(8)质心系
- 格式:pdf
- 大小:257.05 KB
- 文档页数:23
质心系前面我们回顾了Newton 定律以及由它导出的一些重要的推论,主要有由于Newton 定律只在惯性系中才是成立的,因此作为其推论,这些定理的成立的前提当然也要求所涉及的量都是相对于某个惯性系测量或计算出的。
但是,存在一个可能是非惯性系的特殊参考系,这些推论在其中也都是成立的,其中一些,譬如动量定理,其形式来的还要更加简单。
这个特殊的参考系就是质心系,也就是以质心为原点并随质心一起平动的参考系。
如果我们用表示粒子在某个惯性系中的位矢,而a r K a a r ′K 则表示它在质心系中的位矢,它们之间有如下关系:CM a r R r a ′=+K K K (1) 在质心系中质心当然始终是位于原点的,因此0a a am r ′=∑K (2)另一方面,体系的总动量就是质心的动量,因此,体系在质心系中的总动量就该为零。
当然,上式两边对时间求微商也就得到了同样的结论。
, 0a a a a a ad p m r m r dt ′′==∑∑K K ′=K (3) 这个方程其地位就相当于在一般惯性系中的质心运动定理。
利用这些关系,你会发现描述体系状态的那些量——如角动量以及动能——都可以表示为两部分之和:一部分描述质心的运动,另一部分则描述体系相对于质心的运动。
如角动量()()CM CM CM CM CM a a a a a a a a a a a aa a a a a L L r p R r m R r R m R r m r R m r a′′==×=+×+⎛⎞′′=×+×⎜⎟⎝⎠′+×∑∑∑∑∑∑K K K K K K K K K K K K K K a a a m r ′+∑K CM R ⎛⎞×⎜⎟⎜⎟⎝⎠K (4) 其中第一项正是质心的角动量,而最后一项则是体系相对于质心的角动量: CM CM CM , a a aL R P L r m ar ′′=×=×′∑K K K K K K (5) 而中间两项则显然是等于零的,因此CM L L L ′=+K K K (6) 角动量变化的原因,即力矩,也可以作类似的分解,一部分对质心的运动负责,另一部分则负责相对于质心的运动:()CM CM CM CM CM with and a a a a a a a a a a aa a a aa r F R r F R F r F R F r F ττττττ′==×=+×′=×+×′′=+=×=×∑∑∑∑∑∑K K K K KK K K K K K ′K K K K K K K K (7)由于总的外力,第一项正是质心角动量的变化率,而我们又知道CMF MP =K K Lτ=K K ,由此L τ′′=K K (8) 即不管质心系是否是惯性参考系(也就是说,不管体系是否受到外力的作用),在质心系中角动量定理依然成立。
