第4章ADAMS软件算法基本理论-(陈立平)机械系统动力学分析及ADAMS应用
- 格式:doc
- 大小:411.00 KB
- 文档页数:17
机械系统动力学分析优秀软件--ADAMS功能综述
王立功; 王彩梅
【期刊名称】《《CAD/CAM与制造业信息化》》
【年(卷),期】2001(000)003
【总页数】2页(P71-72)
【作者】王立功; 王彩梅
【作者单位】
【正文语种】中文
【中图分类】TP31
【相关文献】
1.机械系统分析软件ADAMS在汽车列车动力学仿真中的应用 [J], 宋健;穆希辉
2.通用机械系统运动学/动力学分析微机软件MGMKDS的研制与应用 [J], 姚世平;章一鸣
3.机械系统运动学/动力学分析软件 [J], 袁清珂
4.完全笛卡尔坐标描述的机械系统动力学分析及软件研究 [J], 戈新生;张涌
5.一种通用机械系统运动学/动力学分析微机软件及其工程应用 [J], 姚世平;章一鸣
因版权原因,仅展示原文概要,查看原文内容请购买。
机械动力学adams
ADAMS,即机械系统动力学自动分析软件,是美国 MSC 公司开发的虚拟样机分析软件,它是目前世界上使用范围最广、最具权威性的机械系统动力学分析软件。
ADAMS 软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。
ADAMS 软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。
ADAMS 一方面是虚拟样机分析的应用软件,用户可以运用该软件非常方便地对虚拟机械系统进行静力学、运动学和动力学分析;另一方面,又是机械系统动态仿真分析的前处理和后处理工具,其强大的动画和绘图功能可以方便地生成各种运动学和动力学仿真结果。
总的来说,ADAMS 是一款功能强大的机械系统动力学分析软件,广泛应用于航空航天、汽车工程、机械制造、生物力学等领域。
机械系统动力学分析与仿真的发展方向及前沿楼主发表于 2006-8-15 09:41 | 只看该作者 | 倒序看帖 | 打印机械系统动力学分析与仿真的发展方向及前沿(摘自陈立平主编《机械系统动力学分析及adams应用教程》)基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。
目前的研究重点表现在以下几个方面:(1)柔性多体系统动力学的建模理论多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。
事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。
然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。
大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。
最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。
绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。
利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。
这种方法已成功应用于手术线的大变形仿真中。
寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。
第9章ADAMS用户子程序本章对ADAMS用户子程序做了简要介绍,着重介绍了CONSUB、GFOSUB和REQSUB的使用方法,以及在用户子程序中两个最常用的功能子程序SYSARY和SYSFNC的使用情况。
通过本章的学习,读者将具备基本的开发用户子程序的能力。
9.1 ADAMS用户子程序简介一般情况下,ADAMS的大部分功能可以通过函数表达式完成,函数表达式很容易操作,因为不必编译或连接程序,而且ADAMS/Solver还会实时地提供函数表达式。
但函数表达式提供的只是有限的编程结构,因此有些复杂的情况,特别是涉及到一些逻辑表达,用函数表达式则很难表达出来。
因此在需要采用一些ADAMS没有提供的特殊函数时,可以采用用户子程序。
用户子程序更具有通用性,可以利用编程语言来定义模型元素或者特定的输出。
用户可以将函数表达式写成子程序的形式并将其与ADAMS/Vi ew连接,它具有函数表达式所没有的通用性和灵活性。
子程序利用通用程序设计语言(FORTRAN或C)的功能来定义ADAMS/View不能提供的函数,并使之按照需要而量身设计。
通过连接用户子程序,不会失去ADAMS/View的任何功效,也不会降低仿真速度。
当出现下列情况时,通常会使用到用户子程序:(1)数学函数很难表达。
(2)需要定义多用户使用的函数。
(3)GSE和UCON声明时,需要用户子程序。
(4)需要控制复杂仿真运行时,以及需要作决策逻辑时。
使用用户子程序时要小心,因为不正确的用户子程序会很难调试。
