中考数学常考易错点21整式方程
- 格式:doc
- 大小:76.00 KB
- 文档页数:7
2025年湖南省中考数学一轮复习第五讲 整式方程(组)的概念及解法学生版知识要点对点练习1.整式方程(组)的定义 1.(1)下列是一元一次方程的是( )A.3-2xB.6+2=8C.x2-49=0D.5x-7=3(x+1)(2)下列是二元一次方程组的是( )A.{x2-y3=1y-z=2B.{2x2+y=13y-x=4C.{3x-y3=2x+y=5D.{x+y=73y+x=0(3)(教材再开发·湘教九上P28练习T1改编)下列方程中,不是一元二次方程的是( )A.x2-1=0B.x2+1x+3=0C.x2+2x+1=0D.3x2+ 2x+1=02.方程(组)的解(1)方程的解:使方程两边的的值.只含一个未知数的方程的解,也叫 2.如果方程x-y=3与下面方程中的一个组成的方程组的解为{x=4y=1,那么这个方程可以是( )A.3x-4y=16B.14x+2y=5方程的.(2)方程组的解:使方程组中的各个方程都的未知数的值. C.12x+3y=8D.2(x-y)=6y3.等式的性质(1)等式两边同时(或)同一个整式,等式仍然成立.(2)等式两边同时或同一个的整式,等式仍然成立. 3.下列变形不正确的是( )A.若x=y,则x+5=y+5B.若x=y,则xa=yaC.若x=y,则1-3x=1-3yD.若a=b,则ac=bc续表知识要点对点练习4.整式方程(组)的解法 4.(1)研究下面解方程1+4(2x-3)=5x-(1-3x)的过程:去括号,得1+8x-12=5x-1-3x,①移项,得8x-5x+3x=-1-1+12,②合并同类项,得6x=10,③系数化为1,得x=53.对于上面的解法,你认为( )A.完全正确B.变形错误的是①C.变形错误的是②D.变形错误的是③(2)(教材再开发·湘教九上P33例3改编)一元二次方程x 2-4x -8=0的解是()A .x 1=-2+2 3,x 2=-2-2 3B .x 1=2+2 3,x 2=2-2 3C .x 1=2+2 2,x 2=2-2 2D .x 1=2 3,x 2=-2 3(3)关于x 的一元二次方程(m +1)x |m |+1+4x +2=0的解为()A .x 1=1,x 2=-1B .x 1=x 2=1C .x 1=x 2=-1 D.无解(4)下列关于x 的一元二次方程没有实数根的是( )A .x 2+2x -5=0B .x 2-6=xC .5x 2+1=5D .x 2-2x +2=0(5)方程组{2x +y =1x -2y =8的解是{x =2y =-3.(6)已知x 1,x 2是一元二次方程2x 2+3x -5=0的两个根,则x 1+x 2=32,x 1x 2=52.(7)目前以5G 为代表的新兴产业蓬勃发展,某市2021年底有5G 用户20万户,计划到2023年底该市5G 用户数累计达到33.8万户.设该市5G 用户数年平均增长率为x ,则x 的值是 .考点1 整式方程(组)的解【例1】(1)(2024·聊城模拟)已知方程组{ax +by =0x +2by =-3c 的解是{x =3y =-1则a -b +c 的值为()A .1B .0C .-2D .-1(2)(2024·凉山州中考)若关于x 的一元二次方程(a +2)x 2+x +a 2-4=0的一个根是x =0,则a 的值为()A .2B .-2C .2或-2D .12【方法技巧】“让根回家”来求值 已知方程的根,一般将其代回原方程,得到关于未知系数(参数)的方程(组)求解,注意还要符合“二次项系数不为0”等隐含条件.【变式训练】1.(2024·聊城模拟)关于x 的一元一次方程2x -3m =6-x 的解是负数,则m 的取值范围是()A .m <-1B .m <-2C .m >1D .m >02.(2024·吉林模拟)若方程组{2x +y =m 2x -y =10的解为{x =3y =n ,小亮求解时不小心滴上了两滴墨水,刚好遮住了m 和n 两个数,则这两个数分别为( )A .6和4B .10和0C .2和-4D .4和23.(2024·深圳中考)一元二次方程x 2-3x +a =0的一个解为x =1,则a = .考点2 一次方程(组)的解法【例2】(1)解方程:x -12-2x +36=1.(2)解方程组:{2x +3y =83x -2y =-14.【自主解答】(1)x -12-2x +36=1,去分母得,3(x -1)-(2x +3)=6,去括号得,3x -3-2x -3=6,移项得,3x -2x =6+3+3,合并同类项得,x =12.(2){2x +3y =8①3x -2y =-14②,①×2得4x +6y =16③,②×3得9x -6y =-42④,③+④得13x =-26,解得x =-2,把x =-2代入①得-2×2+3y =8,解得y =4,所以原方程组的解是{x =-2y =4.【变式训练】1.(2024·西安模拟)已知关于x ,y 的方程组{2x -y =5ax +by =2和{x +y =4ax +2by =10有相同的解,那么2a +b 值是( )A .3B .4C .5D .62.(2024·南阳模拟)解方程(组).(1)x 2=2-x 3+1.(2){3x +2y =122x -y =1.考点3 一元二次方程的解法【例3】(1)(2024·阜阳模拟)4位同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是()A .小张B .小王C .小李D .小赵(2)(2023·新疆中考)用配方法解一元二次方程x 2-6x +8=0,配方后得到的方程是()A .(x +6)2=28B .(x -6)2=28C .(x +3)2=1D .(x -3)2=1【方法技巧】方程解法选择的“优胜劣汰”1.未指明用什么方法的前提下,优先考虑因式分解法.2.特殊形式,如a(x+b)2=b(b≥0),可用直接开平方法.3.判断不明时,当选公式法.提醒:配方法烦琐,但二次项系数为1,且一次项系数为偶数时,一般运用配方法.【变式训练】1.(2024·贵州中考)一元二次方程x2-2x=0的解是( )A.x1=3,x2=1B.x1=2,x2=0C.x1=3,x2=-2D.x1=-2,x2=-12.(2024·滨州中考)解方程:x2-4x=0.3.(2024·齐齐哈尔中考)解方程:x2-5x+6=0.考点4 根的判别式及根与系数的关系【例4】(2023·岳阳二模)已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为( )A.-10B.4C.-4D.10【方法技巧】判别式的“双向应用”1.正向:系数已知,可以判断方程根的情况.2.逆向:已知方程根的情况,可以求未知系数或参数的值.提醒:要根据a ≠0和Δ≥0这两个前提进行所求参数值的检验和取舍.【变式训练】1.(2024·自贡中考)关于x 的方程x 2+mx -2=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·乐山中考)若关于x 的一元二次方程x 2+2x +p =0两根为x 1,x 2,且1x 1+1x 2=3,则p 的值为()A .-23 B .23 C .-6 D .61.(2022·株洲中考)对于二元一次方程组{y =x -1①x +2y =7②,将①式代入②式,消去y 可以得到( )A .x +2x -1=7B .x +2x -2=7C .x +x -1=7D .x +2x +2=72.(2022·常德中考)关于x 的一元二次方程x 2-4x +k =0无实数解,则k 的取值范围是()A .k >4B .k <4C .k <-4D .k >13.(2023·怀化中考)已知关于x 的一元二次方程x 2+mx -2=0的一个根为-1,则m 的值为,另一个根为.4.(2024·湖南中考)若关于x的一元二次方程x2-4x+2k=0有两个相等的实数根,则k 的值为.5.(2024·长沙中考)为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘10,再加上4.6,将此时的运算结果再乘10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是.6.(2023·岳阳中考)已知关于x的一元二次方程x2+2mx+m2-m+2=0有两个不相等的实数根,且x1+x2+x1·x2=2,则实数m=.7.(2023·常德中考)解方程组:{x-2y=1①3x+4y=23②.2025年湖南省中考数学一轮复习第五讲 整式方程(组)的概念及解法 教师版知识要点对点练习1.