的蜡烛(包括火焰高度)立在小孔前,蜡烛所立位置离小孔的水平距离为6cm,此时蜡烛火焰通过小孔刚好在小孔另一侧距小孔2cm处的投影屏上形成了一个“像”,若以小孔为坐标原点,构建如图所示的平面直角坐标系xOy,记蜡4、烛火焰顶端A点处的坐标为(-6,3),则A点对应的“像”的坐标为 A. (3,-1) B. (2,-1) C. (2,-2) D. (3,-2)9. 如图,在菱形ABCD中,B=60,E,F分别是边AB,BC的中点,连接EF,DF,若 EF=2,则DF 的长为A. 2 2B. 23C. 2 5D.2 710. 如图1,在矩形ABCD中(AD2AB),P,Q分别为边AB,BC上的动点,点 P 沿折线B-A-D-C以每秒2个单位长度的速度运动,同时点Q以每秒1个单位长度的速度从点 B沿着 BC运动,当点Q到达点C时,点P随之停止运动.连接PQ,若BPQ的面积与运动时间t之间的函数图象如图2所示.下列结论中:AB边的长度为4;四边形ABCD的面积为20;当t=3时,点P与点D的距离为4;当t=4时,PQAB.正确的序号为 A. B. C. D. 数学第2页(共6页)二、填空题(共5题,每题3分,共15分)11. 计算: 3-8+|-3|=_.12.藤球是一项古老而独特的体育运动项目,有着悠久的历史,又叫“脚踢的排球”.下表是学校藤球队中三名学生五次传踢球成绩的平均数及方差统计表,若要从这三名学生中选择一名成绩好且稳定的学生作为校藤球队的队长,则应选择学生 . 甲乙丙平均数方差1.20.50.513.端午节是中国首个入选世界非物质文化遗产的节文档加载中……请稍候!如果长时间未打开,您也可以点击刷新试试。
2006年上海市初中毕业生统一学业考试数学试卷(满分150分,考试时间100分钟)题号一二三 四总分17 18 19 20 21 22 23 24 25 得分考生注意:1.本卷含四大题,共25题;2.除第一、二大题外,其余各题如无特别说明,都必须写出证明或计算的主要步骤. 一.填空题:(本大题共12题,满分36分)【只要求直接写出结果,每个空格填对得3分,否则得零分】 1=__________.2.计算:12x x+=__________.3.不等式60x ->的解集是__________.4.分解因式:2x xy +=__________. 5.函数13y x =-的定义域是__________. 61=的根是__________.7.方程2340x x +-=的两个实数根为1x ,2x ,则12x x =g __________.8.用换元法解方程2221221x x x x -+=-时,如果设221x y x =-,那么原方程可化为__________.9.某型号汽油的数量与相应金额的关系如图1所示,那么这种汽油的单价是每升__________元.10.已知在ABC △和111A B C △中,11AB A B =,1A A =∠∠,要使111ABC A B C △≌△,还需添加一个条件,这个条件可以是__________.11.已知圆O 的半径为1,点P 到圆心O 的距离为2,过点P 引圆O 的切线,那么切线长是__________.12.在中国的园林建筑中,很多建筑图形具有对称性.图2是一个破损花窗的图形,请把它补画成中心对称图形.数量(单位:升) 图1图2二.选择题:(本大题共4题,满分16分)【下列各题的四个结论中,有且只有一个结论是正确的,把正确结论的代号写在题后的圆括号内,选对得4分;不选、错选或者多选得零分】 13.在下列方程中,有实数根的是( ) A.2310x x ++=1=- C.2230x x ++=D.111x x x =-- 14.二次函数()213y x =--+图象的顶点坐标是( ) A.()13-,B.()13,C.()13--,D.()13-,15.在ABC △中,AD 是BC 边上的中线,G 是重心.如果6AG =,那么线段DG 的长为( ) A.2 B.3 C.6 D.12 16.在下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形 D.两条对角线互相垂直且相等的四边形是正方形 三.(本大题共5题,满分48分) 17.(本题满分9分)先化简,再求值:2111x x x -⎛⎫+÷ ⎪⎝⎭,其中x =18.(本题满分9分) 解方程组:23010x y x y --=⎧⎨++=⎩,.19.(本题满分10分,每小题满分各5分) 已知:如图3,在ABC △中,AD 是边BC 上的高,E 为边AC 的中点,14BC =,12AD =,4sin 5B =.求(1)线段DC 的长;(2)tg EDC ∠的值.20.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分)某市在中心城区范围内,选取重点示范路口进行交通文明状况满意度调查,将调查结果的满意度分为:不满意、一般、较满意、满意和非常满意,依次以红、橙、黄、蓝、绿五色标识.今年五月发布的调查结果中,橙色与黄色标识路口数之和占被调查路口总数的15%.结合未画完整的图4中所示信息,回答下列问题: (1)此次被调查的路口总数是__________;(2)将图4中绿色标识部分补画完整,并标上相应的路口数;(3)此次被调查路口的满意度能否作为该市所有路口交通文明状况满意度的一个随机样本?答:____________________.21.(本题满分10分)本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A ,B ,C 三根木柱,使得A ,B 之间的距离与A ,C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图5所示.请你帮他们求出滴水湖的半径.AE CD B 图3红 橙 黄 蓝 绿 标识 图4图5四.(本大题共4题,满分50分)22.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图6,在直角坐标系中,O 为原点.