八年级数学上册轴对称教案人教版
- 格式:doc
- 大小:342.00 KB
- 文档页数:6
人教版数学八年级上册教学设计13.1《轴对称》一. 教材分析人教版数学八年级上册第13.1节《轴对称》是初中数学中的重要内容,主要让学生理解轴对称的概念,掌握轴对称的性质,并能够运用轴对称解决实际问题。
本节内容通过具体的实例,引导学生探究轴对称的性质,培养学生的观察能力、操作能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,对图形的性质有一定的了解。
但轴对称作为一个全新的概念,对学生来说还是有一定难度的。
因此,在教学过程中,需要结合学生的实际情况,从生活实例出发,引导学生理解轴对称的概念,逐步掌握轴对称的性质。
三. 教学目标1.了解轴对称的概念,能够识别生活中的轴对称现象。
2.掌握轴对称的性质,能够运用轴对称解决实际问题。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.轴对称的概念和性质。
2.运用轴对称解决实际问题。
五. 教学方法1.采用情境教学法,从生活实例出发,引导学生发现轴对称现象。
2.采用探究教学法,让学生通过合作交流,自主发现轴对称的性质。
3.采用实践教学法,让学生动手操作,巩固对轴对称的理解。
4.采用问题教学法,引导学生运用轴对称解决实际问题。
六. 教学准备1.准备相关的多媒体教学课件,展示生活中的轴对称现象。
2.准备一些实际的例子,用于引导学生发现轴对称的性质。
3.准备一些练习题,用于巩固学生对轴对称的理解。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、衣服的折叠等,引导学生发现并理解轴对称的概念。
2.呈现(10分钟)呈现一些实际的例子,让学生观察并探讨轴对称的性质。
如:轴对称图形的大小、形状、位置关系等。
3.操练(10分钟)让学生分组进行操作,通过实际动手,发现并验证轴对称的性质。
可以让学生剪出一些轴对称的图形,观察并总结其性质。
4.巩固(10分钟)让学生解决一些实际问题,运用轴对称的知识。
如:设计一个轴对称的图案,或解决一些与轴对称相关的几何问题。
人教版八年级数学上册13.2.1《画轴对称图形》教案一. 教材分析人教版八年级数学上册13.2.1《画轴对称图形》是学生在掌握了轴对称的概念和性质的基础上,进一步学习如何通过作图的方法来画出各种轴对称图形。
本节内容通过具体的实例,使学生进一步理解轴对称图形的特征,提高他们的观察能力和动手能力,培养他们的空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称图形。
但是,对于如何通过作图的方法来画出轴对称图形,部分学生可能还存在困难。
因此,在教学过程中,需要教师通过详细的讲解和示范,引导学生掌握作图的方法。
三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手能力。
3.情感态度价值观:培养学生对数学的兴趣,提高他们解决问题的能力,培养他们的合作意识。
四. 教学重难点1.重点:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.难点:如何引导学生通过作图的方法来画出轴对称图形。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,通过引导学生观察、操作、思考、交流等活动,提高他们的空间想象能力和动手能力。
六. 教学准备教师准备PPT、作图工具(直尺、圆规等)、练习题等。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾轴对称的概念和性质,激发他们的学习兴趣。
2.呈现(10分钟)教师通过PPT展示各种轴对称图形,引导学生观察和思考,使他们能够发现轴对称图形的特征。
3.操练(10分钟)教师引导学生通过作图的方法来画出各种轴对称图形,边讲解边示范,使他们能够理解和掌握作图的方法。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检测他们对于轴对称图形的理解和掌握。
第十三章轴对称13.2 画轴对称图形第1课时一、教学目标【知识与技能】能画出简单平面图形作轴对称之后的图形,了解画一般轴对称图形的方法.【过程与方法】让每个学生在生动具体的问题情境中参与数学活动,通过积极主动的探索,加深自己的理解和认识.【情感、态度与价值观】让学生体验到成功的喜悦,树立自信心,体验合作交流的重要性,感受数学美,明白数学来源于生活又服务于生活的道理.二、课型新授课三、课时第1课时,共1课时。
四、教学重难点【教学重点】1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.【教学难点】利用轴对称进行一些图案设计.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.(出示课件3)(二)探索新知1.创设情境,探究轴对称图形的画法教师问1:(出示课件2)观察思考,欣赏美丽图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?学生回答:这些图案都是轴对称图形,希望学习这些图案制作方法.教师问2:在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点得到的线段被对称轴垂直平分.类似地,请你再画一个图形做一做,看看能否得到同样的结论呢?