整式方程(组)的定义1.(1)下列是一元一次方程的是(D)A .3-2x B .6+2=8C .x 2-49=0D .5x -7=3(x +1)(2)下列是二元一次方程组的是(D)A .{x 2-y3=1y -z =2B .{2x 2+y =13y -x =4C .{3x-y 3=2x +y =5D .{x +y =73y +x =0(3)(教材再开发·湘教九上P28练习T1改编)下列方程中,不是一元二次方程的是(B)A .x 2-1=0B .x 2+1x+3=0C .x 2+2x +1=0D .3x 2+ 2x +1=02.方程(组)的解(1)方程的解:使方程两边 相等 的 未知数 的值.只含一个未知数的方程的 2.如果方程x -y =3与下面方程中的一个组成的方程组的解为{x =4y =1,那么这个方程可以是(D)A .3x -4y =16B .14x +2y =5解,也叫方程的 根 .(2)方程组的解:使方程组中的各个方程都 成立 的未知数的值.C .12x +3y =8 D .2(x -y )=6y 3.等式的性质(1)等式两边同时 加上 (或 减去 )同一个整式,等式仍然成立. (2)等式两边同时 乘 或 除以 同一个 不为0 的整式,等式仍然成立.3.下列变形不正确的是(B)A .若x =y ,则x +5=y +5B .若x =y ,则x a =y aC .若x =y ,则1-3x =1-3yD .若a =b ,则ac =bc续表知识要点对点练习4.整式方程(组)的解法 4.(1)研究下面解方程1+4(2x -3)=5x -(1-3x )的过程:去括号,得1+8x -12=5x -1-3x ,①移项,得8x -5x +3x =-1-1+12,②合并同类项,得6x =10,③系数化为1,得x =53.对于上面的解法,你认为(B)A.完全正确B.变形错误的是①C.变形错误的是②D.变形错误的是③(2)(教材再开发·湘教九上P33例3改编)一元二次方程x 2-4x -8=0的解是(B)A .x 1=-2+2 3,x 2=-2-2 3B .x 1=2+2 3,x 2=2-2 3C .x 1=2+2 2,x 2=2-2 2D .x 1=2 3,x 2=-2 3(3)关于x 的一元二次方程(m +1)x |m |+1+4x +2=0的解为(C)A .x 1=1,x 2=-1B .x 1=x 2=1C .x 1=x 2=-1 D.无解(4)下列关于x 的一元二次方程没有实数根的是(D)A .x 2+2x -5=0B .x 2-6=xC .5x 2+1=5D .x 2-2x +2=0(5)方程组{2x +y =1x -2y =8的解是 {x =2y =-3 . (6)已知x 1,x 2是一元二次方程2x 2+3x -5=0的两个根,则x 1+x 2= -32 ,x 1x 2= -52 .(7)目前以5G 为代表的新兴产业蓬勃发展,某市2021年底有5G 用户20万户,计划到2023年底该市5G 用户数累计达到33.8万户.设该市5G 用户数年平均增长率为x ,则x 的值是 30% .考点1 整式方程(组)的解【例1】(1)(2024·聊城模拟)已知方程组{ax +by =0x +2by =-3c 的解是{x =3y =-1则a -b +c 的值为(D)A .1B .0C .-2D .-1(2)(2024·凉山州中考)若关于x 的一元二次方程(a +2)x 2+x +a 2-4=0的一个根是x =0,则a 的值为(A)A .2B .-2C .2或-2D .12【方法技巧】“让根回家”来求值 已知方程的根,一般将其代回原方程,得到关于未知系数(参数)的方程(组)求解,注意还要符合“二次项系数不为0”等隐含条件.【变式训练】1.(2024·聊城模拟)关于x 的一元一次方程2x -3m =6-x 的解是负数,则m 的取值范围是(B)A .m <-1B .m <-2C .m >1D .m >02.(2024·吉林模拟)若方程组{2x +y =m 2x -y =10的解为{x =3y =n ,小亮求解时不小心滴上了两滴墨水,刚好遮住了m 和n 两个数,则这两个数分别为(C)A .6和4 B .10和0C .2和-4D .4和23.(2024·深圳中考)一元二次方程x 2-3x +a =0的一个解为x =1,则a = 2 . 考点2 一次方程(组)的解法【例2】(1)解方程:x -12-2x +36=1.(2)解方程组:{2x +3y =83x -2y =-14.【自主解答】(1)x -12-2x +36=1,去分母得,3(x -1)-(2x +3)=6,去括号得,3x -3-2x -3=6,移项得,3x -2x =6+3+3,合并同类项得,x =12.(2){2x +3y =8①3x -2y =-14②,①×2得4x +6y =16③,②×3得9x -6y =-42④,③+④得13x =-26,解得x =-2,把x =-2代入①得-2×2+3y =8,解得y =4,所以原方程组的解是{x =-2y =4.【变式训练】1.(2024·西安模拟)已知关于x ,y 的方程组{2x -y =5ax +by =2和{x +y =4ax +2by =10有相同的解,那么2a +b 值是(B)A .3B .4C .5D .62.(2024·南阳模拟)解方程(组).(1)x 2=2-x 3+1.(2){3x +2y =122x -y =1.【解析】(1)x 2=2-x 3+1,去分母得,3x =2(2-x )+6,去括号得,3x =4-2x +6,移项,合并同类项得,5x =10,系数化为1得,x =2,∴原方程的解为x =2.(2){3x +2y =12①2x -y =1②,由①+②×2得,7x =14,解得x =2,将x =2代入②式得,2×2-y =1,解得y =3,∴原方程组的解为{x =2y =3.考点3 一元二次方程的解法【例3】(1)(2024·阜阳模拟)4位同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是(D)A .小张B .小王C .小李D .小赵(2)(2023·新疆中考)用配方法解一元二次方程x 2-6x +8=0,配方后得到的方程是(D)A .(x +6)2=28B .(x -6)2=28C.(x+3)2=1D.(x-3)2=1【方法技巧】方程解法选择的“优胜劣汰”1.未指明用什么方法的前提下,优先考虑因式分解法.2.特殊形式,如a(x+b)2=b(b≥0),可用直接开平方法.3.判断不明时,当选公式法.提醒:配方法烦琐,但二次项系数为1,且一次项系数为偶数时,一般运用配方法.【变式训练】1.(2024·贵州中考)一元二次方程x2-2x=0的解是(B)A.x1=3,x2=1B.x1=2,x2=0C.x1=3,x2=-2D.x1=-2,x2=-12.(2024·滨州中考)解方程:x2-4x=0.【解析】∵x2-4x=0,∴x(x-4)=0,∴x=0或x-4=0,解得x1=0,x2=4.3.(2024·齐齐哈尔中考)解方程:x2-5x+6=0.【解析】∵x2-5x+6=0,∴(x-2)(x-3)=0,则x-2=0或x-3=0,解得x1=2,x2=3.考点4 根的判别式及根与系数的关系【例4】(2023·岳阳二模)已知m ,n 是关于x 的一元二次方程x 2-3x +a =0的两个解,若(m -1)(n -1)=-6,则a 的值为(C)A.-10B.4C.-4D.10【方法技巧】判别式的“双向应用”1.正向:系数已知,可以判断方程根的情况.2.逆向:已知方程根的情况,可以求未知系数或参数的值.提醒:要根据a ≠0和Δ≥0这两个前提进行所求参数值的检验和取舍.【变式训练】1.(2024·自贡中考)关于x 的方程x 2+mx -2=0根的情况是(A)A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·乐山中考)若关于x 的一元二次方程x 2+2x +p =0两根为x 1,x 2,且1x 1+1x 2=3,则p 的值为(A)A .-23B .23C .-6D .61.(2022·株洲中考)对于二元一次方程组{y =x -1①x +2y =7②,将①式代入②式,消去y 可以得到(B)A .x +2x -1=7B .x +2x -2=7C .x +x -1=7D .x +2x +2=72.(2022·常德中考)关于x的一元二次方程x2-4x+k=0无实数解,则k的取值范围是(A)A.k>4B.k<4C.k<-4D.k>13.(2023·怀化中考)已知关于x的一元二次方程x2+mx-2=0的一个根为-1,则m的值为 -1 ,另一个根为 2 .4.(2024·湖南中考)若关于x的一元二次方程x2-4x+2k=0有两个相等的实数根,则k 的值为 2 .5.(2024·长沙中考)为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘10,再加上4.6,将此时的运算结果再乘10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是 2009 .6.(2023·岳阳中考)已知关于x的一元二次方程x2+2mx+m2-m+2=0有两个不相等的实数根,且x1+x2+x1·x2=2,则实数m= 3 .7.(2023·常德中考)解方程组:{x-2y=1①3x+4y=23②.【解析】①×2+②得5x=25,解得x=5,将x=5代入①得5-2y=1,解得y=2,所以原方程组的解是{x=5y=2.。
