硅氮系阻燃纤维的阻燃机理
- 格式:docx
- 大小:18.01 KB
- 文档页数:2
阻燃粘胶纤维的研究进展及应用赖小旭;郭荣辉【摘要】综述了具有防火阻燃性能的粘胶纤维,介绍了阻燃粘胶纤维的常用阻燃剂种类、阻燃粘胶纤维的制备方法、阻燃机理及其应用.【期刊名称】《成都纺织高等专科学校学报》【年(卷),期】2016(033)003【总页数】7页(P192-198)【关键词】阻燃粘胶纤维;阻燃剂;制备方法;阻燃机理;应用【作者】赖小旭;郭荣辉【作者单位】四川大学轻纺与食品学院,四川成都610065;四川大学轻纺与食品学院,四川成都610065【正文语种】中文【中图分类】TS102随着防火知识的宣传普及,防火安全观念也逐渐走进了千家万户。
纺织品,作为与人类生活息息相关的商品,其是否具有阻燃性成为了人们关注的话题。
2007年,我国出台并实施国家强制性阻燃标准——《公共场所阻燃制品及组件燃烧性能要求和标识》,对公共场所使用的六大类制品,包括织物、建筑制品、家具及组件、塑料/橡胶等的燃烧性能,提出严格要求。
其中,三大类制品都涉及阻燃纤维,对纤维的阻燃性有更高要求。
阻燃纤维主要分两类,一类是对纤维(如涤纶、维纶、腈纶等)改性处理,使其达到阻燃效果。
这类纤维燃烧后有潜在危害性,易熔融滴落,可能引燃其他的易燃物品,且燃烧时产生的大量浓烟,增大救援难度。
另一类是自身具有阻燃性的纤维,如芳族聚酰胺纤维、PBI,PBO纤维等,这类纤维的阻燃性能十分优异,然而价格昂贵,不适合大规模工业生产。
所以,耐熔滴、生产价格低的阻燃纤维成为研究重点。
粘胶纤维原料为天然纤维素,来源丰富,可生物降解,价格低廉,制备工艺成熟,力学性能优异,除此之外,燃烧时不熔融滴落。
然而,粘胶纤维是再生纤维素纤维,其结构为碳水化合物,极限氧指数为19%,极易燃烧,分解温度270℃~350℃,燃烧温度320℃~350℃。
因此研发阻燃粘胶纤维成为当今研究热点[1],研究粘胶纤维阻燃性、新型阻燃粘胶纤维,应用前景广阔。
阻燃粘胶纤维用阻燃剂的种类繁多,按阻燃剂与被阻燃基材之间的关系,可分为反应型和添加型,前者以化学交联方法发生反应,留在纤维中,用于热固性材料;后者以物理形式分散于纤维中,适用于热塑性材料。
阻燃纤维摘要:火灾频发,阻燃纤维更受关注,本文整理通过阅读文献和新闻,从阻燃纤维的阻燃机理,纤维阻燃改性方法和各种技术及国内外新型阻燃纤维成品举例,向本文读者介绍阻燃纤维的各种情况和其想法。
关键词:火灾阻燃纤维机理改性方法技术新型举例最近国内火灾频发,引起了国家领导和广大群众的高度关注,我也看了和听了一些有关阻燃纤维的东西,虽说随着人民生活水平的提高和以人为本的安防意识的增强纤维制品的阻燃‘性能越来越受到人们的关注。
已经有很多国家和地区制定产品标准,规定交通工具,公共场所、老人、儿童使用的某些纤维制品必须具备阻燃性能。
目前已经有芳纶1313等多种本质阻燃纤维应用于需要耐高温和阻燃的工作环境但通过阻燃剂共混共聚、接枝改性等方法制取的常规阻燃纤维原材料易得,生产简便,价格相对低廉,仍是一般阻燃产品最常用的纤维原料应用于民用阻燃纺织品。
但根据有关数据表明,2010年单上半年就有70000多起火灾(不含森林、草原、军队、矿井地下部分),特别是最近的上海1115特大火灾引起的反思,由于大部织品不阻燃而引起的潜在火灾也进一步增大,证明阻燃纤维的发展和应用还有带大幅提高。
下面是一些有关阻燃纤维的内容:一、阻燃纤维的阻燃机理:可燃物燃烧需要足够的温度和氧气,燃烧难易程度可通过极限氧指数(LOI)来表征。