(出示课件5)学生问:这个如何做呢?出示下边的图案教师问3:认真观察,左脚印和右脚印有什么关系?(出示课件6)学生回答:成轴对称教师问4:对称轴是折痕所在的直线,即直线l,它与图中的线段PP ′是什么关系?学生回答:直线l垂直平分线段PP′教师总结点拨:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师讲解:同学们自己能做出一个类似的图形吗?学生回答:可以做到.师生共同解答如下:(1)取一张长方形纸;(2)将纸对折,中间夹上复写纸;(3)在纸上沿折叠线画出半只蝴蝶;(4)把纸展开.得到的图案如下:教师问5:取一张白纸折叠夹上复写纸,任画一个你最喜欢的图形,打开纸看一下,然后改变折痕方向重新叠纸,在原来的图形上描图,再打开,你会发现什么结论?学生动手作图后回答:这两个图形关于某直线成轴对称.教师问6:当对称轴的方向和位置发生变化时,得到图形的方向和位置会变吗?学生画图后回答:当对称轴的方向和位置发生变化时,得到图形的方向和位置不会变化.例1:将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,得到的图案是()(出示课件8)师生共同解答如下:动手剪一剪,亲自操作后得到答案:B.例2:如图,将长方形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =50°,则∠CFD 的度数为( )(出示课件10)A .20° B.30° C .40° D.50°师生共同解答如下:A. B. C. D. A B D CE F由折叠知道:∠EFD=∠A=90°,∵∠EFB=50°,∴∠CFD=180°-90°-50°==40°.答案:C.总结点拨:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.2、运用新知,作轴对称图形教师问7:如何画一个点的轴对称图形?学生回答:画出点A关于直线l的对称点A′.教师问8:如何画呢?师生共同解答如下:作法:(1)过点A作l的垂线,垂足为点O.(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点. (出示课件12)教师问8:如何画一条线段的对称图形?学生回答:已知线段AB,画出AB关于直线l的对称线段.师生共同解答如下:(出示课件13)教师问9:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?师生共同探究后,完成下边的问题例3:如图,已知△ABC 和直线l ,作出与△ABC 关于直线l 对称的图形.师生共同解答如下:(出示课件14)分析:△ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l 的对称点,连接这些对称点,就能得到要画的图形.(出示课件15)作法:(1)过点A 画直线l 的垂线,垂足为点O ,在垂线上截取OA ′=OA ,A ′就是点A 关于直线l 的对称点.(2)同理,分别画出点B ,C 关于直线l 的对称点B ′,C ′ .(3)连接A ′B ′,B ′C ′,C ′A ′,得到△ A ′B ′C ′即为所求. l AB C总结点拨:(出示课件16)作轴对称图形的方法:几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到与原图形成轴对称的图形.例4:在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.(出示课件17)师生共同解答如下:总结点拨:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.(出示课件18)(三)课堂练习(出示课件21-25)1.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.如图,把一张长方形的纸按图那样折叠后,B,D两点落在B′,D′点处,若得∠AOB′=70°,则∠B′OG的度数为________.3.如图,把下列图形补成关于直线l的对称图形.4.如图给出了一个图案的一半,虚线l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.5.如图,画△ABC关于直线m的对称图形.参考答案:1.B2.55°3.解答如下图:4.解答如下图:5.解答如下图:(四)课堂小结今天我们学了哪些内容:1.轴对称图形的基本特征。
八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。
本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。
教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。
二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。
但轴对称概念较为抽象,学生可能难以理解。
因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。
三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。
2.培养学生观察、分析和推理的能力。
3.引导学生运用轴对称的性质解决实际问题。
四. 教学重难点1.轴对称的概念及性质。