【中考数学】整式乘法与因式分解易错压轴解答题练习题(及答案)一、整式乘法与因式分解易错压轴解答题1.[数学实验探索活动]实验材料现有若干块如图①所示的正方形和长方形硬纸片.实验目的:用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.例如,选取正方形、长方形硬纸片共6块,拼出一个如图②的长方形,计算它的面积,写出相应的等式有a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b)=a2+3ab+2b2.问题探索:(1)小明想用拼图的方法解释多项式乘法(2a+b)(a+b)=2a2+3ab+b2,那么需要两种正方形纸片________张,长方形纸片________张;(2)选取正方形、长方形硬纸片共8块,可以拼出一个如图③的长方形,计算图③的面积,并写出相应的等式;(3)试借助拼图的方法,把二次三项式2a2+5ab+2b2分解因式,并把所拼的图形画在虚线方框3内.2.如图1,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)用1张A型卡片,1张B型卡片,2张C型卡片拼成一个正方形,如图2,用两种方法计算这个正方形面积,可以得到一个等式,请你写出这个等式________;(2)选取1张A型卡片,10张C型卡片,________张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的代数式表示为________;(3)如图3,两个正方形边长分别为m、n,m+n=10,mn=19,求阴影部分的面积. 3.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a²+5ab+2b²可以因式分解为________.(2)若图中阴影部分的面积为242平方厘米,大长方形纸板的周长为78厘米,求图中空白部分的面积.4.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为 ________ .(只要写出一个即可)(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值②若三个实数x,y,z满足2x×4y÷8z= ,x2+4y2+9z2=44,求2xy-3xz-6yz的值5.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次_一项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a1a2x2+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1, a2, c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1, c1位于图的上一行,a2, c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2-x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=2×(-3);然后把1,1,2,-3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(-3)+1×2=-1,恰好等于一次项的系数-1,于是x2-x-6就可以分解为(x+2)(x-3).(1)请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x-6=________.(2)【理解与应用】请你仔细体会上述方法,并尝试对下面两个二次三项式进行分解因式:Ⅰ.2x2+5x-7=________;Ⅱ.6x2-7xy+2y2=________ .(3)【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解.如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:Ⅰ.分解因式3x2+5xy-2y2+x+9y-4=________ .Ⅱ.若关于x,y的二元二次式x2+7xy-18y2-5x+my-24 可以分解成两个一次因式的积,求m的值.________Ⅲ.己知x,y为整数,且满足x2+3xy+2y2+2x+3y=-1,请写出一组符合题意的x,y的值.________6.阅读下列材料:对于多项式x2+x-2,如果我们把x=1代入此多项式,发现x2+x-2的值为0,这时可以确定多项式中有因式(x-1):同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x-2=(x-1)(x+2)又如:对于多项式2x2-3x-2,发现当x=2时,2x2-3x-2的值为0,则多项式2x2-3x-2有一个因式(x-2),我们可以设2x2-3x-2=(x-2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2-3x-2=(x-2)(2x+1)请你根据以上材料,解答以下问题:(1)当x=________时,多项式6x2-x-5的值为0,所以多项式6x2-x-5有因式________ ,从而因式分解6x2-x-5=________.(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式.请你尝试用试根法分解多项式:①2x2+5x+3;②x3-7x+6(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式(x-2)3-(y-2)3-(x-y)3有因式________ ,________ ,________ ,所以分解因式(x-2)3-(y-2)3-(x-y)3= ________。
2021年春九年级数学中考复习《数与式》高频易错题型专题提升突破训练2(附答案)1.如图所示,用火柴拼成一排由6个三角形组成的图形,需要根火柴棒,小亮用2021根火柴棒,可以拼出个三角形.2.观察下面三行数:﹣2、4、﹣8、16、﹣32、64…①﹣5、1、﹣11、13、﹣35、61…②﹣、1、﹣2、4、﹣8、16…③按第①行数排列的规律,第①行第n个数是(用含n的式子表示);取每行数的第10个数,则这三个数的和为.3.观察下列式子:a1==﹣;a2==﹣;a3==﹣;a4==﹣;…,按此规律,计算a1+a2+a3+…+a2020=.4.若a2﹣=3,则a2+=;=.5.已知x=,则x4+2x3+x2+1=.6.已知x=2+,则代数式(7﹣4)x2+(2﹣)x﹣的值为.7.若﹣=5,则+=.8.已知ab=5,则a+b=.9.阅读材料:已知﹣=2,求+的值.解:(﹣)×(+)=(25﹣x)﹣(15﹣x)=10,∵﹣=2,∴+=5.则关于x的方程:﹣=2的解x=.10.已知x+y=6,xy=﹣3且x>y,则=.11.已知+=7,则+=.12.,则m5﹣2m4﹣2020m3+m2﹣2m﹣2021的值是.13.已知实数a、b、c满足;则=.14.计算:20202﹣4040×2019+20192=.15.若(2a+b)2=11,ab=1,则(2a﹣b)2的值是.16.a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是,已知a1=3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,以此类推,那么a1+a2+a3+…+a2020的值是.17.如图,长方形纸片的长为8,宽为6,从长方形纸片中剪去两个全等的小长方形卡片,那么余下的两块阴影部分的周长之和是.18.