回转钻进工艺
- 格式:ppt
- 大小:1.22 MB
- 文档页数:64
第五章冲击回转钻进第一节概述钻探工程以机械方式破碎岩石,最早是采用冲击钻进方法.以后才发展到以回转钻进为主的钻进方法。
近几十年来.钻探工作者根据动载荷比静压载荷能够更加有效破碎坚硬岩石的原理.研制成功了冲击回转钻进技术。
一、冲击回转钻进的实质冲击回转钻进是有机地综合了冲击钻进(单次破碎岩石作用)和回转钻进(连续破碎岩石作用)的一种钻进方法。
冲击回转钻进主要是指在回转钻进的基础上,加人一个冲击器以提高钻进效率。
在钻头上或岩心管上联结一个专门的冲击器,在钻进中给钻具以一定的轴向压力和回转运动,同时冲击器给钻具以一定频率的冲击能量,在冲击和回转共同作用下,钻头破碎岩石,进行钻进。
它是在地面以动力带动全套钻具进行回转(并通过钻具给钻头一定的轴向压力)的同时,孔内冲击器以每分钟几百次至几千次的频率进行冲击。
此冲击力通过岩心管或直接传至钻头:钻头上同时作用两种载荷,即回转方向的回转力和轴向方向的冲击力。
如图0-1所示。
所以称为冲击回转钻进。
图0-1冲击回转钻进与冲击钻进、回转钻进的碎岩比较示意图a–回转钻进;b–冲击钻进;c–冲击回转钻进P静–轴向力;M–回转力;P冲–冲击力根据岩石破碎原理,在一定的轴向压力下冲击破碎岩石,岩石强度要降低50%~80%,所以上述冲击回转钻进比钢绳冲击钻进效率要高3~5倍。
又由于冲击器放置在孔底,冲击能量直接施加在钻头上,能量损失较少,因此它比地表冲击器的钻进效率也要高许多。
又由于在冲击载荷作用下,坚硬岩石易于实现体积破碎过程,所以,冲击回转钻进比一般的回转钻进,其效率也要高。
冲击回转钻进提高钻进效率的原因,归纳起来有下列几点:(1)冲击载荷的特点是接触应力瞬时可达极高值,应力比较集中。
由于岩石的动硬度要比静硬度小,固易产生微裂纹。
并且冲击速度愈大,岩石脆性增大,有利于裂隙发育,因此,不大的冲击功就可以破碎坚硬岩石,而静压入时则需要很大的力。
(2)切削刃的磨损减少。
在冲击回转钻进中切削刃具磨损减少的原因有:①冲击破碎岩石时刃具与岩石的作用时间很短;②体积破碎的摩擦系数低于表面破碎时的摩擦系数,而在冲击回转钻进中很容易达到体积破碎;③钻速快,切削具的相对磨损就减少。
煤田地质勘探中的冲击回转钻进工艺【摘要】本文主要阐述了煤田地质勘探中冲击回转钻进的钻具转速、钻压、泵量与泵压、净化冲洗液等技术工艺技术问题。
【关键词】煤田地质;勘探;冲击回转;钻进工艺1、钻具转速进行冲击回转钻进时,钻具回转转速的高低,一般按所钻岩石的性质、所用磨料的种类以及冲击器冲击功的大小和冲击频率的高低等因素进行确定。
以块柱状硬质合金为磨料的钻头,钻进硬岩层或钻进强研磨性岩层时,由于破碎岩石的主导作用是冲击载荷,所以钻具的回转转速应在20-80./min之间。
钻的岩石越硬,其钻具的回转转速就越低。
实践表明,若钻具的转速过高,不仅会使冲击间距大,降低破碎岩石效果和崩坏硬质合金;还随着钻头圆周速度的提高,硬质合金与岩石进行摩擦的里程增加,也会迅速磨损切削具,其结果会大幅降低回次进尺长度。
要提高钻具的转速,转速通常要在80-300r/min之间。
按钻探生产实践经验,钻具转速的选取可参阅表1。
选择钻具转速除要岩石性质外,还应考虑冲击器的性能状况。
冲击器的冲击功较大时,要适当的提高钻具转速;反之,要降低钻具的转速。
同样,冲击器的冲击频率较高时,钻具的转速也要适当增加;反之,应适当降低转速。
冲击频率高时要提高钻具的转速,而冲击频率低时要降低转速呢?可从以下情况看出它们之间的关系。
冲击回转钻进时,钻头上的每一颗硬质合金由于同时受回转的作用在完成第一次冲击破碎岩石后,便移动一段距离,进行第二次冲击破碎岩石。
硬质合金两次冲击之间的距离为冲击间距(S)。
计算可知,冲击间距(S)的大小是与冲击频率的高低和钻具回转转速的快慢有着密切关系的。
岩石越硬,其抗破碎阻力越大,越容易崩刃和磨损硬质合金;所以冲击间距(S)应该小一些。