点A 在第一象限,它的纵坐标是横坐标的3倍,反比例函数12y x=的图象经过点A . (1)求点A 的坐标;(2)如果经过点A 的一次函数图象与y 轴的正半轴交于点B ,且OB AB =,求这个一次函数的解析式.23.(本题满分12分,每小题满分各6分)已知:如图7,在梯形ABCD 中,AD BC ∥,AB DC =.点E ,F ,G 分别在边AB ,BC ,CD 上,AE GF GC ==.(1)求证:四边形AEFG 是平行四边形;(2)当2FGC EFB =∠∠时,求证:四边形AEFG 是矩形.24.(本题满分12分,第(1)小题满分5分,第(2)小题满分3分,第(3)小题满分4分)如图8,在直角坐标系中,O 为原点.点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,tg 2OAB =∠.二次函数22y x mx =++的图象经过点A ,B ,顶点为D .(1)求这个二次函数的解析式;图6 B E A D G图7 F(2)将OAB △绕点A 顺时针旋转90o后,点B 落到点C 的位置.将上述二次函数图象沿y 轴向上或向下平移后经过点C .请直接写出点C 的坐标和平移后所得图象的函数解析式; (3)设(2)中平移后所得二次函数图象与y 轴的交点为1B ,顶点为1D .点P 在平移后的二次函数图象上,且满足1PBB △的面积是1PDD △面积的2倍,求点P 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分3分)已知点P 在线段AB 上,点O 在线段AB 延长线上.以点O 为圆心,OP 为半径作圆,点C 是圆O 上的一点.(1)如图9,如果2AP PB =,PB BO =.求证:CAO BCO △∽△;(2)如果AP m =(m 是常数,且1m >),1BP =,OP 是OA ,OB 的比例中项.当点C 在圆O 上运动时,求:AC BC 的值(结果用含m 的式子表示);(3)在(2)的条件下,讨论以BC 为半径的圆B 和以CA 为半径的圆C 的位置关系,并写出相应m 的取值范围.CA PB O 图92006年上海市初中毕业生统一学业考试数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分.2.第一大题只要求直接写出结果,每个空格填对得3分,否则得零分;第二大题每题选对得4分,不选、错选或者多选得零分;17题至25题中右端所注的分数,表示考生正确做对这一步应得分数.评分时,给分或扣分均以1分为单位. 答案要点与评分标准一.填空题:(本大题共12题,满分36分) 1.2; 2.3x; 3.6x >;4.()x x y +;5.3x ≠;6.1;7.4-; 8.2210y y -+=(或12y y+=); 9.5.09;10.1B B =∠∠(或1C C =∠∠,或11AC A C =); 11;12.答案见图1.二.选择题:(本大题共4题,满分16分) 13.A; 14.B; 15.B;16.C.三.(本大题共5题,满分48分)17.解:原式211x x x x+-=÷ ····································································· (2分) ()()111x x x x x +-+=÷ ·························································· (2分) ()()111x x x x x +=+-g ···························································· (1分) 11x =-, ············································································ (2分)当x =1==. ············································· (2分) 18.解:消去y 得220x x +-=, ····························································· (3分)图1得12x =-,21x =, ··································································· (3分) 由12x =-,得15y =-, ······························································ (1分) 由21x =,得22y =-, ······························································· (1分)∴原方程组的解是1125x y =-⎧⎨=-⎩,;2212x y =⎧⎨=-⎩,. ············································ (1分) 19.解:(1)在Rt BDA △中,90BDA =o∠,12AD =,4sin 5AD B AB ==,·· (1分) 15AB ∴=. ················································································· (1分)9BD ∴==. ·········································· (2分) 1495DC BC BD ∴=-=-=. ······················································ (1分) (2)[方法一]过点E 作EF DC ⊥,垂足为F ,EF AD ∴∥. ········· (1分)AE EC =Q ,1522DF DC ∴==,162EF AD ==. ························· (2分) ∴在Rt EFD △中,90EFD =o∠,12tg 5EF EDC DF ==∠. ················· (2分) [方法二]在Rt ADC △中,90ADC =o∠,12tg 5AD C DC ==. ············ (2分) DE Q 是斜边AC 上的中线,12DE AC EC ∴==. ····························· (1分)EDC C ∴=∠∠. ········································································· (1分)12tg tg 5EDC C ∴==∠. ······························································· (1分)20.