已知x2+2xy=﹣,xy﹣y2=﹣4,则2x2+5xy﹣y2的值为.19.把四张大小相同的长方形卡片(如图①)按图②、图③两种放法放在一个底面为长方形(长为m,宽为n)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C1,图③中阴影部分的周长为C2,则C1﹣C2=.20.有四个完全相同的小长方形和两个完全相同的大长方形按如图位置摆放,按照图中所示尺寸,a=20,b=12,则小长方形的长与宽的差是.21.若整式(2x2+mx﹣12)﹣2(nx2﹣3x+8)的结果中不含x项,x2项,则m2+n2=.22.将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为l.若知道l的值,则不需测量就能知道周长的正方形的标号为.23.如果x+y=2020,那么代数式(1+)÷的值是.24.已知a2﹣2021ab+b2=0(ab≠0),则代数式+的值等于.25.如果a=b﹣3,那么代数式(﹣2b)•的值是.26.当a=2020时,代数式(﹣)÷的值是.27.已知﹣=3,则分式的值等于.28.已知2a2﹣3a﹣2=0,则a2+=,4a2﹣5﹣6a=.29.已知m=2﹣,则(+)÷+=.30.已知:a2﹣a+1=0,则代数式a3﹣a2﹣的值为.31.若b﹣a=,2a2+a=,则﹣a的值.32.若一个正数的平方根是m+3和2m﹣15,n的立方根是﹣2,则﹣n+2m的算术平方根是.33.﹣的立方根为,的平方根为.34.的算术平方根是;=,3的平方根是;的立方根是.参考答案1.解:观察图形的变化可知:由1个三角形组成的图形,需要2×1+1=3根火柴棒;由2个三角形组成的图形,需要2×2+1=5根火柴棒;由3个三角形组成的图形,需要2×3+1=7根火柴棒;…,发现规律:由n个三角形组成的图形,需要(2n+1)根火柴棒;因为2n+1=2021,所以n=1010,所以用2021根火柴棒,可以拼出1010个三角形.故答案为:13;1010.2.解:按第①行数排列的规律,第①行第n个数是(﹣2)n,故答案为:(﹣2)n;取每行数的第10个数,则这三个数的和为:(﹣2)10+(﹣2)10﹣3+×(﹣2)10=1024+1024﹣3+=1024+1021+256=2301.故答案为:2301.3.解:,,,,…,可得:,a1+a2+a3+…+a2020==,故答案为:.4.解:∵a2﹣=3,∴(a2﹣)2=9,即a4﹣2+=9,则a4+=11,∴(a2+)2=a4+2+=13,则a2+=(负值舍去),===1,故答案为:,1.5.解:∵x=,∴x4+2x3+x2+1=x2(x2+2x+1)+1=x2(x+1)2+1=()2×(+1)2+1=×+1=+1=+1=1+1=2,故答案为:2.6.解:∵x=2+,∴(7﹣4)x2+(2﹣)x﹣=(7﹣4)(2+)2+(2﹣)(2+)﹣=(7﹣4)(7+4)+(4﹣3)﹣=49﹣48+1﹣=2﹣.故答案为:2﹣.7.解:设=a,=b,∵﹣=5,∴a﹣b=5,∴(a﹣b)2=25,即a2﹣2ab+b2=25,∵a2+b2=x2+32+65﹣x2=97,∴97﹣2ab=25,∴ab=36,∵a+b===13,∴+=13.故答案为13.8.解:原式=a+b=+,∵ab=5,∴当a>0,b>0时,原式=2=2;当a<0,b<0时,原式=﹣2=﹣2;即a+b=±2.故答案为±2.9.解:∵(﹣)(+)=20﹣x﹣(4﹣x)=16,而﹣=2,∴+=8,∴2=10,即=5,两边平方得20﹣x=25,解得x=﹣5,经检验x=﹣5为原方程的解,∴原方程的解为x=﹣5.故答案为﹣5.10.解:∵x+y=6,xy=﹣3,x>y,∴x>0,y<0,∴x﹣y==4,=﹣+=×=×=4,故答案为:4.11.解:∵+=7,∴(+)(﹣)=7(﹣),∴x2﹣1﹣(x2+6)=7(﹣),∴﹣=1,∴,∴,解得:x2=10,∴+=+=1+2=3.故答案为:3.12.解:m===+1,原式=m5﹣2m4+m3﹣2021m3+m2﹣2m+1﹣2022=m3(m﹣1)2+(m﹣1)2﹣2021m3﹣2022=2021m3+2021﹣2021m3﹣2022=2021﹣2022=﹣1,故答案为:﹣1.13.解:设=k,则a+b=ck,b+c=ak,a+c=bk,故a+b+b+c+a+c=ck+ak+bk2(a+b+c)=k(a+b+c),当a+b+c=0时,a+b=﹣c,a+c=﹣b,b+c=﹣a,当a+b+c≠0时,k=2,故当a+b+c≠0时,==k3=23=8,当a+b+c=0时,==﹣1,故答案为:8或﹣1.14.解:20202﹣4040×2019+20192=20202﹣2×2020×2019+20192=(2020﹣2019)2=12=1.故答案为:1.15.解:∵(2a+b)2=4a2+4ab+b2=11,ab=1,∴4a2+b2=7,∴(2a﹣b)2=4a2﹣4ab+b2=7﹣4=3.故答案为:3.16.解:∵a1=3,∴a2==﹣,a3==,a4==3,…∵2020÷3=673…1.∴a2020与a1相同,为3.∴a1+a2+a3+…+a2020的值是:(﹣++3)×673+3=.故答案为:.17.解:设两个全等的小长方形卡片的长为a,宽为b,上面的长方形周长:2(8﹣a+6﹣a)=(28﹣4a),下面的长方形周长:2(a+6﹣b)=12+2a﹣2b,两式联立,总周长为:(28﹣4a)+(12+2a﹣2b)=28﹣4a+12+2a﹣2b=40﹣2(a+b),∵a+b=8,∴余下的两块阴影部分的周长之和是40﹣2(a+b)=40﹣2×8=24.故答案为:24.18.解:∵x2+2xy=﹣,xy﹣y2=﹣4,∴2x2+5xy﹣y2=2(x2+2xy)+(xy﹣y2)=2×(﹣)+(﹣4)=﹣1+(﹣4)=﹣5,故答案为:﹣5.19.解:设小长方形的长为acm,宽为bcm,大长方形的宽为n,长为m,∴②阴影周长为:2(n+m)=2n+2m,∴③下面的周长为:2(n﹣a+m﹣a),上面的总周长为:2(m﹣2b+n﹣2b),∴总周长为:2(n﹣a+m﹣a)+2(m﹣2b+n﹣2b)=4n﹣4a+4m﹣8b,又∵a+2b=m,∴4m+4n﹣4(a+2b)=4n,∴C1﹣C2=2n+2m﹣4n=2m﹣2n,故答案为2m﹣2n.20.解:设小长方形的长为x,宽为y,根据题意得:a+y﹣x=b+x﹣y,即2x﹣2y=a﹣b,整理得:x﹣y=,当a=20,b=12时,==4,∴小长方形的长与宽的差是4,故答案为:4.21.解:(2x2+mx﹣12)﹣2(nx2﹣3x+8)=2x2+mx﹣12﹣2nx2+6x﹣16=(2﹣2n)x2+(m+6)x﹣28,∵结果中不含x项,x2项,∴2﹣2n=0,m+6=0,解得n=1,m=﹣6,∴m2+n2=36+1=37.故答案为:37.22.解:设①、②、③、④四个正方形的边长分别为a、b、c、d,由题意得,(a+d﹣b﹣c+b+a+d﹣b+b﹣c+c+c)﹣(a﹣d+a﹣d+d+d)=l,整理得,2d=l,则知道l的值,则不需测量就能知道正方形④的周长,故答案为④.23.解:==x+y,∵x+y=2020,∴原式=2020,故答案为:2020.24.解:∵a2﹣2021ab+b2=0,∴a2+b2=2021ab,则原式=+===2021,故答案为:2021.25.解:原式=(﹣)•=•=a﹣b,∵a=b﹣3,∴a﹣b=﹣3,则原式=﹣3.故答案为:﹣3.26.解:(﹣)÷=•=a+1,当a=2020时,原式=2020+1=2021,故答案为:2021.27.解:因为﹣=3,所以y﹣x=3xy,则分式==﹣.故答案为:﹣.28.解:∵2a2﹣3a﹣2=0,∴2a2﹣2=3a,∴a2﹣1=a,除以a得:a﹣=,∴两边平方得:(a﹣)2=a2+﹣2a=,∴a2+=+2=,∵2a2﹣3a﹣2=0,∴2a2﹣3a=2,∴两边乘以2得:4a2﹣6a=4,∴4a2﹣5﹣6a=4﹣5=﹣1,故答案为:,﹣1.29.解:(+)÷+=•+=•+=+==,当m=2﹣时,原式===1﹣,故答案为:1﹣.30.解:∵a2﹣a+1=0,∴a2﹣a=﹣1,a﹣1+=0,即a+=1,则原式=a(a2﹣a)﹣=﹣a﹣=﹣(a+)=﹣1,故答案为:﹣1.31.解:∵b﹣a=,2a2+a=,∴b=+a,2a2=﹣a,∴﹣a=﹣==(分式的分子和分母都乘以2)===,故答案为:.32.解:∵一个正数的两个平方根分别是m+3和2m﹣15,∴(m+3)+(2m﹣15)=0,解得:m=4,∵n的立方根是﹣2,∴n=﹣8,把m=4,n=﹣8代入﹣n+2m=8+8=16,∵42=16,∴16的算术平方根是4,即﹣n+2m的算术平方根是4.故答案为:4.33.解:﹣的立方根为﹣,=4的平方根为±2.故答案为:﹣,±2.34.解:∵=9,9的算术平方根是3,∴的算术平方根是3;=﹣2,3的平方根是±;的立方根是=.故答案为3;﹣2;±;。
