并联电容器装置补偿原理图
- 格式:doc
- 大小:1.53 MB
- 文档页数:14
无功补偿的作用及原理电网中的许多用电设备是根据电磁感应原理工作的。
它们在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫无功功率。
电力系统中,不但有功功率平衡,无功功率也要平衡。
有功功率、无功功率、视在功率之间的关系如图1所示式中S——视在功率,kVAP——有功功率,kWQ——无功功率,kvarφ角为功率因数角,它的余弦(cosφ)是有功功率与视在功率之比即cosφ,P/S称作功率因数。
由功率三角形可以看出,在一定的有功功率下,用电企业功率因数cosφ越小,则所需的无功功率越大。
如果无功功率不是由电容器提供,则必须由输电系统供给,为满足用电的要求,供电线路和变压器的容量需增大。
这样,不仅增加供电投资、降低设备利用率,也将增加线路损耗。
为此,国家供用电规则规定:无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止无功倒送。
还规定用户的功率因数应达到相应的标准,否则供电部门可以拒绝供电。
因此,无论对供电部门还是用电部门,对无功功率进行自动补偿以提高功率因数,防止无功倒送,从而节约电能,提高运行质量都具有非常重要的意义。
无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。
这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。
当前,国内外广泛采用并联电容器作为无功补偿装置。
这种方法安装方便、建设周期短、造价低、运行维护简便、自身损耗小。
采用并联电容器进行无功补偿的主要作用:1、提高功率因数如图2所示图中P——有功功率S1——补偿前的视在功率S2——补偿后的视在功率Q1——补偿前的无功功率Q2——补偿后的无功功率φ1——补偿前的功率因数角φ2——补偿后的功率因数角由图示可以看出,在有功功率P一定的前提下,无功功率补偿以后(补偿量Qc,Q1-Q2),功率因数角由φ1减小到φ2,则cosφ2,cosφ1提高了功率因数。
3~110kV高压并联电容器装置使用说明书浙江能容电力设备有限公司说明本说明书的内容符合GB 50227-2008《并联电容器装置设计规范》和国家及行业其它标准的要求。
目录一、概述 (1)1.用途: (1)2.装置的型号及其意义: (1)3.执行标准 (1)二、使用环境 (1)三、结构简介 (2)四、技术参数和性能 (2)五、装置的保护(用户自定保护装置) (7)六、包装、运输和储存 (7)七、安装 (7)八、运行前的调整和试验 (8)九、运行、巡视和检修 (9)十一、安全规程 (9)十二、备品备件和资料 (10)十三、订货须知 (10)十四、典型电容器装置接线保护方式一次原理图 (11)十五、产品型号及柜体尺寸 (13)一、概述1.用途:ZRTBB 型高压并联电容器装置(以下简称装置),主要用于3~ 110kV ,频率为50Hz 的三相交流电力系统中,用以提高功率因数,调整网络电压,降低线路损耗,改善供电质量,提高供配电设备的使用效率的容性无功补偿装置。
2.装置的型号及其意义:3.执行标准GB 50227 并联电容器装置设计规范GB/T 11024 标称电压1kV 以上交流电力系统用并联电容器 GB 10229 电抗器GB 311.1高压输变电设备的绝缘配合 GB 50060 3~110kV 高压配电装置设计规范 JB/T 7111 高压并联电容器装置 JB/T 5346 串联电抗器DL/T 604 高压并联电容器装置订货技术条件 DL/T 840高压并联电容器使用技术条件其它现行国家标准。