通常情况下,空气氧浓度为21%。
因此。
当LOI>21%时即表明该物质在空气中难以燃烧。
各种纤维的LOI值见表I。
表I 各种纤维的LOI值(%)【1】阻燃的基本原理是减少热分解过程中可燃气体的生成和阻碍气相燃烧过程中的基本反应。
其次,吸收燃烧区域中的热量,稀释和隔离空气对阻止燃烧也有一定的作用。
1 表面覆盖理论有些物质(如硼纱、硼酸等)加热时熔融,在纤维表面形成一层玻璃状的膜,阻碍氧的提供;或像磷化物那样,主要在固相产生作用,促进碳化,阻止可燃性气体的放出。
有的阻燃剂也可能受热分解,产生不燃性气体浮在纤维表面隔离空气或稀释可燃性气体。
1.阻燃剂1.1我国阻燃剂需求介绍我国阻燃剂工业随着我国总体经济的持续、快速发展,迎来了一个大发展的机遇,同时,也面临严峻的挑战。
我国阻燃剂的生产和消费形势持续发展,年均消费增长率超过20%。
从2002年开始,国内阻燃剂消费量急剧上升,增加的市场份额主要来源于电子电器、汽车市场两个方面。
阻燃剂发展趋势则是在提高阻燃性能的同时,更加注重环保与生态安全,在这种背景下,一些传统的溴系阻燃剂已受到日益严格的环保和阻燃法规的压力,迫使用户寻找溴系阻燃剂的代用品,同时也将促进新阻燃材料的问世。
这些新的阻燃材料将具有低放热率、低生烟性和低毒性,而且阻燃效率不会降低。
由于人们对使用溴系阻燃剂十分审慎,给其发展前景蒙上了一层阴影。
但由于溴系阻燃剂在阻燃领域的历史地位,而且在很多应用领域还很难找到合适的代用品,所以溴系阻燃剂在欧洲等国仍然是无可替代的选择。
但寻找溴系阻燃剂(特别是十溴二苯醚)的代用品,以逐步实现阻燃剂的无卤化和生态化将是明显的发展趋势之一。
今后全球溴系阻燃剂消费量增速缓慢,而代用品将会继续增多。
预计未来5年内,我国阻燃剂消费量年均增长率可达到15%。
目前我国阻燃剂无论在品种上还是用量上均与发达国家存在较大差距。
随着国家对阻燃技术要求力度的加强,我国阻燃剂的开发和发展将出现更好的广阔前景。
我们应该提高开发创新能力,推动阻燃剂工业朝着环保化、低毒化、高效化、多功能化的方向发展。
1.2常用的阻燃剂1.2.1卤系阻燃剂卤系阻燃剂主要是含溴和含氯阻燃剂。
含溴阻燃剂包括脂肪族、脂环族、芳香族及芳香一脂肪族的溴化合物,常用的有十溴二苯醚、十溴二苯乙烷、溴化环氧树脂、四溴双酚A、六溴环十二烷、八溴醚等,这中间尤以十溴二苯醚、十溴二苯乙烷、四溴双酚A使用量较大。
含氯阻燃剂主要是氯化石蜡。
溴系阻燃剂的优点在于对复合材料的力学性能几乎没有影响,根据阻燃机理能显著降低燃气中溴化氢的含量,而且该类阻燃剂与基体树脂相容性好。
即使在苛刻的条件下也无析出现象。
高性能阻燃纤维的特性与应用杨琳;王中珍;丁帅【摘要】文章简述了聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶1313、芳砜纶和连续玄武岩纤维六种高性能阻燃纤维的基本特性及在相关产业的应用,并对高性能阻燃纤维的发展进行了展望.【期刊名称】《山东纺织科技》【年(卷),期】2016(057)003【总页数】3页(P50-52)【关键词】高性能阻燃纤维;特性;应用;展望【作者】杨琳;王中珍;丁帅【作者单位】山东省纺织科学研究院,山东青岛266032;山东省特种纺织品加工技术重点实验室,山东青岛266032;山东省纺织科学研究院,山东青岛266032;山东省特种纺织品加工技术重点实验室,山东青岛266032;山东省纺织科学研究院,山东青岛266032;山东省特种纺织品加工技术重点实验室,山东青岛266032【正文语种】中文【中图分类】TS102为满足国防、航空航天、核能、冶金、地矿等特种行业对工程材料耐高温、耐辐射、高强度、绝缘性和热稳定性等性能的高要求,各国都致力于高性能纤维的开发研究。