知识必备02方程与不等式(公式、定理、结论图表)考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础.列方程解应用题的常用公式:(1)行程问题:距离=速度×时间;(2)工程问题:工作量=工效×工时;(3)比率问题:部分=全体×比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abh ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.考点二、一元二次方程1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般形式,它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如的一元二次方程.根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程的求根公式:(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即.5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中.(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.典例1:已知关于的一元二次方程.(1)求证:不论取何值时,方程总有两个不相等的实数根.(2)若直线与函数的图象的一个交点的横坐标为2,求关于的一元二次方程的解.【答案】(1)证明:∵不论取何值时,∴,即∴不论取何值时,方程总有两个不相等的实数根..(2)将代入方程,得再将代入,原方程化为,解得.考点三、分式方程1.分式方程分母里含有未知数的方程叫做分式方程.2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.典例2:近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程.【答案与解析】解:设今年5月份汽油价格为x元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得,整理,得.解这个方程,得x1=4.8,x2=-3.经检验两根都为原方程的根,但x2=-3不符合实际意义,故舍去.【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a ≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况对于其他情况,可根据学生的接受能力给予渗透.典例3:如图所示,是在同一坐标系内作出的一次函数y1、y2的图象、,设,,则方程组的解是( )A. B. C. D.【思路点拨】图象、的交点的坐标就是方程组的解.【答案】B;【解析】由图可知图象、的交点的坐标为(-2,3),所以方程组的解为【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.不等式组(其中a >b )图示解集口诀(同大取大)(同小取小)(大小取中间)无解(空集) (大大、小小找不到)(1)不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b≥a, 则a=b;④若a2≤0,则a=0;⑤若ab>0或,则a、b同号;⑥若ab<0或,则a、b异号.(2)任意两个实数a、b的大小关系:①a-b>O a>b;②a-b=O a=b;③a-b<O a<b.不等号具有方向性,其左右两边不能随意交换:但a<b可转换为b>a,c≥d可转换为d≤c.典例4:解不等式组并将解集在数轴上表示出来.【思路点拨】此题考查一元一次不等式组的解法,解出不等式组中的每个不等式,根据不等式组解的四种情况,看看属于哪种情况.【答案与解析】解不等式①得:.解不等式②得:x≥-1.所以不等式组的解集为-1≤x<.其解在数轴上表示为如图所示:【总结升华】注意解不等式组的解题步骤.典例5:为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉的情况如下表所示;造型甲乙A90盆30盆B40盆100盆综合上述信息,解答下列问题:(1)符合题意的搭配方案有哪儿种?(2)若搭配一个A种造型的成本为1000元,搭配一个B种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【思路点拨】本题首先需要从文字和表格中获取信息,建立不等式(组),然后求出其解集,根据实际问题的意义,再求出正整数解,从而确定搭配方案.【答案与解析】解:(1)设搭配x个A种造型,则需要搭配(50-x)个B种造型,由题意,得解得30≤x≤32.所以x的正整数解为30,31,32.所以符合题意的方案有3种,分别为:A种造型30个,B种造型20个;A种造型31个,B种造型19个;A种造型32个,B种造型18个.(2)由题意易知,三种方案的成本分别为:第一种方案:30×1000+20×1200=54000;第二种办案:31×1000+19×1200=53800;第三种方案:32×1000+18×1200=53600.所以第三种方案成本最低.【总结升华】实际问题的“最值问题”一般是指“成本最低”、“利润最高”、“支出最少”等问题.。
中考数学常考易错点:2 2《分式方程》中考数学常考易错点:2-2《分式方程》分数阶方程易错清单1.为什么解分数阶方程容易出错?[示例1](2022新疆)求解分数阶方程:+=1【解析】先将分式方程转换为整式方程,再求出整式方程的解,最后检验后判定分式方程解的情况.[答:]将方程两边乘以(x+3)(x-3),得到3+x(x+3)=x-9。
去掉括号,得到3+X+3x=X-9,解为X=-4检验:把x=-4代入(x+3)(x-3)≠0,二2二∴x=-4是原分式方程的解.【纠错】最简单的公分母是错误的,这会增加计算负担并导致错误;在计算中,应注意常数项应乘以最简单的公分母【例2】(2021内蒙古呼和浩特)解方程:-=0.【分析】首先去掉分母,将其转换成积分方程。
这个问题最简单的公分母是x(x+2)(x-2)[回答]去掉分母,得到3x-6-x-2=0。
解为x=4,经检验,x=4是原方程的根,故x=4是原方程的解.【纠错】解分数阶方程会产生额外的根并忘记测试根【例3】(贵州省黔西南地区2022年)解方程:=【解析】将分式方程转化为整式方程时易产生增根,所以要检验,检验时只要代入最简公分母中即可.[答:]将方程两边乘以(x+2)(x-2)得到x+2=4,解为x=2,经检验,x=2不是分式方程的解,故原分式方程无解.[错误纠正]增加根不是分数方程式的根。
学生经常犯漏掉最后一句话的错误:“原始分数阶方程没有解”2.运用分式方程解决实际问题时,关键是找出等量关系.【例4】(2022年)云南“母亲节”前夕,根据市场调查,一家商店以3000元的价格购买了第一批盒装鲜花,上市后很快就售罄,然后用5000元买了第二批盒花据了解,第二批购买的盒花数量是第一批的两倍,每箱花的购买价格比第一批低5元第一批盒花的购买价格是多少?【解析】设第一批盒装花的进价是x元/盒,则第一批进的数量是,第二批进的数量是,再根据等量关系:第二批进的数量=第一批进的数量×2,可得方程.【答案】设第一批盒装花的进价是x元/盒,由题意,得2×=,解得x=30.经测试,x=30是原始方程的根,因此,第一批盒装鲜花的购买价格为每盒30元【误区纠错】题目中的相等关系不明显,倍数关系易出错,学生找不到相等关系而无法得到对应的分式方程.运用分式方程解决实际问题的关键是确定问题中的相等关系.名师忠告1.会利用分式方程的定义判断分式方程.2.能用最简单的公分母将分数阶方程转化为积分方程,能用代换的思想求解分数阶方程。
2023年中考数学《代数式和方程中常见的易错问题》重点知识及例题解析◆题型一:直线定点和代数式的值和某字母无关一次函数y=mx+m-1过定点【解析】一次函数过定点问题和整式中和某字母取值无关是同一类题:一次函数过定点实质上指的是和m的取值无关。
按照这种思路过可以解决很多的定点问题。
把一次函数解析式变形:y=m(x+1)-1,我们把(x+1)看作m的系数,若和m的取值无关,则系数(x+1)=0,即x=1,此时y=-1.因此,此一次函数过定点(-1,-1)。