例谈质心和质心系在解题中的应用陈新学(杭州学军中学教育集团文渊中学ꎬ浙江杭州311200)摘㊀要:文章从质心的概念出发ꎬ推导质心运动定理ꎬ阐述质心参考系ꎬ探讨应用质心相关知识解题注意的问题.关键词:质心ꎻ质心运动定理ꎻ质心系ꎻ物理竞赛中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)19-0123-03收稿日期:2023-04-05作者简介:陈新学(1978.11-)ꎬ男ꎬ安徽省休宁人ꎬ硕士ꎬ中学一级教师ꎬ从事高中物理教学研究.㊀㊀质心是力学的一个重要概念ꎬ一些看似复杂的力学问题ꎬ如果应用质心的相关知识分析ꎬ解题思路会变得清晰ꎬ解题过程会变得简单.本文借助于几个典型问题探讨质心的概念㊁质心运动定理以及质心参考系在解题中的应用.1质心的相关概念1.1质心和质心运动定理设N个质点组成的系统(简称质点系或系统)中ꎬ各质点的位置矢量(简称位矢)分别为r1ꎬr2ꎬ ꎬrNꎬ定义此质点系的质心的位矢r⇀C=m1r⇀1+m2r⇀2+ +mNr⇀Nm1+m2+ +mN=ðNi=1mir⇀iðNi=1mi=ðNi=1mir⇀imꎬ(1)其中m=ðNi=1miꎬ为质点系的总质量.可知ꎬ质心的位矢是以质量为权重的质点系的加权位矢平均值.式(1)两边对时间求导得质心的速度vC=ðNi=1miv⇀imꎬ(2)或mv⇀C=ðNi=1miv⇀i可知质点系的总动量等于质心的动量.式(2)两边对时间求导得质心的加速度aC=ðNi=1mia⇀imꎬ(3)在惯性系中ꎬ对于质点系ꎬ由牛顿第二定律可得F外=ðNi=1mia⇀iꎬ(4)其中F外为质点系所受到的外力的矢量和ꎬ由式(3)和式(4)得F外=ma⇀Cꎬ(5)由式(5)知ꎬ质心的加速度由质点系受到的外力的矢量和确定ꎬ与质点系的内力无关ꎬ这个结论称为质心运动定理.1.2质心参考系质心参考系是指相对质心不动的参考系ꎬ简称质心系.如果质心相对惯性系做匀速直线运动ꎬ则质心系也是惯性系ꎻ如果质心相对惯性系做加速运动ꎬ321则质心系是非惯性系.2例题例1㊀在光滑的水平面上放一半径为a㊁质量为M的圆环ꎬ在某一瞬间有一质量为m的甲虫由静止开始沿此圆环爬行.求甲虫及圆环中心的运动轨迹.解析㊀甲虫和圆环组成的系统受到的外力的矢量和为0ꎬ且甲虫和圆环的初状态都是静止的ꎬ根据质心运动定理知ꎬ甲虫和圆环组成的系统的质心静止不动.甲虫沿圆环爬行ꎬ甲虫到圆环中心的距离不变ꎬ始终为圆环的半径ꎬ故甲虫㊁圆环中心到质心的距离都不变ꎬ分别为r1=MaM+mꎬr2=maM+mꎬ即甲虫㊁圆环的中心的轨迹都是圆.以系统质心为坐标原点ꎬ甲虫的轨迹方程为x2+y2=(MaM+m)2ꎬ圆环中心的轨迹方程为x2+y2=(maM+m)2.例2㊀一块长为L的大平板静放在光滑水平面上ꎬ一小孩骑着儿童自行车(小孩和车的大小可忽略不计)以v0的速度从板的一端驶上平板ꎬ在板上他的速度忽快忽慢ꎬ在将近板的另一端时ꎬ他突然刹车ꎬ停在板端.已知人在板上骑车的时间为tꎬ板的质量为Mꎬ小孩与车的总质量为m.求从车驶上平板到车相对板刚静止时板的位移[1].图1㊀例2示意图例3㊀如图2所示ꎬ用劲度系数为k的轻弹簧连接放在光滑水平面上质量分别为m1㊁m2的木块.让第一个木块紧靠竖直墙ꎬ在第二个木块的侧面上施加水平压力ꎬ将弹簧压缩L长度ꎬ撤去这一压力后ꎬ求系统质心可获得的最大加速度值和最大速度值.图2㊀例3示意图解析㊀由质心运动定理知ꎬ外力的矢量和最大时ꎬ质心的加速度最大.