三极管接成二极管的特点与用途
- 格式:doc
- 大小:209.00 KB
- 文档页数:9
三极管基极串二极管的作用
在电子学中,三极管是一种非常重要的半导体器件,具有电流放大和开关的功能。
而基极串二极管,通常是指在三极管的基极上串联一个二极管。
这种结构在实际应用中有多种作用,以下是几个可能的用途:
1.开关作用:当基极接二极管的基极电流为零时,三极管处于截止状态,不导电;当基极电流大于零时,三极管处于饱和状态,导通电流。
这种开关特性使得基极接二极管在数字电路和逻辑电路中起到重要的作用,可以实现信号的开关和控制。
2.稳压作用:通过在基极接二极管的基极和发射极之间加上一个稳压电阻,可以使得输出电压保持在一个稳定的值。
这种稳压特性使得基极接二极管成为稳压器的一部分,这种应用常见于各种需要电压调节和控制的电路中。
总的来说,三极管基极串二极管的作用主要取决于具体的应用场景和电路设计需求。
在实际应用中,工程师们会根据需要选择适当的器件和电路结构来实现所需的功能。
如果需要更深入的了解或特定的应用场景,建议咨询专业的电子工程师或查阅相关的专业文献。
二极管图三极管工作(gōngzuò)原理三极管是电流放大器件,有三个极,分别(fēnbié)叫做集电极C,基极B,发射极E。
分成NPN和PNP两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
一、电流(diànliú)放大下面的分析仅对于NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。
这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够(nénggòu)提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化(biànhuà)被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib 的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。
这有几个原因。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。
但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。
如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。
二极管三极管区别一、根本区别二极管与三极管的根本区别在于:二极管有两个脚,三极管三个脚,三极管有电流放大作用(即,基极电流对集电极电流的控制作用。
)二极管没有放大作用,它具有单向导电的特性。
放大:是基极电流对集电极电流的控制作用,表现为:基极的电流变化,反映在集电极就是一个成比例(集电极电流=基极电流乘以三极管的放大倍数)的电流变化。
放大的实质是通过三极管的电流控制功能,从电源获取能量,将基极输入的模拟量放大输出在集电极负载上(电流的变化,在负载上又表现为电压的变化)。
所以,实际放大的是基极输入的模拟量。
二、工作原理的区别二极管是一种具有单向导电的二端器件,有电子二极管和晶体二极管之分,电子二极管现以很少见到,比较常见和常用的多是晶体二极管。
二极管的单向导电特性,几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常[1]广泛。
三极管的工作原理三极管是一种控制元件,主要用来控制电流的大小,以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制,集电极电流IC会有一个很大的变化,基极电流IB越大,集电极电流IC也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。
但是集电极电流的变化比基极电流的变化大得多,这就是三极管的放大作用。