1. 2022·江苏泰州·三模)小明经探究发现:不论字母系数m 取何值,函数()224365y x m x m =−+++的图像恒过一定点P ,则P 点坐标为______. 【答案】3,142⎛⎫− ⎪⎝⎭【分析】根据不论字母系数m 取何值图像恒过一定点P ,取值与m 无关,则字母m 的系数为0,进而可得答案.【详解】解:()224365y x m x m =−+++()224635y x x m x =+−++当46=0x +,即32x =−时,14y =, 所以无论字母系数m 取何值时,图像恒过一定点P 3,142⎛⎫− ⎪⎝⎭. 【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m 的系数为0时,才与m 的取值无关.2. 整式(ax 2+bx -1)-(4x 2+3x )的最后结果与x 的取值无关,求a ,b 的值。
解:由(1)(ax 2+bx-1)-(4x 2+3x )化简的结果是(a-4)x 2+(b-3)x-1,得a=4,b=3.1.(2022·重庆八中二模)对于五个整式,A :2x 2;B :x +1;C :﹣2x ;D :y 2;E :2x-y 有以下几个结论:①若y 为正整数,则多项式B ⋅C +A +B +E 的值一定是正数;②存在实数x ,y ,使得A+D+2E 的值为-2;③若关于x 的多项式M =3(A −B)+m ⋅B ⋅C (m 为常数)不含x 的一次项,则该多项式M 的值一定大于-3.上述结论中,正确的个数是( )A .0B .1C .2D .3 【答案】B【分析】根据整式的四则运算法则逐个运算即可判断.【详解】解:对于①:B ⋅C +A +B +E =(x +1)(−2x)+2x 2+x +1+2x −y =x −y +1,显然当x =−100,y =1时代入化简后的式子中结果为负数,故①错误;对于②:A +D +2E =2x 2+y 2+2(2x −y)=2x 2+y 2+4x −2y =−2时,整理得到:2(x +1)2+(y −1)2−1=0,显然当x =−1,y =2时代入化简后式子中满足,故②正确;对于③:M =3(A −B)+m ⋅B ⋅C =3(2x 2−x −1)+m(x +1)(−2x)=(6−2m)x 2−(3+2m)x −3, ∵不含x 的一次项,∴320m +=,解出m =−32,此时M =9x 2−3≥−3,即M 的值一定大于等于-3,故③错误;故选:B .【点睛】本题考查了整式的四则运算,属于基础题,熟练掌握整式的四则运算法则是解题的关键. 2.(2022·重庆市育才中学二模)已知多项式A =x 2+2y +m 和B =y 2−2x +n (m ,n 为常数),以下结论中正确的是( )①当2x =且m +n =1时,无论y 取何值,都有A +B ≥0;②当m =n =0时,A ×B 所得的结果中不含一次项;③当x y =时,一定有A ≥B ;④若m +n =2且A +B =0,则x y =;⑤若m =n ,A −B =−1且x ,y 为整数,则|x +y |=1.A .①②④B .①②⑤C .①④⑤D .③④⑤ 【答案】B【分析】主要是运用整式的运算法则及因式分解等知识对各项进行一一判断即可.【详解】①当2x =且m +n =1时,A+B=4+2y +m +y 2−4+n =y 2+2y +1=(y +1)2,∵无论y 取何值,总有(y +1)2≥0,∴无论y 取何值,都有A +B ≥0,故①正确;②当m =n =0时,A ×B =(x 2+2y )(y 2−2x )=x 2y 2−2x 3+2y 3−4xy ,∴A ×B 所得的结果中不含一次项;故②正确;③当x y =时,A −B =x 2+2y +m −(y 2−2x +n )=x 2+2x +m −x 2+2x −n =4x +m −n , 其结果与0无法比较大小,故③错误;④若m+n=2且A+B=0,则A+B=x2+2y+m+y2−2x+n=x2+y2+2y−2x+2=0,变形得:(x−1)2+(y+1)2=0,∴x=1,y=-1,∴x=-y,故④错误;⑤若m=n,A−B=−1且x,y为整数,则A−B=x2+2y+m−(y2−2x+n)=x2+2y−y2+2x=−1x2−y2+2x+2y+1=0变形得:(x+1)2−(y−1)2=−1,因式分解得:(x+y)(x−y+2)=−1,∵x,y为整数,则必有|x+y|=1.故⑤正确;故选:B【点睛】本题主要考查的是整式运算及因式分解的应用,解决本题的关键是熟练掌握运用乘法公式进行计算及因式分解.3.(2022·江苏泰州·三模)小明经探究发现:不论字母系数m取何值,函数y=2x2+(4m−3)x+6m+5的图像恒过一定点P,则P点坐标为______.,14)【答案】(−32【分析】根据不论字母系数m取何值图像恒过一定点P,取值与m无关,则字母m的系数为0,进而可得答案.【详解】解:y=2x2+(4m−3)x+6m+5y=2x2+(4x+6)m−3x+5时,y=14,当4x+6=0,即x=−32,14).所以无论字母系数m取何值时,图像恒过一定点P(−32【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,知道字母m的系数为0时,才与m的取值无关.4.(2021·河北唐山·一模)老师写出一个整式(ax2+bx-1)-(4x2+3x)(其中a、b为常数,且表示为系数),然后让同学给a 、b 赋予不同的数值进行计算,(1)甲同学给出了一组数据,最后计算的结果为2x 2-3x -1,则甲同学给出a 、b 的值分别是a =_______,b =_______;(2)乙同学给出了a =5,b =-1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x 的取值无关,请直接写出丙同学的计算结果. 【答案】(1)6、0(2)241x x −−(3)丙同学的计算结果是-1.【分析】(1)将所求式子化简,然后根据计算的结果为2x2-3x-1,即可得到a 、b 的值;(2)将a 、b 的值代入(1)中化简后的结果,即可解答本题;(3)根据(1)中化简后的结果和题意,可以写出丙同学的计算结果.【详解】(1)解:(ax2+bx-1)-(4x2+3x )=ax2+bx-1-4x2-3x=(a-4)x2+(b-3)x-1,∵甲同学给出了一组数据,最后计算的结果为2x2-3x-1,∴a-4=2,b-3=-3,解得a=6,b=0,故答案为:6,0;(2)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∴当a=5,b=-1时,原式=(5-4)x2+(-1-3)x-1=x2-4x-1,即按照乙同学给出的数值化简整式结果是x2-4x-1;(3)解:由(1)(ax2+bx-1)-(4x2+3x )化简的结果是(a-4)x2+(b-3)x-1,∵丙同学给出一组数,计算的最后结果与x 的取值无关,∴原式=-1,即丙同学的计算结果是-1.【点睛】本题考查整式的加减,解答本题的关键是明确题意,计算出相应的结果.5.(2021·河北唐山·一模)定义:若A−B=m,则称A与B是关于m的关联数.例如:若A−B=2,则称A与B是关于2的关联数;(1)若3与a是关于2a的关联数,则a=__________.(2)若(x−1)2与x+1是关于-2的关联数,求x的值.(3)若M与N是关于m的关联数,M=2mn−n+3,N的值与m无关,求N的值.【答案】(1)1(2)x1=1,x2=2(3)2.5【分析】(1)直接利用关联数列出方程进行计算即可;(2)直接利用关联数列出方程进行计算即可;(3)直接利用关联数列出M-N=m的方程,将M=3mn+n+3代入,用m、n的式子表示出N,再利用N的值与m无关进行计算即可.(1)解:∵3与a是关于2a的关联数,∴3-a=2a,∴a=1,故答案为:1(2)解:(x−1)2−(x+1)=−2,整理得x2−3x+2=0则(x−2)(x−1)=0解得:x1=1,x2=2.∴x的值为1或2;(3)解:(2mn−n+3)−N=m,N=2mn−m−n+3=m(2n−1)−n+3,∵N的值与m无关,∴2n−1=0,∴n=0.5,∴N=2.5.【点睛】本题考查了新型定义题型,解一元一次方程、解一元二次方程,整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.6.(2021·浙江·杭州育才中学二模)已知多项式M=(2x2+3xy+2y)−2(x2+x+yx+1).(1)当|x−1|+(y−2)2=0,求M的值;(2)若多项式M与字母x的取值无关,求y的值.【答案】(1)M=2(2)y=2【分析】(1)先化简M,进而根据非负数的性质求得x,y的值,进而代入求解即可;(2)根据(1)中M的化简结果变形,令含x项的系数为0,进而求得y的值【详解】(1)解:M=(2x2+3xy+2y)−2(x2+x+yx+1)=2x2+3xy+2y−2x2−2x−2yx−2=xy+2y−2x−2|x−1|+(y−2)2=0∴x=1,y=2原式=1×2+2×2−2×1−2=2(2)∵M=xy+2y−2x−2=(y−2)x+2y−2与字母x的取值无关,∴y−2=0解得y=2【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.◆题型二:特殊代数式求值①若m,n是方程2x2−4x−7=0的两个根,则2m2−3m+n的值为【解析】一次代入无法求得结果,出现这种情况,我们可以从先代高次再代低次!把2m2=4m+7代入,原式=m+n+7,然后用韦达定理即可求值。