2.如何运用轴对称的性质解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。
在小组合作学习中,培养学生团队合作精神和沟通能力。
六. 教学准备1.准备与轴对称相关的实例图片和练习题。
2.准备课件,展示轴对称的性质和应用。
3.准备黑板,用于板书重要知识点。
七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。
提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。
2. 呈现(10分钟)展示轴对称的定义和性质。
通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。
同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。
3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。
讨论结束后,每组选代表进行分享。
教师对每组的分享进行点评,指出优点和需要改进的地方。
八年级数学上册轴对称教案八年级数学上册轴对称教案作为一名教师,常常需要准备教案,借助教案可以更好地组织教学活动。
快来参考教案是怎么写的吧!下面是小编收集整理的八年级数学上册轴对称教案,欢迎大家借鉴与参考,希望对大家有所帮助。
八年级数学上册轴对称教案1教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1、知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
2、能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。
3、情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。
教学重点:理解对称图形的概念,能正确找、画对称轴。
教学难点:准确找对称轴。
教学具准备:1、教具:图片、剪刀、彩纸、课件2、学具:蝴蝶几何图片、剪刀、白纸教学过程:一创设情境、激趣感知课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。
师:谁来说说蝴蝶和蜻蜓怎么说?蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀?”蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”蜻蜓说:“我才不信呢!”师:你们想知道对称图形的那些知识?生1:什么样的图形是对称图形?生2:对称图形有什么特点?[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。
]二师生互动、探究新知(一)教学对称图形现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现?生1:我发现蝴蝶的左右两边是一样的。
生2:我发现年年有鱼的纸花的左右两边是不一样的。
生3:我发现京剧脸谱的左右两边是一样的。
让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。
[设计理念:教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。
人教版数学八年级上册教案《13-1轴对称》(第2课时)一. 教材分析《13-1轴对称》是人教版数学八年级上册的一章内容,主要讲述了轴对称的概念、性质及应用。
本节课是该章节的第二课时,主要内容是进一步巩固轴对称的概念,引导学生发现和总结轴对称的性质,并通过实例让学生了解轴对称在实际生活中的应用。
二. 学情分析学生在之前的学习中已经掌握了轴对称的基本概念,但可能对轴对称的性质和应用还不够了解。
因此,在教学过程中,教师需要通过生动的实例和丰富的活动,帮助学生深入理解轴对称的性质,并发现其在生活中的应用。
三. 教学目标1.知识与技能:学生能熟练掌握轴对称的概念,理解轴对称的性质,并能够运用轴对称解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,学生能培养自己的空间想象能力和解决问题的能力。
3.情感态度与价值观:学生能体验到数学与生活的紧密联系,增强对数学的兴趣和信心。
四. 教学重难点1.重点:轴对称的概念、性质及应用。
2.难点:轴对称性质的证明和运用。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等多种教学方法,引导学生观察、思考、交流,提高学生的数学素养。
六. 教学准备1.教师准备:准备好相关的教学材料,如PPT、实例图片、练习题等。
2.学生准备:学生需要预习相关内容,了解轴对称的基本概念。
七. 教学过程1.导入(5分钟)教师通过一个生活中的实例,如剪纸、折叠等,引导学生回顾轴对称的概念,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT展示一些轴对称的图形,让学生观察并总结轴对称的性质。
同时,教师引导学生思考轴对称在实际生活中的应用。
3.操练(10分钟)教师给出一些练习题,让学生独立完成,检验学生对轴对称概念和性质的理解。
教师在过程中给予个别学生指导。
4.巩固(10分钟)教师学生进行小组讨论,让学生通过合作学习,进一步巩固轴对称的概念和性质。
5.拓展(10分钟)教师引导学生思考轴对称在其他领域的应用,如艺术设计、工程建筑等,拓宽学生的视野。