(1)60; ······················································································ (3分)(2)图略(条形图正确,得2分;标出数字10,得2分); ······················ (4分) (3)不能.······················································································· (3分) 21.解:设圆心为点O ,连结OB ,OA ,OA 交线段BC 于点D . ·················· (1分)AB AC =Q ,»»AB AC ∴=.OA BC ∴⊥,且11202BD DC BC ===. ································································································ (1分)由题意,5DA =. ······································································ (1分) 在Rt BDO △中,222OB OD BD =+, ··········································· (2分) 设OB x =米, ············································································ (1分) 则()2225120x x =-+, ······························································ (2分)1442.5x ∴=. ·········································································· (1分) 答:滴水湖的半径为1442.5米. ···················································· (1分) 四.(本大题共4题,满分50分)22.解:(1)由题意,设点A 的坐标为()3a a ,,0a >. ······························· (1分)Q 点A 在反比例函数12y x =的图象上,得123a a=, ···························· (1分) 解得12a =,22a =-, ·································································· (1分) 经检验12a =,22a =-是原方程的根,但22a =-不符合题意,舍去. ···· (1分) ∴点A 的坐标为()26,. ·································································· (1分) (2)由题意,设点B 的坐标为()0m ,. ··········································· (1分)0m >Q ,m ∴= ··················································· (2分)解得103m =,经检验103m =是原方程的根,∴点B 的坐标为1003⎛⎫⎪⎝⎭,. ·· (1分)设一次函数的解析式为103y kx =+, ················································· (1分) 由于这个一次函数图象过点()26A ,,10623k ∴=+,得43k =. ············ (1分) ∴所求一次函数的解析式为41033y x =+. ·········································· (1分)23.证明:(1)Q 在梯形ABCD 中,AB DC =,B C ∴=∠∠. ·················· (2分) GF GC =Q ,C GFC ∴=∠∠. ····················································· (1分) B GFC ∴=∠∠,AB GF ∴∥,即AE GF ∥. ································ (1分) AE GF =Q ,∴四边形AEFG 是平行四边形. ··································· (2分) (2)过点G 作GH FC ⊥,垂足为H . ············································ (1分)GF GC =Q ,12FGH FGC ∴=∠∠. ············································· (1分)2FGC EFB =Q ∠∠,FGH EFB ∴=∠∠.