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
中考数学 2.1整式方程易错清单1.根据题意列出正确的方程.【例1】(2014·山东烟台)按如图的运算程序,能使输出结果为3的x,y的值是().A. x=5,y=-2B. x=3,y=-3C. x=-4,y=2D. x=-3,y=-9【解析】由题意,得2x-y=3,A. x=5时,y=7,故本选项错误;B. x=3时,y=3,故本选项错误;C. x=-4时,y=-11,故本选项错误;D. x=-3时,y=-9,故本选项正确.【答案】 D【误区纠错】读懂题意,列出正确的整式方程是解题的关键.2.方程中隐含条件的运用.【例2】(2014·山东济宁)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m-4,则= .【解析】∵x2=(ab>0),∴x=±.∴方程的两个根互为相反数.∴m+1+2m-4=0,解得m=1.∴一元二次方程ax2=b(ab>0)的两个根分别是2与-2.∴=2.∴=4.【答案】 4【误区纠错】一个正数有两个平方根,这两个平方根互为相反数.根据这个隐含条件可求出m的值.【例3】(2014·广东广州)若关于的方程x2+2mx+m2+3m-2=0有两个实数根x1,x1,则x1(x2+x1)+的最小值为.【解析】该题主要是考察方程思想与函数思想的结合,由根与系数的关系得到:x1+x2=-2m,x1x2=m2+3m-2,而x1(x2+x1)+=(x1+x2)2-x1x2=3m2-3m+2.因为方程有实数根,所以Δ≥0,解得m≤.当m=时,3m2-3m+2的最小值为.【答案】【误区纠错】本题最大失误是不知道根据Δ≥0这个隐含条件求出m的取值范围.3.整体思想的运用.【例4】(2014·江苏泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于. 【解析】∵a2+3ab+b2=0,∴a2+b2=-3ab,∴原式===-3.【答案】-3【误区纠错】本题直接使用整体思想解题,将a2+b2视为一个整体未知数.名师点拨1.能区分等式各个性质的区别与联系.2.理解一元一次方程的有关概念,并解决一些简单问题.3.会利用代入法求一元一次方程的解.4.会利用定义判断一元二次方程,能利用配方法、公式法、因式分解法求一元二次方程的根.5.记住一元二次方程根的判别式,并能解决一些问题.6.理解一元二次方程根与系数的关系,并能解决一些问题.7.会根据等量关系列整式方程并求解.提分策略1.选择适当的方法求解一元二次方程.若方程中含有未知数的代数式是一个完全平方式,可选用直接开平方法;若不是,则把右边化为0且方程左边分解因式,则选用因式分解法;若不能分解因式或难以分解因式时,则选用公式法.配方法一般很少选用,但求根公式是由配方法推导的,且以后学习中还常用到,故必须掌握这种重要的数学方法.【例1】解方程:3x(x-2)=2(2-x).【解析】先移项,然后提取公因式(x-2),对等式的左边进行因式分解.【答案】由原方程,得(3x+2)(x-2)=0,所以3x+2=0或x-2=0.解得x1=-,x2=2.2.配方法在二次三项式中的应用.在二次三项式中运用配方法与一元二次方程的配方类似,但也有不同:(1)化二次项系数为1,当二次项系数不为1时,可提取二次项系数,但不能像解方程那样除以二次项系数(因为二次三项式配方是恒等变形,而配方法解一元二次方程是同解变形).(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此二次三项式的值不变,故在加的同时,还要减去一次项系数一半的平方.(3)配方后将原二次三项式化为a(x+m)2+n的形式.【例2】阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x-1)2+3,(x-2)2+2x,+x2是x2-2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2-4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2-ab-3b-2c+4=0,求a+b+c的值.【答案】(1)x2-4x+2=(x-2)2-2;x2-4x+2=(x-)2+(2-4)x;x2-4x+2=(x-)2-x2.(2)a2+ab+b2=(a+b)2-ab=+b2.(3)a2+b2+c2-ab-3b-2c+4=+(b-2)2+(c-1)2=0.从而a-b=0,b-2=0,c-1=0,即a=1,b=2,c=1.所以a+b+c=4.3.利用一次方程解决生活中的实际问题.解决问题需要从问题中挖掘相关信息,包含隐含条件,找到相关的已知量,构建相应的数学模型,灵活运用所学知识解决实际问题.【例3】如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【解析】设AB的长度为x,则BC的长度为(100-4x)米;然后根据矩形的面积公式列出方程.【答案】设AB的长度为x,则BC的长度为(100-4x)米.根据题意,得(100-4x)x=400,解得x1=20,x2=5.则100-4x=20或100-4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.故羊圈的边长AB,BC分别是20米、20米.专项训练一、选择题1. (2014·江苏泰州洋思中学)若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是().A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 无法判断2. (2014·四川峨眉山二模)已知x1,x2是方程x2-(k-2)x+k2+3k+5=0的两个实数根,则+的最大值是().A. 19B. 18C. 15D. 133. (2014·湖北襄阳模拟)已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是().A. 当k=0时,方程无解B. 当k=-1时,方程有两个相等的实数解C. 当k=1时,方程有一个实数解D. 当k≠0时,方程总有两个不相等的实数解4. (2013·湖北荆州模拟)若方程(k-1)x2-x+=0有两个实数根,则k的取值范围是().A. k≥1B. k≤1C. k>1D. k<15.(2013·安徽芜湖一模)芜湖市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上树,要求路的两端各栽一棵,并且每两棵树的间隔相等.若每隔5米栽1棵,则树苗缺21棵;若每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是().A. 5(x+21-1)=6(x-1)B. 5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x二、填空题6.(2014·北京顺义区模拟)如果关于x的方程x2-mx+2=0有两个相等的实数根,那么m的值为.7. (2014·江苏南京溧水区二模)方程(x-2)2-2(x-2)=0的解为.8. (2013·吉林镇赉县一模)若x=1是方程x2+x+n=0的一个解,则方程的另一个解是.9. (2013·湖北荆州模拟)已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是.三、解答题10. (2014·安徽安庆二模)为了满足铁路交通的快速发展,安庆火车站从去年开始启动了扩建工程.