第十三章轴对称13.1 轴对称13.1.1 轴对称【知识与技能】掌握轴对称图形和关于直线成轴对称等概念.【过程与方法】通过生活中的具体实例认识,培养观察、思维、操作、归纳能力.【情感态度】体验数学与生活的联系,发展审美观.【教学重点】准确掌握轴对称图形和关于直线成轴对称的实质.【教学难点】轴对称图形和关于直线成轴对称的区别与联系.一、情境导入,初步认识展示学生按要求收集的图片资料,教师指导并对所有图片进行分类:第一类是轴对称图形,第二类是关于一条直线对称的图形.学生观察,并以小组为单位,讨论下列问题:1.第一类图案有什么共同特征?2.第二类图案有什么共同特征?【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知1.轴对称图形在学生交流和说出两类图案的特征的基础上,教师提出第一类的图案称为轴对称图形.问题1 学生尝试说出轴对称图形的定义,教师适当纠正与补充.问题2 请学生再举一些日常生活中的轴对称图形的例子.问题3 请观察下列图案,看这些轴对称图形各有几条对称轴.2.两个图形关于某条直线对称教师提出第二类图案称为两个图形关于某条直线对称.问题4 鼓励学生说出两个图形关于某条直线对称的定义.问题5 举出生活中两个图形成轴对称的例子.如:提示:对称轴可能不止1条,也可能是水平的或倾斜的.教师再归纳总结轴对称图形和两个图形成轴对称间的区别与联系.三、运用新知,深化理解1.如图,在由小正方形组成的L形的图形中,用三种不同的方法添画一个小正方形,使它成为轴对称图形.2.角是轴对称图形,它的对称轴是 .【教学说明】问题1中有两种方法比较容易,方法3鼓励学生交流讨论得到;问题2提醒学生不能说成角平分线.【答案】1.2.角平分线所在的直线.四、师生互动,课堂小结本节课你学会了什么?有哪些收获?还有什么疑问?1.布置作业:从教材“习题13.1”中选取.2.如图是一个圆形的纸片,请问:它是轴对称图形吗?如果是, 对称轴有多少条?请你找到它的圆心.3.完成练习册中本课时的练习.本课时教学应重视以下几点:1.努力体现数学与生活的联系,从实际中学习新知,使学生认识这种学习方法.2.形成提炼概念的能力,注重从实物的形象思维向抽象思维转变.3.在对比中发现,认识知识,如“轴对称”与“轴对称图形”的区别与联系.作者留言:非常感谢!您浏览到此文档。
13.1.1 轴对称
教学目标
1.在生活实例中认识轴对称图.
2.分析轴对称图形,理解轴对称的概念.
教学重点:轴对称图形的概念.
教学难点:能够识别轴对称图形并找出它的对称轴.
教学过程
一、创设情境,引入新课
我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.
轴对称是对称中重要的一种,从这节课开始,我们来学习第十二章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.
二、导入新课
出示课本的图片,观察它们都有些什么共同特征.
这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.
小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.
我们的身体,还有飞机、汽车、枫叶等都是对称的.
如课本的图12.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),•再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图12.1.1中的图形,你能发现它们有什么共同的特点吗?
窗花可以沿折痕对折,使折痕两旁的部分完全重合.不仅窗花可以沿一条直线对折,使直线两旁重合,上面图12.1.1中的图形也可以沿一条直线对折,使直线两旁的部分重合.结论:如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)•对称.了解了轴对称图形及其对称轴的概念后,我们来做一做.
取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.
结论:位于折痕两侧的图案是对称的,它们可以互相重合.
由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。
下列各图,你能找出它们的对称轴吗?
结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有无数条对称轴;图(4)有两条对称轴;图(5)有七条对称轴.
(1) (2) (3) (4) (5)
展示挂图,大家想一想,你发现了什么?
像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
三、随堂练习:
课本P60练习1、2.
四、课时小结
这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.
五、作业:课本P64习题13.1第1、2、6、7、8题.
六、活动与探究:课本P59思考.
成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?
过程:在硬纸板上画两个成轴对称的图形,再用剪刀将这两个图形剪下来看是否重合.再在硬纸板上画出一个轴对称图形,然后将该图形剪下来,再沿对称轴剪开,看两部分是否能够完全重合.结论:成轴对称的两个图形全等.如果把一个轴对称图形沿对称轴分成两个图形,这两个图形全等,并且也是成轴对称的.