····································· (1分)90FGH GFH +=oQ ∠∠,90EFB GFH ∴+=o∠∠. ······················ (1分) 90EFG ∴=o∠. ·········································································· (1分) Q 四边形AEFG 是平行四边形,∴四边形AEFG 是矩形. ···················· (1分) 24.解:(1)由题意,点B 的坐标为()02,, ·············································· (1分) 2OB ∴=,tg 2OAB =Q ∠,即2OBOA=. 1OA ∴=.∴点A 的坐标为()10,. ··················································· (2分) 又Q 二次函数22y x mx =++的图象过点A ,2012m ∴=++.解得3m =-, ··············································································· (1分) ∴所求二次函数的解析式为232y x x =-+. ······································ (1分)(2)由题意,可得点C 的坐标为()31,, ············································ (2分) 所求二次函数解析式为231y x x =-+. ············································· (1分) (3)由(2),经过平移后所得图象是原二次函数图象向下平移1个单位后所得的图象,那么对称轴直线32x =不变,且111BB DD ==. ····································· (1分) Q 点P 在平移后所得二次函数图象上,设点P 的坐标为()231x x x -+,. 在1PBB △和1PDD △中,112PBB PDD S S =Q △△,∴边1BB 上的高是边1DD 上的高的2倍.①当点P 在对称轴的右侧时,322x x ⎛⎫=-⎪⎝⎭,得3x =,∴点P 的坐标为()31,; ②当点P 在对称轴的左侧,同时在y 轴的右侧时,322x x ⎛⎫=- ⎪⎝⎭,得1x =, ∴点P 的坐标为()11-,;③当点P 在y 轴的左侧时,0x <,又322x x ⎛⎫-=-⎪⎝⎭,得30x =>(舍去), ∴所求点P 的坐标为()31,或()11-,. ················································ (3分) 25.(1)证明:2AP PB PB BO PO ==+=Q ,2AO PO ∴=.2AO POPO BO∴==. ········································································ (2分) PO CO =Q , ··············································································· (1分) AO COCO BO∴=.COA BOC =Q ∠∠,CAO BCO ∴△∽△.················· (1分) (2)解:设OP x =,则1OB x =-,OA x m =+,OP Q 是OA ,OB 的比例中项, ()()21x x x m ∴=-+, ·································································· (1分) 得1m x m =-,即1mOP m =-. ························································· (1分) 11OB m ∴=-. ············································································· (1分)OP Q 是OA ,OB 的比例中项,即OA OPOP OB=, OP OC =Q ,OA OCOC OB∴=. ·························································· (1分) 设圆O 与线段AB 的延长线相交于点Q ,当点C 与点P ,点Q 不重合时,AOC COB =Q ∠∠,CAO BCO ∴△∽△. ······································ (1分) AC OCBC OB∴=. ············································································· (1分) AC OC OP m BC OB OB ∴===;当点C 与点P 或点Q 重合时,可得AC m BC =, ∴当点C 在圆O 上运动时,:AC BC m =; ········································ (1分) (3)解:由(2)得,AC BC >,且()()11AC BC m BC m -=->,()1AC BC m BC +=+,圆B 和圆C 的圆心距d BC =,显然()1BC m BC <+,∴圆B 和圆C 的位置关系只可能相交、内切或内含. 当圆B 与圆C 相交时,()()11m BC BC m BC -<<+,得02m <<,1m >Q ,12m ∴<<; ·································································· (1分) 当圆B 与圆C 内切时,()1m BC BC -=,得2m =; ·························· (1分) 当圆B 与圆C 内含时,()1BC m BC <-,得2m >. (1分)。