钻进硬岩层时,应该采用较低的转速。
各种岩石都有它的最优冲击间距值,根据生产实践经验,一般可钻性为6-7级的岩石,S=10~15mm,可钻性为7-8级的岩石,S=8-10mm,可钻性为9-10级的岩石,S=5~8mm。
地质钻探工艺
地质钻探工艺主要包括以下几种:
1. 冲击钻进:利用钻具自重对孔底进行冲击而破碎岩(土)体的钻进方法。
人力冲击一般适用于浅孔和地下水位以上的土层钻进。
机械冲击则是采用机械向下冲击,适于各类土层钻进。
2. 回转钻进:在轴心压力作用下,利用筒状钻头用回转研磨方式切削岩石的一种取芯钻进方法,适于各种岩石钻进,通常称为岩芯钻探。
根据钻头研磨材料,可将其分为硬质合金钻进、钻粒钻进和金刚石钻进。
3. 反循环钻探技术:包括空气反循环技术和水力反循环技术。
空气反循环钻探技术是将压缩空气用作循环介质,利用双壁钻杆外管将压缩空气送至孔底,空气的剧烈膨胀会产生冲击力,驱动孔底潜孔锤作用于岩石上,同时空气作用后通过钻杆中心通道重新回到地表,并携带岩屑。
水力反循环钻探技术则是将泥浆或水用作循环介质,其循环方式与空气反循环相同,都是利用钻杆将介质传送到孔底,获取的柱状岩心则通过钻杆携带回地面。
4. 组合钻探工艺:结合了绳索取心技术、反循环取样、取心技术,吸取了各种钻探技术的优点,能依据地质钻探要求和地层情况提高钻探效率,减少额外劳动和成本。
此外,还有一些新工艺和新材料的应用,例如新型节水钻探技术、新型泥浆体系和泥浆材料等。
这些新技术的应用可以提高生产效率、增加钻头使用寿命、提高钻进速度等。
综上所述,地质钻探工艺是一个综合性的工艺系统,不同的工艺适用于不同的地质条件和需求。
在实际应用中,需要根据具体情况选择合适的工艺以提高钻探效率和保证工程质量。
钻孔桩施工工艺一、钻孔前的准备工作钻孔前的准备工作主要包括桩位放样,整理平整场地,布设施工便道,设置供电及供水系统,制作和埋设护筒,制作钻孔架,泥浆的制备和准备钻孔机具等。
1、场地整理施工前,施工场地按不同情况进行处理。
对于处在水中的钻孔桩基础都必须搭设施工平台,桩基处在旱地时,清除杂物后夯压密实即可。
2、护筒制作。
本标段钻孔桩均使用钢护筒,采用3mm-5mm钢板制作。
为保证其刚度,防止变形,在护筒上、下端和中部外侧各焊一道加劲肋。
本合同段的钻孔桩直径为ф180cm、ф150cm和120cm。
根据钻孔桩直径,我们所做的护筒直径为200cm、175cm和145cm。
护筒埋设时,其轴线对准测量所标出的桩位中心,护筒周围和护筒底接触紧密,保证其位置偏差不大于5cm,倾斜度不大于1%。
3、泥浆的制作制浆前,先把粘土尽量打碎,使其在搅拌中容易成浆,缩短成浆时间,提高泥浆质量。
制浆时,可将打碎的粘土直接投入护筒内,使用冲击锥冲击制浆,待粘土已冲搅成泥浆时,即可进行钻孔。
多余的泥浆用管子导入钻孔外泥浆池贮存,以便随时补充孔内泥浆。
4、钻机就位埋设好护筒后,即可进行钻机就位,本标段使用的钻机为卷扬机牵引式冲击钻和冲抓钻。
就位时,只要使钻锥中心对准测量放样时所测设的桩位即可,其对中误差不得大于5cm。
二、回旋钻钻孔工艺1、初钻先启动泥浆泵和转盘,使之空转一段时间,待泥浆输进一定数量后,方可开始钻进。
接、卸钻杆的动作要迅速、安全,争取在尽快时间内完成,以免停钻时间过长,增加孔底沉淀。
2、钻进时操作要点a. 开始钻进时,进尺应适当控制,在护筒刃脚处,应低档慢速钻进,使刃脚处有坚固的泥皮护壁。
钻至刃脚下1m后,可按土质以正常速度钻进。
如护筒土质松软发现漏浆时,可提起钻锥,向孔中倒入粘土,再放下钻锥倒转,使胶泥挤入孔壁堵住漏浆孔隙,稳住泥浆继续钻进。
b. 在粘土中钻进,由于泥浆粘性大,钻锥所受阻力也大,易糊钻。
易选用尖底钻锥、中等转速、大泵量、稀泥浆钻进。
正循环回转钻进钻孔灌注桩施工工法程丙权赵翠然严海波钱莉一、前言钻孔灌注桩在我国桥梁桩基施工中是一项应用十分广泛的施工技术,随着经济建设的不断发展,在水利工程及房屋建筑工程中得到了大量的推广和广泛的应用。