9.1.1用户子程序的种类根据用户子程序的功能,可以将它们分为三类:(1)DriverSubroutine——驱动子程序(2)Evaluation Subroutines——计算子程序(3)Restart subroutines——重启子程序1.驱动子程序(Driver Subroutine)驱动子程序(DriverSubroutine)--CONSUB--用来驱动ADAMS/Solver。
多体系统动力学分析软件ADAMS的介绍ADAMS是美国学者蔡斯(Chace)等人利用多刚体动力学理论,选取系统每个刚体的质心在惯性参考系中的三个直角坐标和反映刚体方位的为广义坐标编制的计算程序。
其中应用了吉尔(Gear)等解决刚性积分问题的算法,并采用了稀疏矩阵技术来提高计算效率。
该软件因其强大的功能而在汽车航天等领域得到了广泛的应用。
1 ADAMS软件简介在研究汽车各种性能时,研究对象的建模、分析与求解始终是关键。
多体系统动力学软件为汽车动力学研究提供了强大的数学分析工具。
ADAMS软件就是其中的佼佼者。
ADAMS(Automatic Dynamic Analysis of Mechanical System)软件,是由美国机械动力公司(Mechanical Dynamics Inc.)开发的最优秀的机械系统动态仿真软件,是世界上最具权威性的,使用围最广的机械系统动力学分析软件。
用户使用ADAMS软件,可以自动生成包括机-电-液一体化在的、任意复杂系统的多体动力学数字化虚拟样机模型,能为用户提供从产品概念设计、方案论证、详细设计、到产品方案修改、优化、试验规划甚至故障诊断各阶段、全方位、高精度的仿真计算分析结果,从而达到缩短产品开发周期、降低开发成本、提高产品质量及竞争力的目的。
由于ADAMS软件具有通用、精确的仿真功能,方便、友好的用户界面和强大的图形动画显示能力,所以该软件已在全世界数以千计的著名大公司中得到成功的应用。
ADAMS软件一方面是机械系统动态仿真软件的应用软件,用户可以运用该软件非常方便地对虚拟样机进行静力学、运动学和动力学分析。
另一方面,又是机械系统仿真分析开发工具,其开放性的程序结构和多种接口,可以成为特殊行业用户进行特殊机械系统动态仿真分析的二次开发工具平台。
在产品开发过程中,工程师通过应用ADAMS软件会收到明显效果:*分析时间由数月减少为数日*降低工程制造和测试费用*在产品制造出之前,就可以发现并更正设计错误,完善设计方案*在产品开发过程中,减少所需的物理样机数量*当进行物理样机测试有危险、费时和成本高时,可利用虚拟样机进行分析和仿真*缩短产品的开发周期使用ADAMS建立虚拟样机非常容易。
第4章ADAMS软件基本算法本章主要介绍ADAMS软件的基本算法,包括ADAMS建模中的一些基本概念、运动学分析算法、动力学分析算法、静力学分析及线性化分析算法以及ADAMS软件积分器介绍。
通过本章的学习可以对ADAMS软件的基本算法有较深入的了解,为今后合理选择积分器进行仿真分析提供理论基础,为更好地使用ADAMS打下良好的理论基础。
4.1 ADAMS建模基础ADAMS利用带拉格朗日乘子的第一类拉格朗日方程导出――最大数量坐标的微分-代数方程(DAE)。
它选取系统内每个刚体质心在惯性参考系中的三个直角坐标和确定刚体方位的三个欧拉角作为笛卡尔广义坐标,用带乘子的拉格朗日第一类方程处理具有多余坐标的完整约束系统或非完整约束系统,导出以笛卡尔广义坐标为变量的动力学方程。
4.1.1 参考标架在计算系统中构件的速度和加速度时,需要指定参考标架,作为该构件速度和加速度的参考坐标系。
在机械系统的运动分析过程中,有两种类型的参考标架——地面参考标架和构件参考标架。
地面参考标架是一个惯性参考系,它固定在一个“绝对静止”的空间中。
通过地面参考标架建立机械系统的“绝对静止”参考体系,属于地面标架上的任何一点的速度和加速度均为零。
对于大多数问题,可以将地球近似为惯性参考标架,虽然地球是绕着太阳旋转而且地球还有自转。
对于每一个刚性体都有一个与之固定的参考标架,称为构件参考标架,刚性体上的各点相对于该构件参考标架是静止的。
4.1.2 坐标系的选择机械系统的坐标系广泛采用直角坐标系,常用的笛卡尔坐标系就是一个采用右手规则的直角坐标系。
运动学和动力学的所有矢量均可以用沿3个单位坐标矢量的分量来表示。
坐标系可以固定在一个参考标架上,也可以相对于参考框架而运动。
合理地设置坐标系可以简化机械系统的运动分析。
在机械系统运动分析过程中,经常使用3种坐标系:(1)地面坐标系(Ground Coordinate System)。
地面坐标系又称为静坐标系,是固定在地面标架上的坐标系。
ADAMS/Solver 模型语言adm 文件、ADAMS/Solver 仿真控制语言acf 文件的语法、结构,对一些关键语句进行深入的说明,通过学习可以深刻理解ADAMS 中几何、约束、力元等的实质,可以脱离ADAMS/View 环境直接利用ADAMS/Solver 进行一些高级应用,一步的ADAMS 二次开发打下基础。