深圳市2006年初中毕业生学业考试数学试卷说明:1.全卷分第一卷和第二卷,共8页.第一卷为选择题,第二卷为非选择题.考试时间90分钟,满分100分.2.答题前,请将姓名、考生号、科目代号、试室号和座位号填涂在答题卡上;将考场、试室号、 座位号、考生号和姓名写在第二卷密封线内.不得在答题卡和试卷上做任何标记.3.第一卷选择题(1-10),每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂 黑,如需改动,用橡皮擦干净后,再选涂其它答案,凡答案写在第一卷上不给分;第二卷非选择题(11-22)答案必须写在第二卷题目指定位置上. 4.考试结束,请将本试卷和答题卡一并交回.第一卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分)每小题给出4个答案,其中只有一个是正确的.请用2B 铅笔在答题卡上将该题相对应的答案标号涂黑.1.-3的绝对值等于A.3- B.3 C.13-D.132.如图1所示,圆柱的俯视图是图1 A B C D3.今年1—5月份,深圳市累计完成地方一般预算收入216.58亿元,数据216.58亿精确到A.百亿位 B.亿位 C.百万位 D.百分位4.下列图形中,是.轴对称图形的为A B C D5.下列不等式组的解集,在数轴上表示为如图2所示的是A.1020x x ->⎧⎨+≤⎩ B.1020x x -≤⎧⎨+<⎩C.1020x x +≥⎧⎨-<⎩ D.1020x x +>⎧⎨-≤⎩图26.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示.那么这六位学生学习时间的众数与中位数分别是A.4小时和4.5小时B.4.5小时和4小时C.4小时和3.5小时D.3.5小时和4小时7.函数(0)ky k=≠的图象如图3所示,那么函数y kx k=-的图象大致是图3 B C D8.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数A.至多6人B.至少6人C.至多5人D.至少5人9.如图4,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于A.4.5米B.6米C.7.2米D.8米图410.如图5,在□ABCD中,AB: AD = 3:2,∠ADB=60°,那么cosA的值等于A.36-B.6C.36±D.6图5A BCDAB C D E F深圳市2006年初中毕业生学业考试数学试卷题 号 二 三 11~15 16 17 18 19 20 21 22 得 分第二卷(非选择题,共70分)二、填空题(本大题共5小题,每小题3分,共15分) 请将答案填在答题表一内相应的题号下,否则不给分......11.某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是答案请填在上面答题表一内 .12.化简:22193m m m -=-+答案请填在上面答题表一内 .13.如图6所示,在四边形ABCD 中,AB=BC=CD=DA ,对角线AC 与BD 相交于点O .若不增加任何字母与辅 助线,要使得四边形ABCD 是正方形,则还需增加的一个条件是答案请填在上面答题表一内 . 图614.人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、21……这就是著名的斐波那契数列.那么小聪上这9级台阶共有答案请填在上面答题表一内种不同方法. 15.在△ABC 中,AB 边上的中线CD=3,AB=6,BC+AC=8,则△ABC 的面积为答案请填在上面答题表一内.得分阅卷人题 号 11 12 13 14 15 答 案ABDO三、解答题(本大题有7题,其中第16、17题各6分;第18题7分;第19、20题各8分;第21、22题各10分,共55分) 16.(6分)计算:2102452(3.14)π---+-解:原式=17.(6分)解方程:21133x x x-=---解:18.(7分)如图7,在梯形ABCD 中,AD ∥BC , AD DC AB ==,120ADC ∠=.(1)(3分)求证:DC BD ⊥证明:(2)(4分)若4AB =,求梯形ABCD 的面积. 解:BC图719.(8分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类.在“深圳读书月”活动期间,为了解图书的借阅情况,图书管理员对本月各类图书的借阅量进行了统计,图8-1和图8-2是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)(2分)填充图8-1频率分布表中的空格.(2)(2分)在图8-2中,将表示“自然科学”的部分补充完整.(3)(2分)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适? 解:(4)(2分) 根据图表提供的信息,请你提出一条合理化的建议.图8-2 自然科学 文学艺术 社会百科 数学 图书图8-1折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)(4分)该工艺品每件的进价、标价分别是多少元?(2)(4分)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100 件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?21.(10分)如图9,抛物线2812(0)y ax ax a a =-+<与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角,且恰使△OCA ∽△OBC .(1)(3分)求线段的长.