高性能阻燃纤维作为其中的研究热点,受到越来越多的关注。
通常情况下,根据极限氧指数(LOI),将纺织品分为易燃(LOI≤20%)、可燃(LOI=20%~26%)、难燃(LOI=26%~34%)和不燃(LOI≥34%)四个等级[1],而高性能阻燃纤维的极限氧指数普遍在26%以上,阻燃性优异,同时又具有良好的热稳定性、耐化学性和力学性能等,使其在特种工业领域应用广泛[2]。
聚苯硫醚、聚酰亚胺、聚四氟乙烯、芳纶1313、芳砜纶和连续玄武岩纤维是目前应用较多的高性能阻燃纤维,其主要特性见表1。
由表1可知,除芳纶1313与芳砜纶外,其余四种纤维的极限氧指数都等于或大于34%,达到了不燃(LOI≥34%)的等级,阻燃性能十分优异。
同时这六种纤维的热稳定性较好,可在高温下持续工作,能应对极端的工作环境。
3.1 聚苯硫醚纤维聚苯硫醚纤维由聚苯硫醚树脂(PPS)采用常规的熔融纺丝方法,在高温下进行后拉伸、卷曲和切断制得。
阻燃剂及其阻燃机理的研究现状一、本文概述阻燃剂是一种广泛应用于各类材料中的化学助剂,旨在提高材料的阻燃性能,降低火灾风险。
随着全球对安全问题的日益关注,阻燃剂的研究和应用日益受到人们的重视。
阻燃剂的研究现状反映了人类对材料科学、化学以及火灾科学的深入理解和应用。
本文旨在全面概述阻燃剂及其阻燃机理的研究现状,分析阻燃剂的主要类型、应用领域以及阻燃机理的最新研究进展,以期为未来阻燃剂的发展提供理论支持和实践指导。
本文首先将对阻燃剂的定义、分类及其在各领域的应用进行简要介绍,以明确阻燃剂的重要性和应用范围。
然后,重点阐述阻燃剂的阻燃机理,包括阻燃剂在材料燃烧过程中的作用方式、阻燃效果的评估方法以及阻燃机理的最新研究进展。
在此基础上,对阻燃剂的研究现状进行深入分析,探讨阻燃剂的发展趋势和存在的问题,提出相应的解决策略和建议。
对阻燃剂的未来发展方向进行展望,以期推动阻燃剂技术的不断创新和应用拓展。
通过本文的阐述,我们期望能够为读者提供一个全面、深入的阻燃剂及其阻燃机理的研究现状概览,为阻燃剂的研究、开发和应用提供有益的参考和启示。
二、阻燃剂分类及其特点阻燃剂按照其作用方式和化学结构可以分为多种类型,每一种都有其独特的特点和应用领域。
卤系阻燃剂:卤系阻燃剂是最早被广泛应用的阻燃剂之一,主要包括溴系和氯系阻燃剂。
它们主要通过捕捉自由基、生成不燃或难燃的卤代烃气体来发挥阻燃作用。
卤系阻燃剂具有阻燃效果好、添加量小、不影响材料物理性能等优点,但也存在烟雾大、释放有毒气体等缺点。
磷系阻燃剂:磷系阻燃剂主要包括无机磷阻燃剂和有机磷阻燃剂。
它们主要通过凝聚相阻燃和气相阻燃两种方式发挥作用。
磷系阻燃剂具有低烟、低毒、耐水洗等优点,因此在许多领域得到广泛应用。
氮系阻燃剂:氮系阻燃剂主要包括三聚氰胺、双氰胺等。
它们主要通过在燃烧过程中释放氨气、氮气等不燃气体来稀释可燃气体,从而起到阻燃作用。
氮系阻燃剂具有无卤、无磷、环保等优点,但在某些应用中阻燃效果可能略逊于卤系和磷系阻燃剂。
阻燃剂的阻燃原理详解阻燃剂是通过若干机理发挥其阻燃作用的,如吸热作用、覆盖作用、抑制链反应、不燃气体的窒息作用等。
多数阻燃剂是通过若干机理共同作用达到阻燃目的。