6.1ADAMS 的主要文件介绍ADAMS 中关于模型及分析主要有以下几种类型文件:ADAMS/View 二进制数据库文件、ADAMS/View 命令cmd 文件、ADAMS/Solver 模型语言adm 文件、ADAMS/Solver 仿真控制语言acf 文件,以及ADAMS/Solver 仿真分析结果文件:req 文件、res 文件、gra 文件 、out 文件、msg 文件。
ADAMS/View 二进制数据库bin 文件以“ .bin ”为文件名后缀,文件中记录了从ADAMS 启动后到存储为bin 文件时的全部信息-包含模型的完整拓扑结构信息、模型仿真信息以及后处理信息。
可以包含多个模型、多个分析工况和结果。
可以保存ADAMS/View 的各种设置信息。
文件为二进制不能阅读、编辑,只能通过ADAMS/View 调阅,由于信息全面一般文件都比较大。
ADAMS/View 命令cmd 文件以“ .cmd ”为文件名后缀,是由ADAMS/View 命令编写的模型文件,可以包含模型的完整拓扑结构信息(包括所有几何信息)、模型仿真信息,为文本文件,可读性强,可以进行编程,是ADAMS 的二次开发语言,不包含ADAMS/View 的环境设置信息,不包含仿真结果信息,只能包含单个模型。
ADAMS/Solver 模型语言(ADAMS Data Language )adm 文件,以“ .adm ”为文件名后缀,文件中包含模型中拓扑结构信息,但有些几何形体如 link 等不能保留。
ADAMS/View 的环境设置不能保留。
第1章 绪论本章首先介绍虚拟产品开发与虚拟样机技术的特点、内容及其应用;在此基础上提出数字化样机的概念,并由此引入机械系统动力学分析与仿真,概述了机械系统动力学分析与仿真在数字化功能样机中的重要作用;最后阐述了机械系统动力学分析与仿真的发展方向及前沿。
通过本章的学习可以对虚拟样机技术及机械系统动力学分析仿真技术的内容及发展有较深入的了解,便于以后对具体内容的学习掌握。
1.1 虚拟产品开发与虚拟样机技术1990年10月29日,美国波音公司正式启动波音777飞机研制计划,采用一种全新的设计与制造方式,4年半之后,于1994年6月12日直接进行了第1架波音777的首次试飞。
波音777飞机的研制采用了全数字化的无纸设计技术,整机外型、结构件和整机飞机系统100%采用三维数字化定义,100%应用数字化预装配,整个设计制造过程无需模型和样机,一次成功,首次实现了整机数字化设计、数字化制造和数字化协调。
对比以往的飞机研制,波音777成本降低了25%,出错返工率减少了75%,制造周期缩短了50%。
波音777的研制成为现代产品开发新技术应用的里程碑,其采用的开发过程现在称之为虚拟产品开发(Virtual Product Development - VPD),应用的开发技术称之为虚拟样机技术(Virtual Prototyping - VP)。
虚拟产品开发和虚拟样机技术的出现是市场激烈竞争的拉动和技术迅速发展的推动共同作用的结果。
随着世界经济的一体化发展,市场竞争日趋激烈,多品种小批量生产和大批量定制生产逐渐成为主导的生产形式。
在这种情况下,企业要求得生存与发展,就必须调整其产品开发和生产组织模式,解决T(最快的上市时间)、Q(最好的产品质量)、C(最低的产品成本)、S(良好的产品服务)和E(尽少的环境污染)难题。
另一方面,世界已经进入全球化的知识经济时代,这为TQCSE术应运而生。
1.1.1 虚拟产品开发技术这个描述对于“虚拟产品开发”作了精确的概括,直到十年之后的现在仍然是合乎时机械系统动力学分析及ADAMS 应用2 宜的,它指出了虚拟产品开发具备的三个主要特点:(1)数字化方式品出现之前,都是以数字化方式存在,称之为产品的数字化模型;二是开发管理的数字化,在产品开发过程中,开发过程的管理采用数字化的方式,开发网络的任务是以数字化方式确定和分配的;三是信息交流的数字化,在产品设计制造的全生命周期中,同一阶段或不同阶段之间,如设计单位内部或设计与制造单位之间,产品信息的交流采用数字化方式,基于数字化模型实现无纸化设计。
第12章ADAMS应用实例本章主要介绍了ADAMS在建立汽车等速万向节专用仿真系统以及在建立轿车整车动力学模型及仿真分析方面的应用。
对本章的学习,可以进一步加深对ADAMS的理解。
12.1等速万向节专用仿真分析系统应用实例上一章的内容,介绍了利用ADAMS/View的二次开发功能,以及以ADAMS软件为平台,建立汽车等速万向节专用仿真分析系统的详细过程。
建立这种针对某些零部件的专用仿真分析系统是十分有意义和必要的。
因为,象ADAMS这样的国外大型通用计算机辅助工程分析软件,虽然具有功能强大的求解器和前、后处理功能,为解决复杂、庞大的工程项目提供了一个强有力的工具。
但正是由于其通用性特点,使其不具有针对性。
复杂的英文界面和繁琐的分析步骤都给从事产品设计的技术人员造成了很大的障碍,直接应用这些通用软件进行产品设计会使得工作量浩大而且十分容易出错,无论在时间上,还是费用上都给这些软件在实际产品设计中的应用带来了负面影响。