解:(2)(3分)求该抛物线的函数关系式. 解:(3)(4分)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.解:图10-1图1022.(10分)如图10-1,在平面直角坐标系xoy 中,点M 在x 轴的正半轴上, ⊙M 交x 轴于 A B 、两点,交y 轴于C D 、两点,且C 为AE 的中点,AE 交y 轴于G 点,若点A 的坐标为(-2,0),AE 8(1)(3分)求点C 的坐标. 解:(2)(3分)连结MG BC 、,求证:MG ∥BC 证明:(3)(4分) 如图10-2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时,PFOF 的比值是否发生变化,若不变,求出比值;若变化,说明变化规律. 解:深圳市2006年初中毕业生学业考试数学试题答案及评分意见二、填空题(本大题共5小题,每小题3分,共15分)21、22题各10分,共55分)16.解:原式=14122-+-+……1+1+1+1分=14212-+-+……5分=32-……6分17.解:去分母:(2)31x x-=-+……2分化简得:24x=……4分2x=经检验,原分式方程的根是:2x=.……6分18. (1)证明: AD∥BC,120=∠ADC,∴60=∠C……1分又 ADDCAB==∴60=∠=∠CABC,30=∠=∠=∠DBCADBABD……2分∴90=∠BDC,DCBD⊥…… 3分(2)解:过D作BCDE⊥于E, 在Rt DEC∆中,60=∠C,4AB DC==答题表一B CE∴60sin =DCDE, DE = 在Rt BDC ∆ 中, 30sin =BCDC28BC DC == (2分)1)2S AD BC DE =+⋅=梯形( (4分)19. (1)(频数)100,(频率)0.05 ……2分 (2)补全频率分布直方图(略) ……4分 (3) 10000×0.05=500册 ……6分 (4) 符合要求即可. ……8分20. (1) 解.设该工艺品每件的进价是x 元,标价是y 元.依题意得方程组: 4580.858(35)1212y x y x y x-=⎧⎨⋅-=-⋅-⎩ ……2分解得: 155200x y =⎧⎨=⎩……3分答:该工艺品每件的进价是155元,标价是200元. ……4分(2) 解: 设每件应降价a 元出售,每天获得的利润为W 元.依题意可得W 与a 的函数关系式:(45)(1004)W a a =-+ ……2分 24804500W a a =-++配方得:24(10)4900W a =--+当10a =时,W 最大=4900 ……3分答:每件应降价10元出售,每天获得的利润最大,最大利润是4900元. ……4分 21.(1)解:由ax 2-8ax+12a =0(a <0)得x1=2,x2=6即:OA=2,OB=6 ……1分 ∵△OCA ∽△OBC∴OC2=OA·OB=2×6 ……2分……3分 (2)解:∵△OCA ∽△OBC∴AC OA BCOC ===由AC2+BC2=AB2得 k2k)2=(6-2)2解得k=2(-2舍去)……1分 过点C作CD⊥AB于点D ∴OD=12OB=3……2分 将C点的坐标代入抛物线的解析式得(3-6)∴a=-3∴抛物线的函数关系式为: 2 ……3分 (3)解:①当P1与O重合时,△BCP1为等腰三角形 ∴P1的坐标为(0,0)……1分②当P2B=BC时(P2在B 点的左侧),△BCP2为等腰三角形 ∴P2,0) ……2分③当P3为AB的中点时,P3B=P3C,△BCP3为等腰三角形 ∴P3的坐标为(4,0)……3分 ④当BP4=BC时(P4在B 点的右侧),△BCP4为等腰三角形 ∴P4,0)∴在x轴上存在点P,使△BCP为等腰三角形,符合条件的点P的坐标为: (0,0),,(4,0),……4分22.解(1)方法(一)∵直径AB⊥CD ∴CO=12CD ……1分 AD =AC∵C为AE 的中点 ∴AC =CE ∴AE =CD∴CD=AE ……2分 ∴CO=12CD=4 ∴C点的坐标为(0,4) ……3分 方法(二)连接CM,交AE于点N ∵C为AC 的中点,M为圆心 ∴AN=12AE=4 ……1分 CM⊥AE∴∠ANM=∠COM=90° 在△ANM和△COM中:CMO AMN ANM COM AM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ANM≌△COM ……2分 ∴CO=AN=4∴C点的坐标为(0,4) ……3分解(2)设半径AM=CM=r,则OM=r-2 由OC2+OM2=MC2得: 42+(r-2)2=r2解得:r=5 ……1分 ∵∠AOC=∠ANM=90° ∠EAM=∠MAE∴△AOG∽△ANM∴OG AOMN AN=∵MN=OM=3即2 34 OG=∴OG=32……2分∵1.5348 OGOC==38OMOB=∴OG OM OC OB=∵∠BOC=∠BOC∴△GOM∽△COB∴∠GMO=∠CBO∴MG∥BC……3分(说明:直接用平行线分线段成比例定理的逆定理不扣分)解(3)连结DM,则DM⊥PD,DO⊥PM∴△MOD∽△MDP,△MOD∽△DOP∴DM2=MO·MP;DO2=OM·OP(说明:直接使用射影定理不扣分)即42=3·OP∴OP=163……1分当点F与点A重合时:2316523OF AOPF AP===-当点F与点B重合时:8316583OF OBPF PB===+……2分当点F不与点A、B重合时:连接OF、PF、MF∵DM2=MO·MP∴FM2=MO·MP∴FM MP OM FM=∵∠AMF=∠FMA∴△MFO∽△MPF∴35 OF MOPF MF==∴综上所述,OFPF的比值不变,比值为35……4分说明:解答题中的其它解法,请参照给分。