1、吸热作用任何燃烧在较短的时间所放出的热量是有限的,如果能在较短的时间吸收火源所放出的一部分热量,那么火焰温度就会降低,辐射到燃烧表面和作用于将已经气化的可燃分子裂解成自由基的热量就会减少,燃烧反应就会得到一定程度的抑制。
在高温条件下,阻燃剂发生了强烈的吸热反应,吸收燃烧放出的部分热量,降低可燃物表面的温度,有效地抑制可燃性气体的生成,阻止燃烧的蔓延。
Al(OH)3阻燃剂的阻燃机理就是通过提高聚合物的热容,使其在达到热分解温度前吸收更多的热量,从而提高其阻燃性能。
这类阻燃剂充分发挥其结合水蒸汽时大量吸热的特性,提高其自身的阻燃能力。
2、覆盖作用在可燃材料中加入阻燃剂后,阻燃剂在高温下能形成玻璃状或稳定泡沫覆盖层,隔绝氧气,具有隔热、隔氧、阻止可燃气体向外逸出的作用,从而达到阻燃目的。
如有机阻磷类阻燃剂受热时能产生结构更趋稳定的交联状固体物质或碳化层。
碳化层的形成一方面能阻止聚合物进一步热解,另一方面能阻止其内部的热分解产生物进入气相参与燃烧过程。
3、抑制链反应根据燃烧的链反应理论,维持燃烧所需的是自由基。
阻燃剂可作用于气相燃烧区,捕捉燃烧反应中的自由基,从而阻止火焰的传播,使燃烧区的火焰密度下降,最终使燃烧反应速度下降直至终止。
如含卤阻燃剂,它的蒸发温度和聚合物分解温度相同或相近,当聚合物受热分解时,阻燃剂也同时挥发出来。
此时含卤阻燃剂与热分解产物同时处于气相燃烧区,卤素便能够捕捉燃烧反应中的自由基,从而阻止火焰的传播,使燃烧区的火焰密度下降,最终使燃烧反应速度下降直至终止。
4、不燃气体窒息作用阻燃剂受热时分解出不燃气体,将可燃物分解出来的可燃气体的浓度冲淡到燃烧下限以下。
同时也对燃烧区内的氧浓度具有稀释的作用,阻止燃烧的继续进行,达到阻燃的作用。
【收稿日期】2004-12-16;【修回日期】2005-06-25【作者简介】王海军(1979—),男,河南平顶山人,在读硕士,主要研究方向为环氧树脂的阻燃改性。
氮系阻燃剂的研究及应用概况王海军,陈立新,缪 桦(西北工业大学理学院应用化学系,陕西西安710072) 摘 要:氮系阻燃剂高效且本身及其分解产物低毒,成为当今阻燃剂的发展方向。
文中概述了氮系阻燃剂及氮2磷复合阻燃剂的特点、分类及其阻燃机理,归纳了该阻燃体系在环氧树脂、不饱和聚酯树脂、酚醛树脂、聚乙烯和聚氨酯等体系中的应用概况,并指出了今后的发展方向。
关键词:阻燃剂;含氮化合物;阻燃机理;应用中图分类号:TQ3141248 文献标识码:A 文章编号:1002-7432(2005)04-0036-06The study on nitrogen -Containing flame retardants and its application in plasticsWAN G Hai 2jun ,CHEN Li 2Xin ,M IAO Hua(A pplied Chemist ry Depart ment of Science School ,N orth WesternPalytechnical university ,Xi ’an 710072,Chi na )Abstract :The nitrogen compound was a novel and high efficiency flame retardant for the low toxicity of itself and its decomposer.It ’s the developing direction of flame retardants at present.The characteristic ,type and mechanism