因此,研究开发面向工程设计人员的专用仿真分析系统显得十分必要。
本节以汽车等速万向节专用仿真分析系统为例,说明这类专用系统的应用情况,通过本例可以看出此类专用系统将很大程度上改变国内数字化虚拟仿真分析软件的应用水平,从而提高产品的设计能力。
12.1.1 等速万向节结构简介为了能够把问题讲清楚,有必要先简单介绍一下汽车等速万向节的基本结构。
汽车等速万向节是汽车驱动半轴的重要部件,一般分为球笼式等速万图12-1 轿车前转向驱动桥结构图1—球笼式等速万向节;2—驱动半轴;3—差速器;4—三球销式等速万向节;5—驱动半轴;6—驱动轮;7—球笼式等速万向节;8—三球销式等速万向节机械系统动力学分析及ADAMS应用向节和三球销式等速万向节两种,分别安装在驱动半轴的两端,如图12-1所示:图12-2 球笼式等速万向节的结构图1-钟形壳;2-钢球(6个);3-保持架(球笼);4-星形套球笼式等速万向节由钟形壳、钢球、保持架和星形套组成。
(陈立平)机械系统动力学分析及ADAMS应用——第11章ADAMS二次开发及实例第11章 ADAMS二次开发及实例ADAMS具有很强的二次开发功能,包括ADAMS/View界面的用户化设计,利用cmd语言实现自动建模和仿真控制,通过编制用户子程序满足用户的某些特定需求,甚至可以拓展ADAMS的功能。
本章主要介绍如何定制用户化界面、宏命令的用法和条件循环命令的用法,以及综合以上功能的应用实例。
由于用户子程序的主要内容已在第9章进行了详细介绍,因此本章只对所涉及到的用户子程序编译联接操作过程进行简单介绍。
ADAMS/View的界面对象都是以层次结构存储在模型数据库中,类似于零件模型的层次结构。
所有定制的界面对象都存储在名为GUI的数据库中,该数据库可以很方便地管理所有的标准界面对象。
如图11-1所示。
图11-1 界面对象的层次结构机械系统动力学分析及ADAMS应用最上层的界面对象是窗口和对话框。
如果主要建模窗口起名为main的话,其数据库全名应为.gui.main。
尽管窗口和对话框看起来很相似,但它们却是很不相同的。
窗口通常是在用户工作的时候在屏幕上停留一段时间,而对话框通常是在用户输入数据或是进行访问控制时才会出现。
窗口有工具条和菜单栏,窗口和对话框也包含其他的界面对象如按钮,标签等等。
大多数用户化操作涉及到创建对话框或者修改标准对话框。
但若不用创建一个完整的用户化界面时,则通常只用修改菜单条和工具栏。
ADAMS所包含界面对象属性如表11-1所示。
表11-1 ADAMS所包含界面对象属性界面对象: 对象属性: Window(窗口) 可包含用户自定义的菜单条和工具条可有一个以上的菜单条,但一次只能显示一个包含所有低层次的界面对象 Toolbar(工具条) 出现在窗口上端或下端的子区域能包含其它的对象Menu Bar(菜单条) 出现在窗口上端可有子菜单仅用于控制菜单Menu(菜单) 包含三种类型:下拉式、弹出式或子菜单可包含按钮、开关按钮、分割条和子菜单 Dialog box(对话框) 除菜单条和工具条之外还可包含其他对象 Container(界面对象区) 包含在对话框,窗口和工具条内的子区域可包含其他对象Button stack(按钮串) 可包含多个按钮,而只显示一个按钮仅一个按钮被激活可通过右键操作显示所有按钮. Lable(标签) 用在对话框中显示文本和图象Field(数据区) 用于用户输入信息Button(按钮) 激活操作在按钮上显示文本和图象对相应操作进行提示Toggle button(开关按钮) 显示激活状态的按钮Seperator(分割线) 画出水平线分割线Slide(滑动条) 通过滑动条设置当前范围内的整数值,而不用键入数值第11章 ADAMS二次开发及实例 Option menu(可选菜单项) 在多个菜单项中作一选择包含一个弹出菜单的图框只显示一行选定菜单项 Radio boa(状态设置框) 设置状态和模式 Tab container(标签界面对给界面和对话框设置标签象)Data table(数据表) 用来显示数据的表格,你可增加栏或列在大多数情况下,用户定制界面是指制作用户自己的菜单和对话框。
《机械动力学仿真分析软件ADAMS》教学大纲课程代码:010142081课程英文名称:Software ADAMS for Mecha nical dyn amics simulatio n课程总学时:24 讲课:24 实验:0上机:0适用专业:机械设计制造及其自动化大纲编写(修订)时间:2010.7一、大纲使用说明(一)课程的地位及教学目标机械动力学仿真软件ADAM是美国MSC公司的产品,集建模、求解、可视化技术于一体,是世界上目前使用范围最广、最负盛名的机械系统仿真分析软件,主要作用是对机械系统进行静力学、运动学和动力学分析仿真,用于研究整个机械系统的工作性能,可以在设计的早期阶段生成虚拟样机,再真实地预测机械系统的工作性能,实现系统级的最优化设计。
利用ADAM软件,用户可以快速、方便地创建完全参数化的机械系统几何模型。
该模型既可以是在ADAM中直接建造的几何模型,也可以是从其他CAD软件中传过来的造型逼真的几何模型。