其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍,求甲、乙两队单独完成这项工程各需几个月?11. (2014·北京顺义区模拟)已知关于x的一元二次方程mx2+4x+4-m=0.(1)求证:方程总有两个实数根;(2)若m为整数,当此方程有两个互不相等的负整数根时,求m的值.12. (2013·河南沁阳第一次质量检测)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?参考答案与解析1. A[解析]由5k+20<0,得k<-4,则Δ=16+4k<0.2. B[解析]由题意,得(k-2)2-4(k2+3k+5)≥0,解得-4≤k≤-.因为x1+x2=k-2,x1x2=k2+3k+5,所以+=(x1+x2)2=(k-2)2-2(k2+3k+5)=-k2-10k-6=-(k+5)2+19.所以当k=-4时,+取得最大值为18.3. B[解析]Δ=(k+1)2,当k=0时,方程有解;当k=1时,方程有两个不等的实数解;当k≠0时,如果k=-1,那么方程有两个相等的实数解.4. D[解析]当k=1时,原方程不成立,故k≠1.∴方程(k-1)x2-x+=0为一元二次方程.又此方程有两个实数根,∴b2-4ac=(-)2-4×(k-1)×=1-k-(k-1)=2-2k≥0,解得k≤1.∵k≠1,∴k<1.综上,k的取值范围是k<1.5. A[解析]设原有树苗x棵,根据首、尾两端均栽上树,每间隔5米栽一棵,则缺少21棵,可知这一段公路长为5(x+21-1);若每隔6米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为6(x-1),根据公路的长度不变列出方程即可.6.±2[解析]根据Δ=m2-8=0求解.7.x1=2,x2=4[解析]将(x-2)作为公因式提取.8.-2[解析]把x=1代人方程得n=-2,再解方程x2+x-2=0.9.k>且k≠2[解析]由题意,得(2k+1)2-4(k-2)2>0,且k-2≠0,求解即可.10.设甲队单独完成这项工程需要x个月,则乙队单独完成这项工程需要(x-5)个月, 由题意,得x(x-5)=6(x+x-5),解得x1=2(舍去),x2=15.故甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月.11. (1)∵Δ=42-4m(4-m)=4(m-2)2≥0,∴方程总有两个实数根.(2)∵x==,∴x1==,x2==-1.∵方程有两个互不相等的负整数根,∴<0.∴或∴0<m<4.∵m为整数,∴m=1或2或3.当m=1时,x1==-3≠x2,符合题意;当m=2时,x1==-1=x2,不符合题意;当m=3时,x1==-≠x2,但不是整数,不符合题意.∴m=1.12. (1)设每千克核桃应降价x元.由题意,得(60-x-40)=2 240.化简,得x2-10x+24=0,解得x1=4,x2=6.故每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为60-6=54(元),×100%=90%.故该店应按原售价的九折出售.。
热点02 方程(组)与不等式(组)中考数学中《方程(组)与不等式(组)》部分主要考向分为四类:一、一元一次方程与二元一次方程(组)(每年2~4道,8~14分)二、一元二次方程(每年1~2道,3~8分)三、分式方程(每年1~3题,3~12分)四、不等式(组)(每年2~4题,8~18分)方程(组)与不等式(组)在数学中考中的难度中等,题型比较多,选择题、填空题、解答题都可以考察。
其中,一元一次方程与二元一次方程(组)是比较接近的两个考点,出题一般都只有1题,一元一次方程多考察其在实际问题中的应用,多为选择题;二元一次方程组则以计算和应用题为主占分较多。
一元二次方程单独出题时多考察其根的判别式、根与系数的关系以及在实际问题中提炼出一元二次方程;一元二次方程的计算则主要出现在几何大题中,辅助解压轴题。
分式方程的考察内容不多,但基本属于必考考点,可以是一道小题考察其解法,也可以是应用题。
不等式组是这四个考点中占分最多的一个,考察难度也是可大可小,其解法、含参数的不等式组问题、和方程结合的应用题都经常考到。
虽然该热点难度中等,一般不会失分,但是组合出题时,难度也可以变大,复习时需要特别注意。
考向一:一元一次方程与二元一次方程组【题型1 实际问题抽象出一元一次方程】行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.12240150x x+=B.12240150x x=-C.240(12)150x x-=D.240150(12)x x=+2.(2023•丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为斤.3.(2023•陕西)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.【题型2 二元一次方程组的解法相关】满分技巧解二元一次方程组有2种方法——带入消元法和加减消元法不管是带入法还是加减法,目的都在于利用等式的基本性质将二元一次方程组转化为一元一次方程,所以做题中也必须注意一元一次方程解法的易错点。
2.1整式方程
易错清单
1.根据题意列出正确的方程.
【例1】(2014·山东烟台)按如图的运算程序,能使输出结果为3的x,y的值是().
A.x=5,y=-2
B.x=3,y=-3
C.x=-4,y=2
D.x=-3,y=-9
【解析】由题意,得2x-y=3,
A.x=5时,y=7,故本选项错误;
B.x=3时,y=3,故本选项错误;
C.x=-4时,y=-11,故本选项错误;
D.x=-3时,y=-9,故本选项正确.
【答案】D
【误区纠错】读懂题意,列出正确的整式方程是解题的关键.
2.方程中隐含条件的运用.
【例2】(2014·山东济宁)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m-4,则=.
【解析】∵x2=(ab>0),
∴x=±.
∴方程的两个根互为相反数.
∴m+1+2m-4=0,解得m=1.
∴一元二次方程ax2=b(ab>0)的两个根分别是2与-2.
∴=2.
∴=4.
【答案】4
【误区纠错】一个正数有两个平方根,这两个平方根互为相反数.根据这个隐含条件可求出m的值.
【例3】(2014·广东广州)若关于的方程x2+2mx+m2+3m-2=0有两个实数根x1,x1,则x1(x2+x1)+的最小值为. 【解析】该题主要是考察方程思想与函数思想的结合,由根与系数的关系得到:x1+x2=-2m,x1x2=m2+3m-2,
而x1(x2+x1)+=(x1+x2)2-x1x2=3m2-3m+2.
因为方程有实数根,
所以Δ≥0,解得m≤.
当m=时,3m2-3m+2的最小值为.
【答案】
【误区纠错】本题最大失误是不知道根据Δ≥0这个隐含条件求出m的取值范围.
3.整体思想的运用.
【例4】(2014·江苏泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.
【解析】∵a2+3ab+b2=0,
∴a2+b2=-3ab,
∴原式===-3.
【答案】-3
【误区纠错】本题直接使用整体思想解题,将a2+b2视为一个整体未知数.
名师点拨
1.能区分等式各个性质的区别与联系.
2.理解一元一次方程的有关概念,并解决一些简单问题.
3.会利用代入法求一元一次方程的解.
4.会利用定义判断一元二次方程,能利用配方法、公式法、因式分解法求一元二次方程的根.
5.记住一元二次方程根的判别式,并能解决一些问题.
6.理解一元二次方程根与系数的关系,并能解决一些问题.
7.会根据等量关系列整式方程并求解.
提分策略
1.选择适当的方法求解一元二次方程.
若方程中含有未知数的代数式是一个完全平方式,可选用直接开平方法;若不是,则把右边化为0且方程左边分解因式,则选用因式分解法;若不能分解因式或难以分解因式时,则选用公式法.配方法一般很少选用,但求根公式是由配方法推导的,且以后学习中还常用到,故必须掌握这种重要的数学方法.
【例1】解方程:3x(x-2)=2(2-x).
【解析】先移项,然后提取公因式(x-2),对等式的左边进行因式分解.
【答案】由原方程,得(3x+2)(x-2)=0,
所以3x+2=0或x-2=0.
解得x1=-,x2=2.
2.配方法在二次三项式中的应用.
在二次三项式中运用配方法与一元二次方程的配方类似,但也有不同:。