二、使用环境1.装置用于户内或户外;2.安装运行地区的海拔高度不超过2000m (高海拔、特殊地域或地区可商定订做);3.周围空气温度为-40℃~+45℃(特殊环境可商定);P:电抗率;H:滤波回路W:户外;户内省略K:开口三角电压保护;C:相电压差动保护;L:中性点不平衡电流保护A:单星形接线;B:双星形接线单台电容器容量,kvar 装置额定容量,kvar 系统电压,kV装置类型,Z:自动投切;L:滤波补偿;X:固定补偿;T:调压跳容补偿并联电容器成套装置公司代号4.空气相对湿度不大于85%(20℃时);5.无有害气体及蒸汽,无导电性或爆炸性尘埃等;6.安装场所应无剧烈的机械振动和颠簸;7.抗震设防烈度8度。
电容补偿柜原理介绍以及特点(附加原理图)来源:电⼯维修学习1、电⼒电容器的补偿原理电容器在原理上相当于产⽣容性⽆功电流的发电机。
其⽆功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同⼀电容器上,能量在两种负荷间相互转换。
这样,电⽹中的变压器和输电线路的负荷降低,从⽽输出有功能⼒增加。
在输出⼀定有功功率的情况下,供电系统的损耗降低。
⽐较起来电容器是减轻变压器、供电系统和⼯业配电负荷的简便、经济的⽅法。
因此,电容器作为电⼒系统的⽆功补偿势在必⾏。
当前,采⽤并联电容器作为⽆功补偿装置已经⾮常普遍。
2、电⼒电容器补偿的特点2.1、优点电⼒电容器⽆功补偿装置具有安装⽅便,安装地点增减⽅便;有功损耗⼩(仅为额定容量的0.4 %左右);建设周期短;投资⼩;⽆旋转部件,运⾏维护简便;个别电容器组损坏,不影响整个电容器组运⾏等优点。
2.2、缺点电⼒电容器⽆功补偿装置的缺点有:只能进⾏有级调节,不能进⾏平滑调节;通风不良,⼀旦电容器运⾏温度⾼于70 ℃时,易发⽣膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;⽆功补偿精度低,易影响补偿效果;补偿电容器的运⾏管理困难及电容器安全运⾏的问题未受到重视等。
以上是对电容柜的特点和知识简介下⾯是详细解说关于电容补偿柜的⼀些知识低压电容补偿柜也叫低压⽆功补偿装置MSCGD,⼯作原理是根据电⽹向⽤电设备提供的负载电流由有功电流和⽆功电流两部分组成,⽆功电流在电源和负载之间往复交换,⼤⼤占⽤电⽹,使供电设备的供电能⼒⼤⼤降低,使功率因数降低。
就是⽤装置产⽣的容性⽆功电流快速、准确地跟踪抵消电⽹中的感性⽆功电流,从⽽提⾼功率因数,保证⽤电质量,提⾼供电设备的供电能⼒,并减⼩电路中的损耗。
⼀般来说,低压电容补偿柜由柜壳、母线、断路器、隔离开关,热继电器、接触器、避雷器、电容器、电抗器、⼀、⼆次导线、端⼦排、功率因数⾃动补偿控制装置、盘⾯仪表等组成。
电容器柜功能及其结构电容器补偿柜的作⽤电容补偿柜的作⽤是提⾼负载功率因数,降低⽆功功率,提⾼供电设备的效率;电容柜是否正常⼯作可通过功率因数表的读数判断,功率因数表读数如果在0.9左右可视为⼯作正常。
5. 主要技术性能指标5.1 电容偏差5.1.1 装置实际电容与额定电容之差在额定电容的0~+5%范围内。
5.1.2 装置任何两线路端子之间,其电容的最大值与最小值之比不超过1.02。
5.2 电感偏差5.2.1 在额定电流下,其电抗值的容许偏差为0~+5%。
5.2.2 每相电抗值不超过三相平均值的±2%。
5.3 绝缘水平装置额定电压一次电路1min 工频耐受电压(方均根值)一次电路冲击耐受电压[(1.2~5)/50μs 峰值]二次电路1min 工频耐受电压(方均根值)610353242956075200222单位:kV 表15.4 过负载能力5.4.1稳态过电压 工频过电压U N 最大持续时间说明1.101.151.201.30长期每24h 中30min 5min 1min指长期过电压的最高值不超过1.10U N 系统电压的调整与波动轻负载时电压升高轻负载时电压升高表26. 结构和工作原理6.1 该装置为柜式结构或框架式结构,可以手动投切电容器组,又可配以电压无功自动控制器对电容器组实行自动投切。
6.2 柜式结构装置由进线隔离开关柜、串联电抗器柜、并联电容器柜以及连接的母线组成。
电容器柜可根据补偿容量大小和设置的方案确定柜的数量,一般由多个柜组成。
柜体采用优质冷轧钢板折弯焊接或敷铝锌板折弯拼装而成。
柜体防护等级要求达到IP20。