机械动力学仿真软件ADAM作为仿真技术,是机械工程专业的一门专业课,是分析和研究各种复杂系统的有力工具,有如下要求即教学目标:通过本课程的学习,使学生掌握仿真技术的原理和方法,能应用机械动力学仿真分析软件ADAM对一般的机械系统建立动力学仿真模型,并进行仿真,以达到能利用仿真技术对机械系统进行动力学仿真及优化分析的目的,为机械系统开发、设计与分析提供有利的技术支持。
(二)知识、能力及技能方面的基本要求在教学目标所提及的范围内,要求学生了解并掌握机械动力学分析的基本原理以及相关的基本概念;使学生通过本门课的学习,能够对简单机械系统进行动力学仿真分析,并根据仿真结果的分析机械系统的动力学参数及性能;同时使学生能够结合优化设计技术对机械系统进行优化分析,进一步提高综合设计能力。
(三)实施说明课程各章节内容在重点、深度和广度方面的说明:虚拟样机几何建模,样机仿真分析及调试,仿真结果后处理、参数化建模与设计相关技术和应用。
第7章 ADAMS/PostProcessor使用方法本章主要介绍ADAMS/PostProcessor的使用方法,包括ADAMS/PostProcessor的基本操作、输出仿真结果动画、绘制仿真结果曲线图及对曲线图进行处理,最后通过实例介绍ADAMS/ PostProcessor的具体用法。
通过本章的学习可以深入了解和具体掌握ADAMS/ PostProcessor的基本使用方法,能够结合用户需求灵活地进行仿真计算结果的观察和分析。
7.1 ADAMS/PostProcessor简介7.1.1 ADAMS/PostProcessor的用途ADAMS/ PostProcessor是ADAMS软件的后处理模块,绘制曲线和仿真动画的功能十分强大,利用ADAMS/ PostProcessor可以使用户更清晰地观察其他ADAMS模块(如ADAMS/ View, ADAMS/ Car或ADAMS/ Engine)的仿真结果,也可将所得到的结果转化为动画、表格或者HTML等的形式,能够更确切地反映模型的特性、便于用户对仿真计算的结果进行观察和分析。
ADAMS/PostProcessor在模型的整个设计周期中都发挥着重要的作用,其用途主要包括:(1)模型调试在ADAMS/ PostProcessor中,用户可选择最佳的观察视角来观察模型的运动,也可向前、向后播放动画,从而有助于对模型进行调试。
也可从模型中分离出单独的柔性部件,以确定模型的变形。
(2)试验验证如果需要验证模型的有效性,可输入测试数据并以坐标曲线图的形式表达出来,然后将其与ADAMS仿真结果绘于同一坐标曲线图中进行对比,并可以在曲线图上进行数学操作和统计分析。
(3)设计方案改进在ADAMS/PostProcessor中,可在图表上比较两种以上的仿真结果,从中选择出合理的设计方案。
另外,可通过单击鼠标操作,更新绘图结果。
如果要加速仿真结果的可视化过程,可对模型进行多种变化。
ADAMS 2023动力学分析与仿真从入门到精通1. 简介ADAMS(Advanced Dynamic Analysis of Mechanical Systems,机械系统高级动力学分析)是一种用于进行多体动力学分析和仿真的工程软件。
它可以帮助工程师在设计阶段预测和优化机械系统的动态性能。
本文档旨在介绍ADAMS软件的基本概念和使用方法,从入门到精通,帮助读者快速上手并深入了解该软件的应用。
2. ADAMS基本概念2.1 动力学分析动力学分析是研究物体在受力的作用下的运动规律的过程。
在工程领域中,动力学分析可以帮助工程师了解机械系统的受力情况、振动特性以及运动性能,从而进行系统设计和优化。
2.2 多体系统ADAMS主要适用于多体系统的动力学分析和仿真。
多体系统是由多个物体组成的系统,这些物体之间通过连接件(如关节、弹簧等)相互连接。
在ADAMS中,物体和连接件共同构成了一个复杂的多体系统。
2.3 仿真仿真是通过模拟真实系统的运行过程来获取系统的性能和行为数据。
在ADAMS中,可以建立一个虚拟的多体系统模型,并对其进行动态仿真。
通过仿真可以观察系统的运动轨迹、应力情况以及其他动态性能指标。
3. ADAMS软件安装与设置3.1 软件安装ADAMS软件可以从MSC官方网站上下载并安装。
根据操作系统的要求进行安装步骤,并确保软件安装成功。
3.2 界面介绍ADAMS的主界面由多个视图组成,包括模型视图、结果视图、控制视图等。
在开始使用ADAMS之前,需要熟悉界面的各个部分以及其功能。
3.3 工作空间设置在ADAMS中,可以通过设置工作空间来指定工作目录、结果输出路径等。
正确设置工作空间可以提高工作效率并方便管理文件。
4. ADAMS模型的建立与编辑4.1 模型概念在ADAMS中,模型是指多体系统的虚拟表示。
建立一个准确的模型是进行动力学分析和仿真的前提。
4.2 模型创建ADAMS提供了丰富的建模工具和元件库,通过拖拽和连接不同的元件可以创建复杂的多体系统模型。