IC 的变化量与IB变化量之比叫做三极管的放大倍数β(β=ΔIC/ΔIB, Δ表示变化量。
),三极管的放大倍数β一般在几十到几百倍。
三极管在放大信号时,首先要进入导通状态,即要先建立合适的静态工作点,也叫建立偏置 ,否则会放大失真。
二级管主要就是单向导电性,三极管主要是电压,电流的放大。
三、种类区别晶体管:最常用的有三极管和二极管两种。
三极管以符号BG(旧)或(T)表示,二极管以D表示。
二极管和三极管的形成机理和工作原理二极管(Diode)是一种非线性电子元件。
它有两个电极,即正极(P 型)和负极(N型)。
结构上,P型材料有过剩的空穴而N型材料有过剩的自由电子。
这两种类型的材料在接触的区域形成一个PN结。
PN结在二极管中起到了关键作用。
形成机理:形成PN结的过程涉及半导体物理学中的杂质掺杂和结构设计。
杂质掺杂是将少量的杂质(掺杂剂)引入到半导体材料中。
在制造P型半导体时,将元素如硼(B)、镁(Mg)等加入到硅(Si)材料中。
在制造N型半导体时,将元素如磷(P)、砷(As)等加入到硅材料中。
杂质的加入会改变半导体材料的电子结构,形成P型和N型半导体。
当将P型和N型半导体材料连接在一起时,形成PN结。
在PN结区域,P型半导体中的空穴和N型半导体中的自由电子互相扩散。
当空穴和自由电子相遇时,它们会发生复合。
这会在PN结区域形成一个较窄的无载流子(少数载流子)区域,也被称为耗尽区。
在这个区域内,材料中的正电荷和负电荷会形成静电场。
这个静电场会阻止进一步的扩散,形成一个稳定的电势差。
工作原理:二极管的工作原理基于PN结的电流流动特性。
当二极管的正极(P型材料)与正电压连接,负极(N型材料)与负电压连接时,称为正向偏置。
在这种情况下,耗尽区变窄,正电荷和负电荷的静电场减弱。
这使得自由电子可以轻松地越过电位垒,流经二极管。
这种流动会产生一个正向电流,在电路中流经二极管。
当二极管的正极与负电压连接,负极与正电压连接时,称为反向偏置。
在这种情况下,耗尽区变宽,静电场增强。
这会扩大电位垒,使得自由电子无法越过它。
因此,在反向偏置下,几乎没有电流通过二极管。
只有在反向电压达到杂质掺杂引入时的峰值电压(称为击穿电压)时,电流才会流动。
此时,二极管处于击穿状态。
二极管在电子学中有许多应用。
最常见的应用是作为整流器,将交流电转换为直流电。
它也用于电压稳压器、振荡器、开关等。
二极管的关键特性是具有低导通电阻和高击穿电压。
三极管接成二极管的特点及用途三极管接成二极管是指将三极管的基极和集电极短接,只使用发射极和集电极。
这种连接方式下,三极管的基极相当于二极管的阴极,发射极相当于二极管的阳极,集电极相当于二极管的阴极。
因此,三极管接成二极管的特点及用途如下:1. 特点:(1) 极性正向特性:三极管接成二极管时,输入电压的正向特性与普通二极管相同,即在正向电压下,电流通过;在反向电压下,电流截断。
这是由于三极管的结构特性决定的,将其两个极端短接后,相当于三极管的基极和集电极连接在了一起,形成了一个PN结,因此具备了二极管的正向特性。
(2) 放大特性:三极管接成二极管时,可以利用三极管的放大特性,将输入信号的幅度放大。
由于三极管的发射极与集电极之间存在一定的放大倍数,可以将输入信号经过三极管放大后输出,从而实现信号放大功能。
(3) 高频特性:三极管接成二极管时,由于三极管的高频特性较好,因此可以用于高频电路的设计。
三极管的高频特性主要体现在其电容效应上,它的发射层与基极之间的电容较小,能够在高频信号下提供较好的响应速度。
2. 用途:(1) 整流器:三极管接成二极管具有正向特性,可以用于整流电路中。
在交流电路中,将输入信号接到三极管的发射极,输出信号从三极管的集电极获取,即可实现整流功能。
这种接法可以将交流信号转换为直流信号,用于电源等领域。
(2) 放大器:三极管接成二极管后,可以利用其放大特性,将输入信号的幅度放大。
