利用洛必达法则求未定式极限的几种技巧
- 格式:pdf
- 大小:122.97 KB
- 文档页数:2
洛必达法则的三个陷阱
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。
因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。
洛必达法则便是应用于这类极限计算的通用方法。
它的三个陷阱分别是:
1、求极限之前,先要检查是否满足0/0或∞/∞型构型,不然滥用洛必达法则会出错。
当不存在时(不包括∞情形),就无法用洛必达法则,这时称洛必达法则不适用,得从另外途径求极限,例如利用泰勒公式去求解。
2、洛必达法则是求未定式极限的有效工具,如果只用洛必达法则,往往计算比较繁琐,可以与其他方法相结合。
3、洛必达法则常用于求不定式极限,可以通过相应的变换转换成两种基本的不定式形式来求解。
使用洛必达法则求极限的技巧【摘要】使用洛必达法则求极限,其特点就是通过求极限号下分式的分子、分母的导数(一次或多次)的方法达到消去未定因素的目的。
本文介绍了在使用洛必达法则求极限时的若干方法和技巧。
【关键词】分离因式变元替换洛比达法则无穷小等价替换1.分离因式并求解其极限。
注意:在使用洛比达法则的时候要注意分离因式,先将具有非零极限的因子提到极限号外面,及时求解其极限,再对余下未定式求极限。
例1.解:原式=2.先作变元替换,再用洛比达法则求解。
注意:当直接就利用洛比达法则求解比较困难时,可以考虑是否可以先利用变量替换后再来利用洛比达法则求解。
例2.求解:分析:可以令,进而简化求解过程。
若直接利用洛比达法则则会使计算更复杂,这时应该考虑先用变量替换等其它方法处理,如当所求极限的函数中含有时,可以先作变量替换;如果当含有反三角函数的时候就可以先令该三角函数等于一个新的变量。
小结:若直接利用洛比达法则则会使计算更复杂,这时应该考虑先用变量替换等其它方法处理,如当所求极限的函数中含有时,可以先作变量替换;如果当含有反三角函数的时候就可以先令该三角函数等于一个新的变量。
3.以及型未定式必须先转换成了或者型未定式求解。
例3.求解:小结:当遇到以及型未定式时,一般要进行分子分母有理化才可以构造出或者型未定式,以便直接利用洛比达法则求解。
4.先取对数,再利用洛比达法则求解。
例4.求解注意:对于型未定式,它们为幂指函数的极限,常常利用此方法求解。
解:令,则对于与型的数列极限不能直接利用洛比达法则但是可以间接的使用洛比达法则进行求解。
例5.求解:解:因为:小结:解的是一个数列时,因为数列是没有导数的,不能直接使用洛比达法则。
但是由数列极限和函数极限的关系我们可以知道:离散变量n的极限可以作为连续变量x的极限,其所求的值也就是数列极限的值。
6.多次使用洛比达法则求解。
注意:只要被球函数满足洛比达法则的使用条件,就可以连续多次使用洛比达法则,直到求出极限或者得出不符合洛比达法则条件的情况为止。
洛必达法则(高考题)洛必达法则洛必达法则是微积分中的重要概念之一。
它用于求解未定式的极限,主要包括三个法则。
法则1:若函数f(x)和g(x)满足一定条件,那么它们的极限相等。
法则2:若函数f(x)和g(x)满足一定条件,且在正负无穷处极限存在,那么它们的极限相等。
法则3:若函数f(x)和g(x)满足一定条件,且在某一点的去心邻域内极限存在,那么它们的极限相等。
在使用洛必达法则求解极限时,需要注意以下几点:1.检查是否满足前提条件,否则结果可能不正确。
2.可以连续多次使用洛必达法则,直到求出极限为止。
3.若不满足前提条件,不能使用洛必达法则,需要从其他途径求解。
XXX在高考中也经常出现,例如以下题目:1.设函数f(x) = e^(-1-x-ax)/(x^2),求f(x)的单调区间和a的取值范围。
解:根据洛必达法则,当a = 1时,f(x) = e^(-1-x),f'(x) = e^(-1)。
当x∈(-∞,0)时,f'(x)。
0.因此,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增。
又因为f(x)≥1/x^2,所以当x≥1时,f(x)≥1/e。
因此,a的取值范围为a≤1/2.经过格式修正和改写,文章变得更加清晰易懂。
首先,将文章中的数学符号进行修改,使其符合规范。
然后,删除掉明显有问题的段落,比如第一段中的“于是当x时,f(x).”这句话没有明确的意义。
最后,对每段话进行小幅度的改写,使其更加清晰易懂。
具体修改如下:首先,对于函数 $f(x)$,当 $f'(x) \geq 0$($x \geq 0$)时,有 $f(0) = 2$。
因此,当 $x \geq 0$ 时,$f(x) \geq 2$。
由不等式 $e。
1+x$($x \neq 0$)可得 $e^x - x。
1 -x$($x \neq 0$)。
因此,当 $a。
1$ 时,有:2f'(x) < e^x - 1 + 2a(e^{-x} - 1) = e^{-x}(e^x - 1)(e^x - 2a)$$因此,当 $x \in (0.\ln(2a))$ 时,$f'(x) < 0$,而 $f(0) = 2$,因此当 $x \in (0.\ln(2a))$ 时,$f(x) < 2$。
用洛必达法则求未定式极限的解题技巧作者:白云霞马勇乌兰李彩艳来源:《新校园·上旬刊》2015年第01期摘要:本文总结了利用洛必达法则计算未定式极限应该注意的一些问题和解题技巧。
关键词:洛必达法则;极限;解题技巧用洛必达法则求未定式极限,是微分学里面的一个重点,也是一个难点。
如果只是肤浅地知道这一法则,盲目地使用,求出的极限未必正确。
所以使用洛必达法则必须懂得它的使用条件以及应该注意的一些问题。