第11章 ADAMS二次开发及实例ADAMS具有很强的二次开发功能,包括ADAMS/View界面的用户化设计,利用cmd语言实现自动建模和仿真控制,通过编制用户子程序满足用户的某些特定需求,甚至可以拓展ADAMS的功能。
本章主要介绍如何定制用户化界面、宏命令的用法和条件循环命令的用法,以及综合以上功能的应用实例。
由于用户子程序的主要内容已在第9章进行了详细介绍,因此本章只对所涉及到的用户子程序编译联接操作过程进行简单介绍。
11.1 定制用户界面ADAMS/View的界面对象都是以层次结构存储在模型数据库中,类似于零件模型的层次结构。
所有定制的界面对象都存储在名为GUI的数据库中,该数据库可以很方便地管理所有的标准界面对象。
如图11-1所示。
图11-1 界面对象的层次结构机械系统动力学分析及ADAMS应用最上层的界面对象是窗口和对话框。
如果主要建模窗口起名为main的话,其数据库全名应为.gui.main。
尽管窗口和对话框看起来很相似,但它们却是很不相同的。
窗口通常是在用户工作的时候在屏幕上停留一段时间,而对话框通常是在用户输入数据或是进行访问控制时才会出现。
窗口有工具条和菜单栏,窗口和对话框也包含其他的界面对象如按钮,标签等等。
大多数用户化操作涉及到创建对话框或者修改标准对话框。
但若不用创建一个完整的用户化界面时,则通常只用修改菜单条和工具栏。
ADAMS所包含界面对象属性如表11-1所示。
表11-1 ADAMS所包含界面对象属性第11章ADAMS二次开发及实例在大多数情况下,用户定制界面是指制作用户自己的菜单和对话框。
通常可使用菜单编辑器和对话框编辑器来定制界面,通过它们可以很快地访问并改变大多数界面对象和功能。
下面就这两方面的内容作简单介绍。
11.1.1 定制菜单1。
菜单编辑器通过以下菜单路径可以调出菜单编辑器窗口:Main menu==》Tools==》Menu==》Modify……菜单编辑器窗口如图11-2所示:图11-2 菜单编辑窗口在菜单编辑器窗口中显示的是ADAMS菜单文件,菜单文件是按照一定的语法书写的解释性程序文件,在默认情况下,菜单编辑器窗口里显示的是描述ADAMS标准菜单的菜单文件,通过按照一定的语法规则修改该菜单文件,就可以得到用户化的菜单。
目录1.adams软件介绍2.adams学习书籍3.软件安装问题4.常见基础问题4.1一般问题4.2有关齿轮副4.3有关凸轮副4.4蜗轮蜗杆模拟4.5有关行星齿轮传动4.6spline5.常用函数5.1函数总体介绍5.2样条函数:akispl,cubspl5.3step函数5.4IF函数5.5impact与bistop函数5.6gforce和sforce函数5.7sensor,acf的应用6.adams与CAD数据转换6.1proe6.2UG6.3catia6.4solidwork6.5其他CAD软件7.flex相关7.1autoflex8.MATLAB和ADAMS联合仿真篇一、软件介绍篇ADAMS是Automatic Dynamics Analysis of Mechanical System缩写,为原MDI公司开发的著名虚拟样机软件。
1973年Mr.Michael E.Korybalski取得密西根大学爱娜堡分校(University of Michigan,Ann Arbor)机械工程硕士学历后,受雇于福特汽车担任产品工程师,四年后(1977)与其它等人于美国密执安州爱娜堡镇创立MDI公司(Mechanical Dynamics Inc.)。
密西根大学对ADAMS发展具有密不可分的关系,在ADAMS未成熟前,MDI与密西根大学研究学者开发出2D机构分析软件DRAMS,直到1980年第一套3D机构运动分析系统商品化软件,称为ADAMS。
2002年3月18日MSC.Software公司并购MDI 公司,自此ADAMS并入MSC产品线名称为MSC.ADAMS(本文仍简称ADAMS)。
ADMAS软件由若干模块组成,分为核心模块、功能扩展模块、专业模块、接口模块、工具箱5类,其中核心模块为ADAMS/View——用户界面模块、ADAMS/Solver——求解器和ADAMS/Postprocessor——专用后处理模块。
第4章ADAMS软件基本算法本章主要介绍ADAMS软件的基本算法,包括ADAMS建模中的一些基本概念、运动学分析算法、动力学分析算法、静力学分析及线性化分析算法以及ADAMS软件积分器介绍。
通过本章的学习可以对ADAMS软件的基本算法有较深入的了解,为今后合理选择积分器进行仿真分析提供理论基础,为更好地使用ADAMS打下良好的理论基础。
4.1 ADAMS建模基础ADAMS利用带拉格朗日乘子的第一类拉格朗日方程导出――最大数量坐标的微分-代数方程(DAE)。
它选取系统内每个刚体质心在惯性参考系中的三个直角坐标和确定刚体方位的三个欧拉角作为笛卡尔广义坐标,用带乘子的拉格朗日第一类方程处理具有多余坐标的完整约束系统或非完整约束系统,导出以笛卡尔广义坐标为变量的动力学方程。
4.1.1 参考标架在计算系统中构件的速度和加速度时,需要指定参考标架,作为该构件速度和加速度的参考坐标系。