在放大器电路中,输入信号被加到三极管的发射极,输出信号从三极管的集电极获取,通过调整输入信号的幅度,可以实现对输出信号的放大控制。
这种接法广泛应用于音频放大器、射频放大器等领域。
(3) 振荡器:三极管接成二极管后,具有较好的高频特性,适合用于振荡电路。
在振荡器电路中,通过将反馈信号加到三极管的发射极,从集电极获取振荡信号。
这种接法可以产生稳定的高频振荡信号,用于无线电通信系统、雷达等领域。
(4) 开关:三极管接成二极管时,可以将其作为开关使用。
光电二极管及光电三极管的工作原理及用途可得工贸的光电二极管和光电三极管具有低功耗、响应速度快、抗干扰性能强等特点,可得公司是一家专业从事研发, 生产,销售LED和红外光电器件的高新技术企业:其中光敏二极管、850nm/940nm红外发射管,LED数码管,数码模块,以及发光二极管等产品以良好的品质受到市场的认可。
在红外遥制系统中,光电二极管(也称光敏二极管)及光电三极管(也称光敏三极管)均为红外线接收管,它把接收到的红外线变成电信号,经过放大及信号处理后用于各种控制。
除广泛用于红外线遥控外,还可用于光纤通信、光纤传感器、工业测量、自动控制、火灾报警器、防盗报警器、光电读出装置(纸带读出器、条形码读出器等)及光电耦合器等方面。
不同用途的光电二极管有不同的外形及封装,但用于红外遥控的光电二极管一般都是树脂封装的。
为减少可见光的干扰常采用黑色树脂,可以滤掉700nm波长以下的光线。
常见的几种光电二极管外形。
对方形或长方形的管子,往往做出标记角,指示受光面的方向。
一般如引脚长短不一样,长者为正极。
光电三极管可以等效为一个光电二极管与一只晶体三极管的组合,所以它具有电流放大作用。
其等效电路、外形及电路符号,光电三极管一般仅引出集电极及发射极两个引脚,外形与一般发光二极管一样,常用透明树脂封装。
光电二极管及光电三极管的管芯主要用硅材料制作。
光电二极管的两种工作状态当光电二极管加上反压时,管子的反向电流将随光照强度的变化而变化如同一个光敏电阻,光照强度越大电阻越小,反向电流越大。
大多数情况都工作于这种状态。
光电二极管上不加电压,利用P?N结受光照射时产生正向电压的原理,可看作微型光电池。
这种工作状态一般用作光电检测器。
光电二极管的工作电压VR ,允许的最高反向电压一般不超过10V,最高的可达50V。
暗电流ID及光电流IL ,无光照时,加一定反压时的反向漏电流称为暗电流ID,一般ID小于100nA ???。
加一定反压并受到光照时流过管子的电流称为光电流 IL,一般光电流IL为几十微安 ???,并且与照度成线性关系。
第一节二极管的开关特性一般而言,开关器件具有两种工作状态:第一种状态被称为接通,此时器件的阻抗很小,相当于短路;第二种状态是断开,此时器件的阻抗很大,相当于开路。
在数字系统中,晶体管基本上工作于开关状态。
对开关特性的研究,就是具体分析晶体管在导通和截止之间的转换问题。
晶体管的开关速度可以很快,可达每秒百万次数量级,即开关转换在微秒甚至纳秒级的时间内完成。
二极管的开关特性表现在正向导通与反向截止这样两种不同状态之间的转换过程。
二极管从反向截止到正向导通与从正向导通到反向截止相比所需的时间很短,一般可以忽略不计,因此下面着重讨论二极管从正向导通到反向截止的转换过程。
一、二极管从正向导通到截止有一个反向恢复过程在上图所示的硅二极管电路中加入一个如下图所示的输入电压。
在0―t1时间内,输入为+V F,二极管导通,电路中有电流流通。
设V D为二极管正向压降(硅管为0.7V左右),当V F远大于V D时,V D可略去不计,则在t1时,V1突然从+V F变为-V R。
在理想情况下,二极管将立刻转为截止,电路中应只有很小的反向电流。
但实际情况是,二极管并不立刻截止,而是先由正向的I F变到一个很大的反向电流I R=V R/R L,这个电流维持一段时间t S后才开始逐渐下降,再经过t t后,下降到一个很小的数值0.1I R,这时二极管才进人反向截止状态,如下图所示。