6.3 结构布局:当单台电容器额定容量为30~100千乏时,所构成的电容器组为三层(单)双排结构,当额定容量为100千乏以上者为二层(单)双排结构,当额定容量为200千乏以上者为单层(单)双排结构。
其外形结构视图详见图1~图8。
5.4.2 稳态过电流:能在方均根值不超过1.1×1.3下长期运行。
5.4.3 用不重击穿的开关投切电容器时可能发生第一个峰值不大于2 2倍施加电压(方均根值),持续时间不大于1/2周波的过渡过电压。
相应的过渡过电流峰值可能达到100I N ,在这种情况下,允许每年操作1000次。
串联补偿电路与并联补偿电路的问题研究引言:无功补偿的两大类型手段,串联补偿与并联补偿, 基于对以上两种无功补偿电路的理解,我们来研究一下串联补偿电路中补偿电路的继电保护问题,并提出保护电路的方案,同时来讨论一下并联补偿与串联补偿的兼容性问题。
1串补电容对线路保护的影响1.1补偿原理串联补偿:通过在线路这种串联电容器(一般长距离输电线路呈感性),改变线路的阻抗特性,从而达到传输的目标。
串联补偿电容器对输电线路的控制是直接的,提供了很强的纵向潮流控制能力。
同时提供了无功补偿。
并联补偿:通过在线路这种并联电容器(或电抗器),通过电容器(或电抗器)向系统产生(或吸收无功功率)。
从而改善潮流分布的目标。
并联电容器向连接的节点提供无功功率,与补偿点相连的所有都将受到不可控的影响,尽管并联补偿是一种很好的电压控制方式,但对系统的纵向潮流控制能力较弱。
1.2串联补偿电路对继电保护向量的影响 1.2.1电压反相通常在非串补线路上,电源流出的短路电流落后于电源电势,母线电压与电源电势基本同相。
但在串补系统中,如从电源到保护安装处的感抗大于容抗,当靠近串补处发生故障时(如图1-1中F1点故障),将导致加在继电器上的电压相位和电源电势相差180°,即保护丈量的电压将发生反向。
在故障序网图中,也会发生电压反向。
图1-1 简易的串联补偿电路系统间隔保护或方向保护的电流方向不会因串补而改变。
这种电压方向的变化将对保护动作的正确性产生影响,但对不以丈量故障电压为参考量的保护(如电流差动保护),则不会造成影响。
1.2.2电流反向在串补线路上,以线路始端母线电压为基准,线路短路电流可能超前于电势,相位变化约180°,即发生电流反向。
当电源负序阻抗小于电容容抗时,保护测得的负序电流也将反方向。
以电流为参考量的保护,如间隔保护、方向保护、电流差动保护,在电流发生反向时,正常的选择性将受到影响。
1.3串联补偿电容对典型继电保护的影响 1.3.1串联补偿电容对间隔保护的影响当串补电容器的保护MOV将串补电容旁路时,间隔保护自然适应,故以下主要讨论串补电容不被旁路的情况。
TCR+FC型SVC静止动态无功补偿装置简介随着国民经济的发展和现代化技术的进步,电力网负荷急剧增大,对电网无功功率的要求与日俱增。
特别是如轧机、电弧炉等冲击、非线性负荷的不断增加,加上电力电子技术的普遍应用,使得电力网发生了电压波形畸变、电压波动闪变和三相不平衡等,产生了电能质量降低、网络损耗增加等不良影响。
因此解决好电网的无功功率因数补偿和谐波滤波问题,对于提高电能质量、安全运行、降低损耗、节能、充分利用电气设备的出力等具有重要的意义。
1、谐波的危害:1.电能的生产,传输和利用效率降低,电器设备过热,产生附加的振动和噪声2.绝缘老化,寿命缩短3.设备故障,引起电力系统局部发生串联谐振或者并联谐振4.谐波发生放大,造成电容器过热,膨胀甚至产生破裂5.继电保护和自动化控制装置误动作,使电能计量失准,造成混乱6.对通信和电子设备产生干扰。
2、简介90年代以来,随着高压晶闸阀的制造技术日趋成熟,绝大部分用户采用TCR+FC型SVC这种动态无功补偿及滤波装置来改善电网电能的质量。
晶闸管控制电抗器型静止动态无功补偿装置是一种可以自动调节的无功功率补偿装置。
它具有3个主要功能:抑制电压波动,改善功率因数,吸收电网谐波。
TCR+FC型SVC全称如下:图1:TCR+FC型SVC主回路接线图无源单调谐滤器FC以其结构简单、成本低、运行维护方便等特点被广泛应用于负荷冲击不大的有污染的供电系统中,具有吸收电网谐波和补偿无功功率两个功能。