在机械系统的运动分析过程中,有两种类型的参考标架——地面参考标架和构件参考标架。
地面参考标架是一个惯性参考系,它固定在一个“绝对静止”的空间中。
通过地面参考标架建立机械系统的“绝对静止”参考体系,属于地面标架上的任何一点的速度和加速度均为零。
对于大多数问题,可以将地球近似为惯性参考标架,虽然地球是绕着太阳旋转而且地球还有自转。
对于每一个刚性体都有一个与之固定的参考标架,称为构件参考标架,刚性体上的各点相对于该构件参考标架是静止的。
4.1.2 坐标系的选择机械系统的坐标系广泛采用直角坐标系,常用的笛卡尔坐标系就是一个采用右手规则的直角坐标系。
运动学和动力学的所有矢量均可以用沿3个单位坐标矢量的分量来表示。
坐标系可以固定在一个参考标架上,也可以相对于参考框架而运动。
合理地设置坐标系可以简化机械系统的运动分析。
在机械系统运动分析过程中,经常使用3种坐标系:(1)地面坐标系(Ground Coordinate System)。
地面坐标系又称为静坐标系,是固定在地面标架上的坐标系。
ADAMS中,所有构件的位置、方向和速度都用地面坐标系表示。
(2)局部构件参考坐标系(Local Part Reference Frame,LPRF)。
这个坐标系固定在构件上并随构件运动。
每个构件都有一个局部构件参考坐标系,可以通过确定局部构件参考坐标系在地面坐标系的位置和方向,来确定一个构件的位置和方向。
在ADAMS中,局部构件参考坐标系缺省与地面坐标系重合。
(3)标架坐标系(Marker System)。
标架坐标系又称为标架,是为了简化建模和分析在构件上设立的辅助坐标系,有两种类型的标架坐标系:固定标架和浮动标架。
固定标架机械系统动力学分析及ADAMS 应用固定在构件上,并随构件运动。
可以通过固定标架在局部构件参考坐标系中的位置和方向,确定固定标架坐标系的位置和方向。
固定标架可以用来定义构件的形状、质心位置、作用力和反作用力的作用点、构件之间的连接位置等。
浮动标记相对于构件运动,在机械系统的运动分析过程中,有些力和约束需要使用浮动标架来定位。
动力学方程的求解速度很大程度上取决于广义坐标的选择。
研究刚体在惯性空间中的一般运动时,可以用它的质心标架坐标系确定位置,用质心标架坐标相对地面坐标系的方向余弦矩阵确定方位。
为了解析地描述方位,必须规定一组转动广义坐标表示方向余弦矩阵。
第一种方法是用方向余弦矩阵本身的元素作为转动广义坐标,但是变量太多,同时还要附加六个约束方程;第二种方法是用欧拉角或卡尔登角作为转动坐标,它的算法规范,缺点是在逆问题中存在奇点,在奇点位置附近数值计算容易出现困难;第三种方法是用欧拉参数作为转动广义坐标,它的变量不太多,由方向余弦计算欧拉角时不存在奇点。
ADAMS 软件用刚体iB 的质心笛卡尔坐标和反映刚体方位的欧拉角作为广义坐标,即Ti z y x q ],,,,,[ϕθψ=,TT n T T q q q q ],,,[21 =。
由于采用了不独立的广义坐标,系统动力学方程虽然是最大数量,但却是高度稀疏耦合的微分代数方程,适用于稀疏矩阵的方法高效求解。
4.2 ADAMS 运动学分析4.2.1 ADAMS 运动学方程利用ADAMS 建立机械系统仿真模型时,系统中构件与地面或构件与构件之间存在运动副的联接,这些运动副可以用系统广义坐标表示为代数方程,这里仅考虑完整约束。
设表示运动副的约束方程数为nh ,则用系统广义坐标矢量表示的运动学约束方程组为: 12()[(),(),...,()]0KKKKTnh q q q q Φ=ΦΦΦ= (4-1)考虑运动学分析,为使系统具有确定运动,要使系统实际自由度为零,为系统施加等于自由度(nh nc -)的驱动约束:0),(=Φt q D (4-2)在一般情况下,驱动约束是系统广义坐标和时间的函数。
驱动约束在其集合内部及其与运动学约束合集中必须是独立和相容的,在这种条件下,驱动系统运动学上是确定的,将作确定运动。
由式(4-1)表示的系统运动学约束和式(4-2)表示的驱动约束组合成系统所受的全部约束:0),(),(),(=⎥⎦⎤⎢⎣⎡ΦΦ=Φt q t q t q D K (4-3)第4章 ADAMS 软件基本算法式(4-3)为nc 个广义坐标的nc 个非线性方程组,其构成了系统位置方程。
对式(4-3)求导,得到速度约束方程:0),(),(),,(=Φ+Φ=Φt q q t q t q q t q (4-4) 若令),(t q t Φ-=υ,则速度方程为:0),(),,(=-Φ=Φυq t q t q q q (4-5) 对式(4-4)求导,可得加速度方程:0),(),(2)),((),(),,,(=Φ+Φ+Φ+Φ=Φt q q t q q q t q q t q t q q q tt qt q q q (4-6) 若令tt qt q q q q qΦ-Φ-Φ-= 2)(η,则加速度方程为: 0),,(),(),,,(=-Φ=Φt q q q t q t q q q q η (4-7) 矩阵q Φ,为雅可比矩阵,如果Φ的维数为m ,q 维数为n ,那么q Φ维数为n m ⨯矩阵,其定义为j i j i q q ∂Φ∂=Φ),()(。