但由于钻孔灌注桩的施工工序较多,既要保证成孔安全,又要保证成桩质量,必须做好每道工序的工作质量及工序间的衔接。
二、工法特点本工法施工方便,成本低,施工速度快,成桩质量高。
(1)对施工平台承载力要求较低,钻孔扩孔率低;(2)采用自造泥浆或加少许粘土造浆钻孔成孔,有效降低施工成本;(3)钻进时根据地层情况选择合适的钻进速度,调整合适的泥浆比重,桩孔质量好,孔壁坚实,稳定性好,能避免或减少塌孔现象发生;(4)机械操作简便,施工工序简单,劳动强度低,适用具有粘性性质的地层,同时适用于砾石直径不大于20cm的壤土地层。
三、适用范围本工法适用于桥梁桩基、水利工程及房屋建筑工程中的基础处理工程施工,适用地层为粘性壤土地层及粘土地层。
四、工艺原理本工法是采用回转钻机自造泥浆护壁成孔,孔内土体通过钻头切割与搅拌形成泥浆,最终通过泥浆泵正循环排出孔外;钢筋骨架分节制作,汽车吊吊装就位,孔口焊接下放钢筋笼;直升导管法进行水下混凝土浇筑的施工工艺。
五、施工工艺流程及操作要点(一)工艺流程施工工艺流程见图1。
(二)操作要点1、成孔施工(1)定位放样根据施工图纸,测量人员采用全站仪测量放点,精确放出各桩的中心位置,同时埋设桩中心的纵向、横向定位标志及护桩,经监理工程师确认无误后方可进行施工,施工中经常进行复测。
(2)护筒埋设①护筒采用壁厚4mm钢护筒,内径大于钻头直径100~150mm,在护筒上端开设1个出浆口,规格为40×40cm。
②护筒高出施工平台10~30cm,底部及周围用粘土回填,分层夯实校正桩位后用细线拉出桩中心十字线,并用红漆标记在护筒上,施工时要经常测量复核其准确性,护筒底标高应高于地下水位标高,护筒埋深根据地下水位、桩径和钻头长度确定,一般约1.5m。
回转钻机钻井施工工艺及方法1. 主要工艺流程:定好井位→钻机安装→开钻前技术安全检查验收→验收合格后开钻→Φ406mm钻具钻进至完整灰岩→下入Φ377mm护壁套管→固井止水→Φ325mm钻具钻进至50m、100m、 150m、200m、250m→测斜→井斜合格后→Φ280mm钻具至钻进终孔或换用Φ219mm钻具钻进至终孔→验收孔深→进行洗井和抽水试验→化验水质→整理资料→提交报告。
2. 钻进工艺:0~10m段:钻孔结构Φ325mm,开孔用Φ325mm合金钻头,钻进至10m,遇完整的奥陶系灰岩后下入Φ273×8mm套管固井止水。
本段工艺参数如下:⑴钻具结构:Φ406mm钻头+Φ146mm钻铤+机上钻杆。
⑵钻进规程:钻压14~20KN,转速48r/min,泵量600L/min。
⑶冲洗液:采用清水作为冲洗液。
10~300m段:钻孔结构Φ219mm,本段工艺参数如下:⑴钻具结构:Φ219mm钻具+Φ89mm钻杆+机上钻杆。
⑵钻进规程:钻压15~20KN,转速48-78/min,泵量600L/min。
⑶冲洗液:采用清水作为冲洗液。
潜孔冲击钻进:0~20m段(松散风化层):钻孔结构Φ230mm,开孔用Φ230mm 合金钻头,钻进至20m,遇完整的奥陶系灰岩后下入Φ219×8mm套管固井止水。
本段工艺参数如下:钻具结构:Φ230mm钻头+Φ146mm钻铤+机上钻杆。
20~220m段:钻孔结构Φ203mm、Φ178mm、Φ152mm本段工艺参数如下:钻具结构:Φ203mm、Φ178mm、Φ152mm钻具+Φ89mm钻杆+机上钻杆。
3. 覆盖层的施工在该层的施工中,要对每个施工人员明白该地层地质情况以便正确掌握施工方法和技术参数。
该层施工中极有可能遇到大块岩石,不能正常钻进,采用措施利用泥浆护壁,冲击钻进,至基岩并入岩2—5米后安装钢管护壁。
覆盖层施工完毕后,将井壁管安装牢固,外周用水泥砂浆封闭,使之起到封闭地表水、固定井壁管的作用。