安装于母线或者设备侧,设备组合方便,性能稳定。
TCR(Thyristor Controlled Reactor)是晶闸管投切电抗器型静止无功补偿装置。
由于单独的TCR只能吸收感性的无功功率,因此往往与并联电容器配合使用。
并联电容器后,使得总的无功功率为TCR与并联电容器无功功率抵消后的净无功功率。
3、TCR型补偿装置工作原理TCR型动补装置的补偿原理见图2所示。
图中Q C为电容器功率,Q L为负载感性无功功率,Q LS为补偿器所提供的感性无功功率。
变电站并联补偿电容器组的配置1前言为了减少电网中输送的无功功率,降低有功电量的损失,改善电压质量,供电企业普遍在变电站内安装并联补偿电容器组(以后简称电容器组)。
电容器组由电容器、串联电抗器、避雷器、断路器、放电线圈及相应的控制、保护、仪表装置组成。
目前,国内绝大部分电容器制造厂只生产电容器,其他设备均需外购,在成套设计成套供货方面尚有不足之处。
使用单位必须对电容器及配套设备进行选型。
由于各地的具体情况不同,在电容器组的设备选型、安装布置上差别很大,本文就此提出一些分析意见。
2电容器容量的选择电容器组容量的配置应使电网的无功功率实现分层分区平衡,各电压等级之间要尽量减少无功功率的交换。
由于电容器组在运行中的容量不是连续可调的,从减少电容器组的投切次数、提高功率因数的角度出发,希望电容器组在大部分时间内能正常投入运行而不发生过补偿。
通过对变电站负荷变化情况的分析,徐州地区变电站负荷率一般在70%~80%之间,一天当中约有2/3的时间负荷水平在平均负荷以上。
我们以变电站变压器低压侧全年无功电度量除以年运行时间求出年平均无功负荷,电容器组容量按照年平均无功负荷的90%选取。
实际运行时,由于电容器组额定电压一般为电网额定电压的1.1倍,而变电站低压母线电压一般控制在电网额定电压的1~1.07倍,电容器组实际容量要降低5.4%~17.4%,从而保证了电容器组在绝大部分时间内都能投入运行。
对于负荷季节性变化比较大的农村变电站和预计近期内负荷将有较大增长的变电站,电容器组容量可以适当增加,但要求电容器组必须能减容运行。
这一点对集合式与箱式电容器而言,要求具有中间容量抽头,组架式和半封闭式电容器组只要将熔断器去掉几只即可。
同时要求配有抑制谐波放大作用的串联电抗器有中间容量抽头,以保证电抗率不变。
增加电容器分组数有利于提高补偿效果,但是相应地要增加设备投资,所有35~110kV变电站内电容器组一般按照一台变压器配置一组。
可电抗器直流助IK式(CSR)高潟抗变压器武(re?)雄于崔通控制式变压器式<CSRT)调容式并联电抗器1.并联电抗器在电力系统中的作用并联电抗器无功功率补偿装置常用于补偿系统电容。
它通过向超高压、大容量的电网提供可阶梯调节的感性无功功率,补偿电网的剩余容性充电无功功率控制无功功率潮流,保证电网电压稳定在允许范围内。
实践证明,对于一些电压偏高的电网,安装一定数量的并联电抗器是解决系统无功功率过剩,降低电压的有效措施,特别是限制由于线路开路或轻载负荷所引起的电压升高。
所以在一定的运行工况中,在超高压输电线路手段装设并联电抗器以吸收输电线路电容所产生的无功功率,称为并联电抗器补偿。
由于目前应用于电力系统的电抗器大都为固定容量的电抗器,其容量不能改变,无法随时跟踪运行工况的无功功率变化,造成电抗器容量的浪费,与目前节能减排的主题不相符合,所以,有必要研究可控电抗器这个热门话题,使得电抗器的容量可控可调,这也在一定程度上符合我国发展智能电网的要求。
2.可控并联电抗器的分类、基本原理和优缺点2.1传统机械式可调电抗器调匝式和调气隙式是最早出现并广泛应用的可调电抗器。
其基本原理是通过调节线圈匝数或调节铁芯气隙的长度来改变电抗器的磁路磁导,从而改变电抗值。
调匝式可控电抗器较易实现,但是电抗值不能做的无级调整。
调气隙式由于机械惯性和电机的控制问题无法在工程上应用。