of nitrogen compound and combined nitrogen 2phosphorus used as flame retardant were summarized in the paper.The applications of this kind of flame retardant in epoxy resin ,unsaturated resin ,phenolic resin ,polyethylene and polyurethane were also reviewed and the tendency in the future was indicated.K ey w ords :flame retardant ;nitrogen compound ;mechanism ;application 0 引 言传统卤素类阻燃材料如含溴材料具有很高的阻燃性,是目前使用最多的阻燃材料。
硅系阻燃剂的阻燃机理
一、引言
硅系阻燃剂作为一种重要的无卤环保型阻燃剂,因其良好的热稳定性、耐水性以及低毒性等优点,在塑料、橡胶、涂料等领域得到了广泛应用。
本文将深入探讨硅系阻燃剂的阻燃机理。
二、硅系阻燃剂的类型与结构
硅系阻燃剂主要包括有机硅阻燃剂和无机硅阻燃剂两大类。
其中,有机硅阻燃剂主要为硅油、硅树脂和硅橡胶等;无机硅阻燃剂则主要是硅酸盐、硅酸铝等。
这些硅系阻燃剂的共同特点是具有稳定的Si-O-Si键,这种键能高,不易被破坏,因此具有良好的热稳定性。
三、硅系阻燃剂的阻燃机理
1. 生成保护层:在高温下,硅系阻燃剂能够分解产生二氧化硅(SiO2)或其他不燃或难燃物质,形成一层隔离膜,阻止氧气与燃烧物接触,从而起到阻燃作用。
2. 吸热效应:硅系阻燃剂在受热分解过程中会吸收大量的热量,降低材料的温度,减缓燃烧速度,甚至使燃烧过程停止。
3. 气相阻燃:部分硅系阻燃剂在燃烧过程中可以释放出大量惰性气体,如氮气、二氧化碳等,稀释空气中的氧气浓度,阻碍燃烧反应进行。
4. 组织碳化:硅系阻燃剂可以促进燃烧产物碳化,形成一个稳定的碳质层,阻止氧气进入,达到阻燃效果。
2019年第5期Sum 284 No. 5化学工程师Chemical EngineerDOI : 10」6247/ki.23-1171 /tq.20190574综木EVA 用阻燃剂阻燃机理述及应用研究进展*周波,唐宝华,杨守生,王晓东(中国人民警察大学基础学科应用与发展研究中心,廊坊065000)摘 要:总结了近年来国内采用无机镁铝阻燃剂、磷系阻燃剂、氮系阻燃剂、硅系阻燃剂、膨胀类阻燃剂对乙烯-醋酸乙烯酯共聚物(EVA)阻燃改性研究进展,对每种类型阻燃剂的优缺点、阻燃机理以及各类阻燃剂对EVA 基复合材料性能的影响进行了归纳,并对EVA 用阻燃剂研究的发展方向予以展望,期望为研发更为 高效的EVA 用阻燃剂提供有效参考。
关键词:EVA ;阻燃剂;阻燃机理;研究进展中图分类号:TQ323.5 文献标识码:AResearch progress on flame retardant mechanism and application of flame retardant for EVA*ZHOU Bo,TANG Bao-hua,YANG Shou-sheng WANG Xiao-dong(Basic Subject Application and Development Research Center,China People's Police