如果在一个题目中使用洛必达法则之后,发现仍然是未定式极限,并且满足洛必达法则条件,可以再次使用洛必达法则。
也就是说,洛必达法则在一个题目里可以多次使用。
最后,洛必达法则是计算未定式极限的重要方法,但不是唯一的。
不能使用洛必达法则的极限不一定就不存在,可利用别的方法求极限。
本文对洛必达法则求未定式极限的解题技巧总结如下:1.如果对于满足洛必达法则条件的或未定式,可直接使用。
例如:求极限解:[][=]=12.如果对于0·∞未定式,一般要通过取倒数化为或未定式,然后利用洛必达法则求极限。
例如:求极限x(-arctanx)解:x(-arctanx)[0·∞][=][·]===13.对于未定式00,1∞,∞0的极限,一般要通过取对数化为0·∞未定式来做,再通过2中的方法化成或未定式,然后利用洛必达法则求极限。
例如:求极限xsinx解:xsinx[00][=]e=e[0·∞][=][·]e[][=]e=e=e=e0=14.对于∞-∞未定式的极限通过取倒数,化成-的形式,再通分化为或未定式,然后求极限。
例如:求极限(-)解:(-)[∞-∞][=][][=]=-15.也有一些极限存在,但不能使用洛必达法则求解。
例如:求极限解:[=][],故极限不存在,这样的解法是错误的。
正确的解法:=(1+)=1+0=16.洛必达法则与等价无穷小代换相结合求极限。
例如:求极限(-)解:(-)==[][=]==·=本文主要从以上几个方面探讨了利用罗必塔法则求未定式极限的解题技巧,旨在帮助学生在学习过程中避免盲目地套用公式,导致出现解题错误。
§3.2 洛必达法则教学内容:一.“”型未定式 1.定理:(洛必达法则I )设)(x f 、()g x 在0x 的某一去心邻域内有定义,如果 (1)0lim ()0→=x x f x ,0lim ()0→=x x g x ;(2))(x f 、()g x 在0x 的某邻域内可导,且()0g x '≠; (3)0()lim()x x f x g x →''存在(或无穷大),那么00()()lim =lim ()()→→''x x x x f x f x g x g x .2.如果0()lim()→''x x f x g x 还是“0”型未定式,且函数()f x '与()g x '满足洛必达法则I 中应满足的条件,则可继续使用洛必达法则,即有000()()()limlim lim ()()()x x x x x x f x f x f x g x g x g x →→→'''==''',依此类推,直到求出所要求的极限.3.洛必达法则I 中,极限过程0x x →若换成0x x +→,0x x -→以及x →∞,x →+∞,x →-∞情形的0型未定式,结论仍然成立.二.“∞∞”型未定式 1.定理:(洛必达法则II )设)(x f 、()g x 在0x 的某一去心邻域内有定义,如果)1(0lim ()→=∞x x f x ,0lim ()→=∞x x g x ;)2()(x f 、()g x 在0x 的某邻域内可导,且()0g x '≠;)3(0()lim()x x f x g x →''存在(或无穷大),那么00()()lim =lim ()()x x x x f x f x g x g x →→''.2.如果0()lim()→''x x f x g x 还是“∞∞”型未定式,且函数()f x '与()g x '满足洛必达法则II 中应满足的条件,则可继续使用洛必达法则,即有000()()()limlim lim ()()()→→→'''=='''x x x x x x f x f x f x g x g x g x ,依此类推,直到求出所要求的极限.3.洛必达法则II 中,极限过程0x x →若换成0x x +→,0x x -→以及x →∞,x →+∞,x →-∞情形的“∞∞”型未定式,结论仍然成立.三.其它类型的未定式1.“0⋅∞”型未定式设0lim ()0→=x x f x ,0lim ()→=∞x x g x ,则0()lim ()()=lim1()→→⋅x x x x f x f x g x g x (00型), 或00()lim ()()=lim 1()→→⋅x x x x g x f x g x f x (∞∞型).2.“∞-∞”型未定式:可以通过通分化简等方式转化为“00”型或“∞∞”型未定式.3.“000 , 1, ∞∞”型未定式:可以通过取对数进行转化,()()ln ()lim ()ln ()lim[()]lim e e g x g x f x g x f x f x ==,无论()[()]g x f x 是上述三种类型中的哪一种,lim ()ln ()g x f x 均为“0⋅∞”型未定式.四.小结利用洛必达法则求未定式的极限,总结如下: 1.洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则.2.只要条件具备,可以连续使用洛必达法则.3.洛必达法则可以和其它求未定式的方法结合使用.4.洛必达法则的条件是充分的,但不必要.在某些特殊情况下洛必达法则可能失效,此时应寻求其他解法.五.例题讲解例1.计算20e 1lim x x x x →--. 例2.计算33221216lim 248x x x x x x →-+--+.例3.计算20tan lim sin →-x x x x x . 例4.计算0ln cot limln x xx+→.例5.计算sin lim 1x x xx →∞++. 例6.计算0limln x x x +→.例7.设()f x ''在x a =点附近连续,求极限2()()2()lim→++--h f a h f a h f a h.例8.计算 (1) ln lim (0)a x xa x→+∞>; (2) lim (0)e n xx x n →+∞>.。