2.2晶闸管可控电抗器(TCR)晶闸管可控电抗器,是随着电力电子技术发展起来的一种新型的可控电抗器,它采用线性电抗器与反并联晶闸管串联的接线方式,通过控制晶闸管的触发角就可以控制电抗器的等效电抗值。
TCR的控制灵活,响应速度快,缺点是在调节时会产生大量的谐波,需要加装专门的滤波装置。
在高电压大容量的场合下,必须采用多个晶闸管串联的方式,造价昂贵,这使得它在超高压电网中的应用受到了相当大的限制,目前主要应用范围是35kV和10kV的配电网中。
2.3磁控电抗器磁控电抗器是通过改变铁芯的磁阻来实现电感值可调。
固定无功补偿器(F C)12.1并联电容器补偿无功功率原理在实际电力系统中,大部分负载为阻感型负荷,包括异步电动机在内的绝大部分设备的等效电路可看作电阻R 和电感L 串联的电路,其功率因数为cos ϕ=其中,2L L fX ωωπ==。
给R ,L 电路并联接入C 之后,电路如图12-1所示,该电路的电流方程为C RL I I I •••=+。
UR L图12-1原理图RLI C(a )过补偿 (b) 欠补偿12.2电容器与系统发生并联谐振图12-2a 为分析并联谐振的供用电网简化电路图,图12-2b 为其等效电路图。
图中谐波源I n 为恒流源,系统基波阻抗为Z S =R S +j X S ,n 次谐波阻抗为Z Sn =R Sn +j nX S ,通常R Sn <<nX S ,为简化分析,可忽略R Sn 。
补偿电容器的基波电抗为X C ,n 次谐波电抗为X C /n 。
X S /nI nnX SI nI C n I S nX C/n n X Sa) b)图12-2 并联谐振示意图a) 供用电系统简化电路图 b) 等效电路图图12-2b 的电路在满足nX S =X C /n时会发生并联谐振。
设基波频率为f ,则谐振频率f p 为f f X X P c s = (2-52)在图12-2中谐波源电流为I n 时,流入系统的谐波电流I Sn 和流入电容器的谐波电流I Cn 分别为I X n n X X n I s n c s cn =- (2-53) I n X n X X n I c n ss cn =- (2-54) 当n =n p 时,按上式计算得到的I Sn 和I Cn 均为无穷大。
实际上考虑到系统谐波电阻R Sn 及电容支路等效电阻的存在,I Sn 和I Cn 都只可能是有限值,但可以比I n 大许多倍。
实际电路中为了限制电容支路中的谐波电流和防止电容器投入时的冲击电流,在电容支路中都串入一定容量的电抗器。
如何使用米勒电容对运算放大器补偿?目录1 .什么是米勒补偿(MiI1erComPenSation)? .......................................................................................................................................... I 2 .利用米勒补偿 ........................................................................................ 1 3 .米勒效应(Mi11erEffeCI) ................................................................................................................................................................... 3 4 .米勒电容 ............................................................................................ 4 5 .嵌套mi∏er 补偿:传输函数及其性质 ..................................................................... 5 6 . 一点历史 .. (7)米勒电容(Mi11erCaPaCitanCe)通常用于运算放大器频率补偿的方法中。