第三节反循环回转钻进成孔法本节要求1、重点掌握反循环回转钻进的概念、特点、工作原理;2、重点掌握实现反循环的几种方法(泵吸反循环、射流反循环及气举反循环),各种方法的特点及其工作原理,识记:实现反循环的几种方法理解:正循环回转钻进与反循环回转钻进的区别(次重点)第三节反循环回转钻进成孔法一、概述(一)工作过程循环介质从钻杆与孔壁之间的环状间隙中进入钻孔,再从钻杆内反回孔口,如此循环的一种钻进方法。
187119501960德国人使用压气反循环冲洗钻渣德国采用了泵吸反循环回转法中国开始反循环施工研究一、概述(二)特点1、钻进效率高高钻速20-30m/h 平均钻速6-7m/h2、钻头寿命长正循环钻卵砾石牙轮钻头钻不足30m一、概述(二)特点1、钻进效率高在高钻速20-30m/h 平均钻速6-7m/h2、钻头寿命长正循环钻卵砾石牙轮钻头钻不足30m3、钻孔不宜塌孔一、概述(二)特点1、钻进效率高在高钻速20-30m/h 平均钻速6-7m/h2、钻头寿命长正循环钻卵砾石牙轮钻头钻不足30m3、钻孔不宜塌孔4、钻孔质量好5、费用低、工期短一、概述(三)反循环钻进法的类型按钻杆内上升液流形成的方法泵吸反循环气举反循环射流反循环复合反循环一、概述(四)适用条件1、地层:软层、基岩均可施工,特别适合第四系松散地层钻进大直径桩孔2、工作区地下水位适中,地下水位最好不超过孔口以下3m一、概述(四)适用条件1、地层:软层、基岩均可施工特别适合第四系松散地层钻进大直径桩孔2、工作区地下水位适中,地下水位最好不超过孔口以下3m3、水源充足并具备足够的供水能力,以满足钻进需要4、能适应不同深度及直径的钻孔作业有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)(一)反循环实现方法二、反循环实现的方法抽吸法泵吸反循环气举反循环射流反循环二、反循环实现的方法(二)泵吸反循环1、工作原理泵吸反循环就是利用砂石泵将钻杆柱内带有钻屑的泥浆抽到沉其他方式再流回钻孔,从而实现泥浆的反循环。
回旋钻孔施工钻进成孔工艺(1)钻孔前应对钻孔的各项准备工作进行详细检查,钻孔时应按设计资料及实际地质情况绘制地质剖面图,并与钻探资料比较。
钻机安装检查合格,泥浆制备达到要求后,方可开钻。
(2)开钻初期,应以手动给进方式慢慢下放钻头,低转速低转压,慢进尺钻进,以保证孔的垂直度,待钻至护筒以下1m 后,再逐渐增加钻压、转速和进尺,进入正常钻进阶段,并根据地质强度和钻进、排渣情况,逐步调整转速和钻压值,使钻机进入“液控”恒压自动给进工作状态。
(3)在岩层中钻进时,钻压应由小逐渐加压,并经常捞取钻渣,观察钻渣颗粒情况,当钻渣颗粒大小均匀,且最大颗粒粒径接近3~5cm 时(楔齿钻头),不宜再继续加压;钻进参数选择的一般原则:在岩层与岩层交界面处宜采用较小钻压较低速钻进;岩面倾斜、岩石破碎或岩层构造一边软一边硬宜采用较小钻压,较低转速钻进;岩面平整,岩石完整时宜采用大钻压,高转速钻进,岩层构造可参照地堪资料和邻孔钻孔情况叛断。
(4)正常钻进过程中,必须遵照减压钻进的原则进行,要求在孔底钻压值不超过钻具(钻头、钻杆及配重块重量之和)扣除浮力后的80%。
(5)钻进成孔过程中,护筒内水位要保持高于河水位以上,护筒内补水要及时,使孔内泥浆面始终超过外侧水面1~2.5m 以上;也可采用循环水的方法省去补水设备,排渣中断时,应立即将钻头提起,待有钻渣排出时再慢慢下放钻头。
(6)反循环钻杆接长时,应先停止转盘转动,并使反循环系统延续工作至孔底,钻渣基本排净,再接长钻杆,然后将钻头下放至孔底以上20~30cm 处,送风并启动反循环系统,待流动正常后,再慢慢下放钻头,调整钻压及转速继续钻进。
即开钻时,应先送风,后给进,停钻时,应先提钻头,后停风。
钻杆连接螺杆应拧紧上牢,认真检查密封圈,以防钻杆接头部位漏水漏气,使反循环无法正常工作。
(7)正常钻进时,应参考地质资料掌握土层变化情况,及时捞取钻渣取样,判断土层,及时详细地填写钻孔施工记录表;并根据核对判定的土层及时调整钻进参数。