初中毕业生学业考试试卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标好涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题(本大题共12小题,每小题只有唯一正确答案,每小题3分,共36分)1.计算2sin45°的结果等于( )(A)2 (B)1 (C)22(D)122.1021()(3)(2)2π--+-+-的值为( )(A)-1 (B)-3 (C)1 (D)0 3.今年某市约有108000名应届初中毕业生参加中考,按四舍五入保留两位有效数字,108000用科学计数法表示为( )(A)0.10×106 (B)1.08×105 (C)0.11×106 (D)1.1×105 4.若a 、b 为实数,且满足|a -2|+2b -=0,则b -a 的值为( )(A)2 (B)0 (C)-2 (D)以上都不对5.有一组数据3、5、7、a 、4,如果它们的平均数是5,那么这组数据的方差是( ) (A)2 (B)5 (C)6 (D)76.给出以下判断:(1)线段的中点是线段的重心(2)三角形的三条中线交于一点,这一点就是三角形的重心 (3)平行四边形的重心是它的两条对角线的交点 (4)三角形的重心是它的中线的一个三等分点 那么以上判断中正确的有( )(A)一个 (B)两个 (C)三个 (D)四个 7.在同一直角坐标系中,函数y =kx +1和函数y =k x(k 是常数且k ≠0)的图象只可能是( )8.抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为( )(A) (B) (C) (D)yoxxoyxo y11yo x(A)18 (B)14 (C)38(D)12 9.如图,坐标平面内一点A (2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( ) (A)2 (B)3 (C)4 (D)510.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,P 是直径MN 上一动点,则P A +PB 的最小值为( ) (A)22 (B)2 (C)1 (D)211.如图是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( ) (A)75(1+3)cm 2 (B)75(1+123)cm 2 (C)75(2+3)cm 2 (D)75(2+123)cm 212.二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..的是( ) (A)ab <0 (B)ac <0(C)当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小 (D)二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根二、填空题(本大题共5小题,每小题3分,共15分)13.化简11x x -+-___▲___.14.函数y =k (x -1)的图象向左平移一个单位后与反比例函数y =2x的图象的交点为A 、B ,若A 点坐标为(1,2),则B 点的坐标为___▲___.15.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___▲___. 16.在⊙O 中直径为4,弦AB =23,点C 是圆上不同于A 、B 的点,那么∠ACB 度数为___▲___. 17.观察下列计算:111122=-⨯ 1112323=-⨯ 1113434=-⨯1114545=-⨯ 第12题图 2xoy第11题图 510105第10题图 BAMNOP 30︒第9题图AP yo x… …从计算结果中找规律,利用规律性计算111111223344520092010++++⨯⨯⨯⨯⨯=___▲___. 三、解答题(本大题共7个小题,满分69分)18.(本题满分8分)已知a =2+3,b =2-3,试求a b b a-的值. 19.(本题满分9分)将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展平纸片,如图(1);再次折叠该三角形纸片,使得点A 与点D 重合,折痕为EF ,再次展平后连接DE 、DF ,如图2,证明:四边形AEDF 是菱形.20.(本题满分10分)试确定实数a 的取值范围,使不等式组10,23544(1)33x x a x x a +⎧+>⎪⎨+⎪+>++⎩恰有两个整数解. 21.(本题满分10分)吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人? (2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式.22.(本题满分10分)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件 (1)假定每件商品降价x 元,商店每天销售这种小商品的利润是y 元,请写出y 与x 间的函数关系式,并注明x 的取值范围.第21题图替代品 戒烟药物戒烟警示戒烟强制戒烟戒烟方式人数1206030O15%10%强制戒烟警示戒烟替代品戒烟药物戒烟(1) (2) 第19题图 ABDCCDBF AE(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入-购进成本)23.(本题满分10分)如图,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC ∶CA =4∶3,点P 在半圆弧AB 上运动(不与A 、B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点 (1)求证:AC ·CD =PC ·BC ;(2)当点P 运动到AB 弧中点时,求CD 的长;(3)当点P 运动到什么位置时,△PCD 的面积最大?并求这个最大面积S .24.