分析可知刚撤去压力时ꎬ弹簧弹力最大ꎬ竖直墙施加的外力最大ꎬ大小为kLꎬ所以系统质心可获得的最大加速度为aCm=kLm1+m2ꎬ此后弹簧弹力减小ꎬ系统质心做加速度减小的加速运动ꎬ直至木块m1离开墙ꎬ系统质心开始做匀速直线运动ꎬ所以木块m1刚离开墙时系统质心的速度最大ꎬ设此速度为vCmꎬ从撤去压力到木块m1刚离开墙ꎬ系统的机械能守恒:12kL2=12m2v22ꎬ其中v2为木块m1刚离开墙时木块m2的速度ꎬ得v2=Lkm2ꎬ由式(2)得系统质心的最大速度vCm=m1 0+m2v2m1+m2=Lkm2m1+m2.例4㊀三个等质量物块静止地放在光滑平面上ꎬ排成一直线ꎬm1=m2=m3=mꎬ其中m2和m3用弹性系数为k的弹簧相连ꎬ并保持自然长度ꎬ如图3所示.现在m1以速度v冲向m2ꎬ二者发生完全非弹性碰撞ꎬ求此后的运动中:(1)物块m3的最大动能ꎻ(2)物块m2的最小动能[1].图3㊀例4示意图答案:(1)29mv2㊀(2)172mv2421例5㊀如图4所示ꎬ长为L㊁质量线密度为λ的匀质软绳ꎬ开始时绳两端A和B一起悬挂在天花板上相距较近的两点.A端的天花板能够提供的最大拉力为1.5λLgꎬ其中g为当地重力加速度.求:(1)B端下落多长时间后ꎬA端与天花板脱离?(2)A端与天花板脱离后ꎬ经过多长时间绳子完全伸直?图4㊀例5示意图解析㊀(1)以天花板上的A点为原点ꎬ竖直向下为正方向建立x轴ꎬB端自由下落x时ꎬ右侧绳子质心的速度为u=2gxꎬ右侧绳长为L-x2ꎬ左侧绳子质心的速度始终为0ꎬ整条绳子质心的速度为vC=0+λ(L-x)2uλL=(L-x)2gx2Lꎬ整条绳子质心的加速度aC=dvCdt=g(L-3x)2Lꎬ计算时应用了u=dxdtꎬ对整条绳子应用质心运动定理得λLg-F=λLaCꎬ其中F为天花板对绳子A端的拉力ꎬ即F=(L+3x)λg2ꎬ当F=1.5λLg时ꎬx=23LꎬA端与天花板脱离ꎬ又x=12gt21ꎬ得t1=233Lgꎬ为所求的时间.(2)由第(1)问知ꎬA端与天花板脱离时ꎬx=23Lꎬ此时B端的速度uB=2gx=23gL3ꎬ左侧绳子速度为0ꎬ应用式(2)得整条绳子质心的速度vC=0+Lλ6uBLλ=3gL9ꎬ此后整条绳子质心和绳子B端都以加度度g向下做直线运动ꎬ在质心参考系中ꎬ绳子B端做匀速直线运动ꎬB端相对质心的速度vr=uB-uC=53gL9ꎬ刚脱离时整条绳子质心的坐标为xC=1736Lꎬ绳子B端坐标为xB=23LꎬB端到质心的距离为xB-xC=736Lꎬ绳子完全伸直时B端到整条绳子质心的距离为L2ꎬ从A端脱离到绳子完全伸直ꎬB端在质心系中的位移Δx=12L-736L=1136Lꎬ所求时间t2=Δxvr=11603Lg.综上所述ꎬ应用质心的相关知识解题时ꎬ一般先分析系统所受的外力ꎬ根据质心运动定理ꎬ结合质心的初速度ꎬ判断质心的运动情况ꎬ再分析各质点或系统的各部分相对质心的运动.在质心系中分析问题时ꎬ应注意质心系是惯性系还是非惯性系ꎬ如果质心系是非惯性系ꎬ受力分析时还要考虑到惯性力.解题时还应注意各物理量的值在质心系和其他惯性系(例如地面参考系)中的区别和联系ꎬ计算时不能混淆.参考文献:[1]程稼夫.中学奥林匹克竞赛物理教程力学篇:第2版[M].合肥:中国科学技术大学出版社ꎬ2013(06):436-437.[责任编辑:李㊀璟]521。