轴对称是说两个图形的位置关系,而轴对称图形是说一个具有特殊形状的图形.
轴对称的两个图形和轴对称图形,都要沿某一条直线折叠后重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,•如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.
板书设计
§13.1.1轴对称
一、轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,这个
图形就叫轴对称图形,这条直线叫对称轴.
二、两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形
重合,那么就说这两个图形关于这条直线对称.
§13.1.2 线段的垂直平分线的性质
教学目标
1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.
2.探究线段垂直平分线的性质.
3.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.
重点难点;
重点:
1.轴对称的性质.
2.线段垂直平分线的性质.
难点:体验轴对称的特征.
教学过程
一、创设情境,引入新课
上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,什么样的图形是轴对称图形呢?
今天继续来研究轴对称的性质.
二、导入新课:观看投影并思考.
如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、
C ′分别是点A、•B、C的对称点,线段AA′、BB′、CC′
与直线MN有什么关系?
图中A、A′是对称点,AA′与MN垂直,BB′和CC′也与MN垂直.
AA′、BB′和CC′与MN除了垂直以外还有什么关系吗?
△ABC与△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN对折后,点A与A′重合,于是有AP=A′P,∠MP A=∠MPA′=90°.所以AA′、BB′和CC′与MN除了垂直以外,MN还经过线段AA′、BB′和CC′的中点.
对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.
我们可以看出轴对称图形与两个图形关于直线对称一样,•对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.
归纳图形轴对称的性质:
如果两个图形关于某条直线对称,•那么对称轴是任何一对对称点所连线段的垂直平分
线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.
下面我们来探究线段垂直平分线的性质.
[探究1]
如下图.木条L 与AB 钉在一起,L 垂直平分AB ,P 1,P 2,P 3,…
是L 上的点,•分别量一量点P 1,P 2,P 3,…到A 与B 的距离,你
有什么发现?
1.用平面图将上述问题进行转化,先作出线段AB ,过AB 中
点作A B 的垂直平分线L ,在L 上取P 1、P 2、P 3…,连结AP 1、AP 2、
BP 1、BP 2、CP 1、CP 2…
2.作好图后,用直尺量出AP 1、AP 2、BP 1、BP 2、CP 1、CP 2…讨论发现什么样的规律. 探究结果:
线段垂直平分线上的点与这条线段两个端点的距离相等.即AP 1=BP 1,AP 2=BP 2,… 证明.
证法一:利用判定两个三角形全等.
如下图,在△APC 和△BPC 中,
PC PC PCA PCB Rt AC BC =⎧⎪∠=∠=∠⎨⎪=⎩
⇒△APC ≌△BPC ⇒ PA=PB.
证法二:利用轴对称性质.
由于点C 是线段AB 的中点,将线段AB 沿直线L 对折,线段PA 与PB 是
重合的,•因此它们也是相等的. 带着探究1的结论我们来看下面的问题.
[探究2]
如右图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭” 通
过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?
活动:1.用平面图形将上述问题进行转化.作线段AB ,
取其中点P ,过P 作L ,在L 上取点P 1、P 2,连结AP 1、AP 2、BP 1、
BP 2.会有以下两种可能.
2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件?
探究过程:
1.如上图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L与AB不垂直.
2.如上图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB重合.当AP2=BP2时,亦然.
探究结论:
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.也就是说在[•探究2]图中,只要使箭端到弓两端的端点的距离相等,就能保持射出箭的方向与木棒垂直.
[师]上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.•所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.
三、随堂练习:课本P62练习 1、2.
四、课时小结
这节课通过探索轴对称图形对称性的过程,•了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.
五、课后作业:
课本P65习题13.1第3、4、9题.
板书设计
§13.1.2线段的垂直平分线的性质
一、复习:轴对称图形.
二、线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做线段的垂直
平分线.
三、图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点
所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.
四、线段垂直平分线的性质:线段垂直平分线的点到这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.。