University,Langfang 065000,China)Abstract :The research progress of flame retardant modification of ethylene-vinyl acetate copolymer (EVA )with inorganic magnesium-aluminium flame retardant, phosphorus flame retardant, nitrogen flame retardant, silicon flame retardant and intumescent flame retardant in recent years was summarized. The advantages and disadvantagesof various flame retardants, the flame retardant mechanism and the effects of flame retardants on the properties of EVA composites were summarized. The development trend of flame retardants for EVA was also prospected, whichis expected to provide an effective reference for the development of more efficient flame retardants for EVA.Key words : EVA; Flame retardant; Flame retardant mechanism; Research progress乙烯-醋酸乙烯酯(EVA)是一种常见的聚烯姪 材料,VA (醋酸乙烯)含量一般在5%~40%,具有结晶度低,柔韧性、抗冲击性、填料相溶性和热密封性高等特点,广泛用于包装材料、发泡材料、农用薄膜、 电线电缆、注塑制品材料等领域,市场需求量呈现逐年增大的趋势〔叫但EVA 氧指数值只有17%~19%,易燃烧,且在燃烧时产生有毒有害气体,并伴有熔滴现象,火灾危险性大,严重制约了 EVA 在相关领域 的应用与发展,所以对EVA 进行阻燃改性,降低其火灾危险性,提高EVA 使用范围,变得极为重要⑶。
常见阻燃剂及其阻燃机理总结1、无机阻燃剂(1)水合金属氧化物主要品种有氢氧化铝、氢氧化镁、氢氧化锡等,其中以氢氧化铝的吸热效应最大,阻燃效果好。
其阻燃作用主要是吸热效应,生成的水蒸气还能起隔绝效应。
这类阻燃剂的最大优点是无毒,不会生成有害气体,还可减少燃烧过程中CO的生成量,起消烟剂作用。
最大缺点是分解温度低,应用时使用量大,只能用于加工温度较低、物理机械性能要求不高的高聚物材料的阻燃。
此外,氢氧化镁易吸收空气中的CO2,生成碳酸镁,使制品产生白点。
(2)硼化合物与钼化合物这类阻燃剂中主要有硼酸、水合硼酸锌、钼酸锌、钼酸钙、钼酸铵等。
其中水合硼酸锌的阻燃效果最好。
该类阻燃剂在较低温度下熔融,释放出水并生成玻璃状覆盖层,在燃烧过程中起隔绝、吸热及稀释效应。
硼类阻燃剂与卤系阻燃剂有协同效应。
由于分解温度低,不能用于加工温度高的高聚物阻燃(3)硅类化合物这类阻燃剂在燃烧时能生成玻璃状的无机层(Si0)并接枝到高聚物上,产生不燃的含碳化合物,形成隔氧膜而抑制燃烧,同时还能防止高聚物受热后的流滴。
其燃烧时不产生火焰、CO及烟,而且还具有补强作用。