在这里q Φ为nc nc ⨯(nh 个运动学约束,nc -nh 个驱动约束,nc 个广义坐标)的方阵。
4.2.2 ADAMS 运动学方程的求解算法在ADAMS 仿真软件中,运动学分析研究零自由度系统的位置、速度、加速度和约束反力,因此只需求解系统的约束方程:(,)0n q t Φ= (4-8)运动过程中任一时刻n t 位置的确定,可由约束方程的Newton-Raphson 迭代法求得:(,)0j q j j n q q t Φ∆+Φ= (4-9)其中,1j j j q q q +∆=-,表示第j 次迭代。
n t 时刻速度、加速度可以利用线性代数方程的数值方法求解,ADAMS 中提供了两种线性代数方程求解方法:CALAHAN 方法(由Michigan 大学 Donald Calahan 教授提出)与HARWELL 方法(由HARWELL 的Ian Duff 教授提出 ),CALAHAN 方法不能处理冗余约束问题,HARWELL 方法可以处理冗余约束问题,CALAHAN 方法速度较快。
1q t q-=-ΦΦ (4-10) 1()2q q q qt tt q q q q -⎡⎤=-ΦΦ+Φ+Φ⎣⎦ (4-11)机械系统动力学分析及ADAMS 应用4.3 ADAMS 动力学分析4.3.1 ADAMS 动力学方程ADAMS 中用刚体B 的质心笛卡尔坐标和反映刚体方位的欧拉角作为广义坐标,即[,,,,,]T q x y z ψθϕ=,令[],,T R x y z =,[],,Tγψθφ=,[,]T T T q R γ=。
构件质心参考坐标系与地面坐标系间的坐标变换矩阵为:cos cos sin cos sin cos sin sin cos cos sin sin sin cos cos cos sin sin sin cos cos cos cos sin sin sin sin cos cos gi A ψφψθφψφψθφψθψφψθφψφψθφψθθφθφθ---⎡⎤⎢⎥=+-+-⎢⎥⎢⎥⎣⎦(4-12)定义一个欧拉转轴坐标系,该坐标系的三个单位矢量分别为上面三个欧拉转动的轴,因而三个轴并不相互垂直。
该坐标系到构件质心坐标系的坐标变换矩阵为:sin sin 0cos sin cos 0sin cos 10B θφθθφθθ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦ (4-13) 构件的角速度可以表达为:B ωγ= (4-14)ADAMS 中引入变量e ω为角速度在欧拉转轴坐标系分量:e ωγ= (4-15)考虑约束方程,ADAMS 利用带拉格朗日乘子的拉格朗日第一类方程的能量形式得到如下方程:1()nj i i j j jd T T Q dt q q q λ=∂∂∂Φ-=+∂∂∂∑ (4-16) T 为系统广义坐标表达的动能,j q 为广义坐标,j Q 为在广义坐标j q 方向的广义力,最后一项涉及约束方程和拉格朗日乘子表达了在在广义坐标j q 方向的约束反力。
ADAMS 中近一步引入广义动量:j jT P q ∂=∂ (4-17)第4章 ADAMS 软件基本算法简化表达约束反力为:1nj ii jC q λ=∂Φ=∂∑ (4-18) 这样方程(4-16)可以简化为:j j jjT P Q C q ∂-=-∂ (4-19) 动能可以近一步表达为:1122T T TT R MR B JB γγ=+ (4-20) 其中M 为构件的质量阵,J 为构件在质心坐标系下的惯量阵。
将(4-19)分别表达为移动方向与转动方向有:R R RR T P Q C q ∂-=-∂ (4-21) T P Q C q γγγγ∂-=-∂ (4-22) 其中()RR d d T P MR MV q dt dt⎛⎫∂=== ⎪∂⎝⎭ ,0R T q ∂=∂。
(4-21)式可以简化为:R R MV Q C =- (4-23) T T P B JB q γγγ⎛⎫∂==⎪ ⎪∂⎝⎭,由于B 中包含欧拉角,为了简化推导,ADAMS 中并没有进一步推导P γ,而是将其作一个变量求解。
这样ADAMS 中每个构件具有如下15个变量(而非12个)和15个方程(而非12个)。
变量:机械系统动力学分析及ADAMS 应用[][],,,,,,,,,,Tx y z T T Te T V V V V R x y z P P P P γψθφψθφωωωωγψθφ⎧⎡⎤=⎣⎦⎪⎪=⎪⎪⎡⎤=⎨⎣⎦⎪⎡⎤⎪=⎣⎦⎪⎪=⎩(4-24)方程:R RT e e MV Q CV R TP Q C q P B JB γγγγγωωγ⎧=-⎪⎪=⎪∂⎪-=-⎨∂⎪⎪=⎪⎪=⎩(4-25)集成约束方程ADAMS 可自动建立系统的动力学方程――微分-代数方程:()0,0(,,)T T q T P H F q T P q u q q t F f u q t λ∂⎧-+Φ+=∂⎪⎪∂=⎪∂⎪⎨=⎪⎪Φ=⎪=⎪⎩(4-26)其中,P 为系统的广义动量;H 为外力的坐标转换矩阵。