(本题满分12分)已知:如图一次函数y =12x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =12x 2+bx +c 的图象与一次函数y =12x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0)(1)求二次函数的解析式; (2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.第24题图第23题图CDBA OP湖北省荆门市二O 一O 年初中毕业生学业考试试卷数学参考答案及评分说明说明:除本答案给出的解法外,如有其它正确解法,可按步骤相应给分.一、选择题(本大题共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BCDCADBCCBCB二、填空题(本大题共5小题,每小题3分,共15分)13.0; 14.(-1,-2); 15.a <1且a ≠0;16.60°或120° 17.20092010.三、解答题(本大题共7个小题,满分69分)18.解:∵ a =2+3,b =2-3,∴a +b =4,a -b =23,ab =1…………………3分而a b b a -=22()()a b a b a b ab ab+--=…………………………………………………………6分 ∴a b b a -=()()a b a b ab +-=4231⨯=83…………………………………………………8分 19.证明:由第一次折叠可知:AD 为∠CAB 的平分线,∴∠1=∠2……………………2分 由第二次折叠可知:∠CAB =∠EDF ,从而,∠3=∠4………………………………4分 ∵AD 是△AED 和△AFD 的公共边,∴△AED ≌△AFD (ASA)………………………6分 ∴AE =AF ,DE =DF又由第二次折叠可知:AE =ED ,AF =DF∴AE =ED =DF =AF …………………………………………………………………………8分 故四边形AEDF 是菱形.……………………………………………………………………9分 20.解:由123x x ++>0两边同乘以6得3x +2(x +1)>0,解得x >-25………………3分由x +543a +>43(x +1)+a 两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ……6分∴原不等式组的解为-25<x <2a .又∵原不等式组恰有2个整数解,∴x =0,1.∴1<2a ≤2………………………………9分 ∴12<a ≤1……………………………………………………………………………………10分 21.解:设调查的人数为x ,则根据题意: x ·10%=30,∴x =300图1 图24321EAFBDCCDBA∴一共调查了300人…………………………………………………………………………3分4510535%40%替代品 戒烟药物戒烟警示戒烟强制戒烟戒烟方式人数1206030O15%10%强制戒烟警示戒烟替代品戒烟药物戒烟(2)由(1)可知,完整的统计图如图所示………………………………………………………6分(3)设该市发支持“强制戒烟”的概率为P ,由(1)可知,P =40%=0.4……………………8分 支持“强制戒烟”这种方式的人有10000·35%=3500(人).…………10分22.(1)解:设降价x 元时利润最大.依题意:y =(13.5-x -2.5)(500+100x )……………2分 整理得:y =100(-x 2+6x +55)(0<x ≤1)…………5分(2)由(1)可知,当x =3时y 取最大值,最大值是6400…………7分即降价3元时利润最大,∴销售单价为10.5元时,最大利润6400元.…………………9分 答:销售单价为10.5元时利润最大,最大利润为6400元…………10分 23.解:(1)∵AB 为直径,∴∠ACB =90°.又∵PC ⊥CD ,∴∠PCD =90°. 而∠CAB =∠CPD ,∴△ABC ∽△PCD .∴AC BC CP CD=.∴AC ·CD =PC ·BC ;………………………………………………………………………3分(2)当点P 运动到AB 弧中点时,过点B 作BE ⊥PC 于点E . ∵P 是AB 中点,∴∠PCB =45°,CE =BE =22BC =22.又∠CAB =∠CPB ,∴tan ∠CPB =tan ∠CAB =43.∴PE =tan BE CPB ∠=32()42BC =322.从而PC =PE +EC =722.由(1)得CD =43PC =1423…………………………………7分 (3)当点P 在AB 上运动时,S △PCD =12PC ·CD .由(1)可知,CD =43PC . ∴S △PCD =23PC 2.故PC 最大时,S△PCD 取得最大值;而PC 为直径时最大,∴S △PCD 的最大值S =23×52=503.………………………………10分 24.解:(1)将B (0,1),D (1,0)的坐标代入y =12x 2+bx +c 得第23题图E PO ABDC1,10.2c b c =⎧⎪⎨++=⎪⎩得解析式y =12x 2-32x +1……………………………………………………3分(2)设C (x 0,y 0),则有00200011,213 1.22y x y x x ⎧=+⎪⎨⎪=-+⎩解得004,3.x y =⎧⎨=⎩∴C (4,3).……………………………………………6分 由图可知:S =S △ACE -S △ABD .又由对称轴为x =32可知E (2,0).∴S =12AE ·y 0-12AD ×OB =12×4×3-12×3×1=92…………………………………8分(3)设符合条件的点P 存在,令P (a ,0):当P 为直角顶点时,如图:过C 作CF ⊥x 轴于F . ∵Rt △BOP ∽Rt △PFC ,∴BO OP PF CF =.即143a a =-.整理得a 2-4a +3=0.解得a =1或a =3∴所求的点P 的坐标为(1,0)或(3,0)综上所述:满足条件的点P 共有二个………………………………………………………12分第24题图。