因此,这是一类极有开发前景的非卤素阻燃剂。
(4)膨胀型石墨这是一类新开发的无机阻燃剂美国已商品化。
它能起隔绝效应,与红磷有良好的协同效应,两者常同时使用(5)三氧化二锑三氧化二锑在不含卤高聚物中阻燃作用很小,一般不单独用作阻燃剂,在含卤高聚物中有较好的阻燃作用,与卤系阻燃剂并用有较好的协同效应2、有机阻燃剂(1)有机卤系阻燃剂有机卤系阻燃剂是目前用量最大的有机阻燃剂,主要是溴、氯化合物。
溴化物虽然有毒,但其阻燃效果比氯化物好,用量少,很受用户欢迎。
同一卤素不同类型的化合物,其阻燃能力不同,其大小顺序为:脂肪族>脂环族>芳香族脂肪族与高聚物的相容性好,但热稳定性差;芳香族热稳定好,但相容性差。
含有醚基的芳香族卤化合物与高聚物的相容性好,热稳定性高,用量急剧增加。
硅氮系阻燃纤维的阻燃机理
摘要硅氮系阻燃再生纤维素纤维是一种新型环保材料。
该种阻燃纤维采用新型硅氮系阻燃剂添加到纤维素溶液中然后在凝固浴中纺丝成型,再经过二次交联反应成为成品,除了具有阻燃性能好、永久阻燃、可纺织和舒适性好等特性以外,还具有独特的发烟量小、烟气无毒、具有屏蔽层和环保的特点。
该阻燃纤维主要用于消防服、军队服装、石化、冶炼、电力等行业工作服、交通工具内饰、公共场所需阻燃卧具、装饰物及儿童、老人服装和其他特殊产业用阻燃纺织品,是一种新型的高端阻燃纤维产品具有广泛的应用领域。
再生纤维素纤维是碳基高分子,遇热或明火,引发相态和化学变化,导致自由基链式反应,分解释放可燃气体,在氧气存在条件下,产生阴燃或火焰,形成火灾的连续过程。
硅氮系阻燃剂在阻燃纤维中,以氢键或其他范德华力与纤维素接枝、结合,或者部分以纳米形态分散于纤维素非结晶区域,其作用就是阻断碳基高分子的各个引燃过程。
其阻燃机理可以归纳为以下几方面:
1、吸热作用:硅氮系阻燃剂在纤维中总含量较高,达到 30%左右,本身又具有高热容量,在高温下发生相变、脱水等吸热反应,降低纤维材料表面和火焰区的温度,减慢热裂解反应的速度,抑制可燃性气体的生成。
2、覆盖保护作用:硅氮系阻燃剂,本身在 800-1200 ℃高温中大部分能保持硅、钛、钙的聚合态不会气化,阻燃剂受热后,在纤维材料表面熔融形成玻璃状覆盖层,成为凝聚相和火焰之间的一个屏障。
既隔绝氧气、阻止可燃性气体的扩散,又可阻挡热传导和热辐射,减少反馈给纤维材料的热量,从而抑制热裂解和燃烧反应;
3、气体稀释作用:阻燃剂吸热分解释放出氮气、二氧化碳和氨等不燃性气体,使纤维材料裂解处的可燃性气体浓度被稀释到燃烧极限以下。
或使火焰中心处部分区域的氧气不足,阻止燃烧继续。
此外,这种不燃性气体还有散热降温作用。
它们的阻燃作用大小顺序是:N2>CO2>NH3;
4、凝聚相阻燃:通过阻燃剂的作用,在凝聚相反应区(150—200 ℃),改变纤维大分子链的热裂解反应历程,促使发生脱水、缩合、环化、交联等反应,直至炭化,以增加炭化残渣,减少可燃性气体的产生,使阻燃剂在凝聚相发挥阻燃作用。
凝聚相阻燃作用的效果,与阻燃剂同纤维在化学结构上的匹配与否有密切关系;
5、气相阻燃:添加少量抑制剂,在火焰区大量捕捉轻质自由基和氢自由基,降低自由基浓度,从而抑制或中断燃烧的连锁反应,在气相发挥阻燃作用。
气相阻燃作用对纤维材料的化学结构并不敏感;
6、微粒的表面效应:部分以纳米形态镶嵌、分散在纤维表面的阻燃剂,在可燃气体中形成惰性微粒,它不仅能吸收燃烧热,降低火焰温度,而且,会如同容器的壁面那样,在微
粒的表面上,将气相燃烧反应中大量的高能量氢自由基,转变成低能量的氢过氧基自由基,从而抑制气相燃烧。