在我之前的文章中,我们讨论了运算放大器频率补偿和一种通过并联电容的补偿方法。
目前最广泛使用的频率补偿技术称为米勒频率补偿(MiHerfreqUenCycompensation),我们将在本文中探讨它。
并联电容器无功补偿的配置方法(一)宁夏电力局马永宁前言采用力电容器并联补偿电网的无功负荷,由于具有单位投资少、电能损耗小、维护简单、搬迁方便等优点,在电力系统中得到广泛的应用。
但是,目前采用的配置原则,大多用限定功率因数法或由经验决定。
这种方法虽然简单易行,但经济效果却不是最合理的。
本文将从并联电容器无功补偿装置(以后简称补偿装置)的改善电压和降低线损这两个主要作用出发,通过理论分析来决定补偿容量的配置和补偿地点的选择,以求得最大经济效益。
这样做,虽然增加了计算工作量,但其经济效益是相当可观的。
本文着重解决三个问题:一是区域性补偿容量如何确定;二是补偿容量如何在配电母线和配电线路上分配;三是在配电线路上如何选择补偿地点。
第一章区域性补偿容量的确定1.1 概述决定一个供电区域的补偿容量,是进行无功补偿规划和安排年度计划的重要依据。
这里所说的“供电区域”是指一个35KV及以上的变电站供电的配电网。
本章将介绍两种计算方法:一种是我国目前常用的经济功率因数法;另一种是陈德裕同志于1977年提出的经济传输无功负荷法。
前者计算简单、结果明确,但是因为忽略因素较多,经济效益差,适合于作为规划设计的粗略估算;后者虽然计算繁琐,但配置合理,经济效益高,应作为安排年度无功补偿计划的依据。
上列两种计算方法,都是从经济效益出发来计算无功补偿容量的,没有考虑电压水平的要求。
因为,解决电压水平问题,除无功补偿外,主要应从改善电网结构来解决,此外还可以选择变压器分接电压、带负荷调压变压器、串联补偿等手段解决电压水平习题。
5 1·2 用经济功率因数法计算区域补偿容量本方法是根据供电区域至电源的电气距离和发电成本不同,采用不同的功率因数要求。
电气距离分为三类七级,第一类负荷为发电厂直配负荷,按距离又分为五级;第二类负荷为经过一次升压和一次降压的负荷;第三类负荷为经过一次升压和两次降压的负荷。
如图1·1所示为各类负荷示意图。
高压并联电容器成套装置讲义
●并联电容器装置补偿原理图
●高压并联电容器装置电气配套件代号
●高压并联电容器装置电气配套设备
●高压并联电容器装置电气配套设备主要作用
●电器件的初步选择
●高压并联电容器与配套设备连接方式
●断路器的初步选择
●熔断器的初步选择
●放电器的初步选择
●串联电抗器的初步选择
●避雷器及导体的初步选择
●并联电容器装置型号含义如下:
●并联电容器型号含义如下:
●串联电抗器型号含义如下:
●放电线圈型号含义如下:
●避雷器型号含义如下:
●刀闸型号含义如下:
●熔断器型号含义如下:
●电容器装置的几种接线方式
●开口三角电压保护
●相电压差动保护
●桥式差电流保护
●中性点不平衡电流保护
●高压电容器及电抗器布置
●避雷器接线方式
●系统的标称电压与最高电压
●外绝缘污秽等级
●绝缘水平
●电容器端电压的选择
●母线安装规范
●矩形母线搭接要求
●室内配电装置的安全净距(mm)
●结束观看
并联电容器装置补偿原理图
高压并联电容器装置电气配套件代号
高压并联电容器装置电气配套设备
高压并联电容器装置电气配套设备主要作用电器件的初步选择
高压并联电容器与配套设备连接方式
断路器的初步选择
串联电抗器的初步选择
避雷器及导体的初步选择
并联电容器装置型号含义如下:
串联电抗器型号含义如下:放电线圈型号含义如下:
避雷器型号含义如下:刀闸型号含义如下:
熔断器型号含义如下
电容器装置的几种接线方式
开口三角电压保护
相电压差动保护
桥式差电流保护
中性点不平衡电流保护
高压电容器及电抗器布置
高压电容器及电抗器布置
避雷器接线方式
系统的标称电压与最高电压
外绝缘污秽等级
绝缘水平
电容器端电压的选择
母线安装规范
矩形母线搭接要求
室内配电装置的安全净距(mm)。