通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。
其中t S 称为存储时间,t t称为渡越时间,t re=t s+t t称为反向恢复时间。
由于反向恢复时间的存在,使二极管的开关速度受到限制。
二、产生反向恢复过程的原因——电荷存储效应产生上述现象的原因是由于二极管外加正向电压V F时,载流子不断扩散而存储的结果。
当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流于,如下图所示。
三级管放大电路基极加二极管作用
在三级管放大电路中,基极上加二极管的作用是实现信号的放大和限制。
具体来说,当将一个二极管接在三极管的基极上时,二极管就扮演了一个稳压器的角色,使得基极电压基本不变,从而使三极管的放大倍数大大提高。
此外,在某些场合下,输入的信号可能会出现过大的幅度,这时就需要将信号进行限制,保护后续的电路。
通过加入一个二极管在三极管的基极电路上,可以实现信号限幅的效果,将信号限制在一个安全的范围内。
此外,在三极管基极加二极管还有其他一些作用。
例如,三极管可能会因为过大的电压而损坏,这时候,基极上接有一个二极管,就可以将过大的电压限制在二极管的耐压范围内,从而保护三极管免受损坏。
同时,二极管在三极管基极电路中还具有过压保护作用,当输入电压过高时,二极管会自动截止,防止三极管被烧毁。
另外,在电子设备的设计和制造中,这种组合常被使用,为设备的性能和稳定性提供了保障。
总之,在三级管放大电路中,基极上加二极管可以起到信号放大、信号限制、过压保护等作用,为电子设备的正常运行提供保障。
三极管be并联二极管解释说明以及概述1. 引言1.1 概述在现代电子技术中,三极管和并联二极管是两种非常重要的电子元件。
它们在电路设计、信号放大和开关控制等方面发挥着关键作用。
本文将深入介绍和解释三极管和并联二极管的原理、结构特性以及它们之间的组合应用。
1.2 文章结构本文将按照以下顺序进行阐述:首先介绍三极管的原理,包括其工作原理以及内部结构与特性;接着详细讨论并联二极管的概述与原理,重点探讨其特性和性能指标;然后我们将重点关注三极管与并联二极管的组合应用,包括电路设计要点、工作原理解析以及实际应用范例分析;最后总结全文内容,并对未来发展进行展望。
1.3 目的本文旨在深入探究三极管和并联二极管这两种常见电子元件,并介绍它们各自的原理、特性以及在不同领域中的应用。
通过本文内容,读者将能够了解到如何正确选择和应用这些元件,从而提高电路设计的效率和可靠性。
同时,本文还将展望这些元件未来的发展趋势,为读者提供对未来技术发展方向的思考和参考。
2. 三极管2.1 原理介绍三极管是一种半导体器件,由三个不同掺杂类型的半导体材料组成。
它由一个发射区、一个基区和一个集电区组成。
其工作原理基于NPN或PNP型晶体管。
当在基极上施加适当的电压时,就会形成发射到基极的电流,并且通过外部电路控制,这将导致集电区产生相应的放大。
2.2 结构与特性三极管通常具有小体积和轻量化的特点,其结构由发射区、基区和集电区组成。
具体来说,发射区是由高掺杂(n型或p型)的材料组成;基区夹在两个发射区之间,中间掺有低掺杂(p型或n型)的材料;而集电区又位于两个基区之间。
三极管具有放大电流和功率的能力,并且能够以低功耗实现高频率操作。
此外,它还具备较高的输入阻抗和较低的输出阻抗,从而提供了良好的信号转换效果。
2.3 应用领域三极管被广泛应用于电子行业的不同领域。
其中最常见的应用是作为放大器,用于放大电信号。
此外,它还可以用作开关,通过对基极电压施加控制以实现开关状态的转换。
光敏二极管和光敏三极管简介及应用光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。
一、光敏二极管1.结构特点与符号光敏二极管和普通二极管相比虽然都属于单向导电的非线性半导体器件,但在结构上有其特殊的地方。
光敏二极管使用时要反向接入电路中,即正极接电源负极,负极接电源正极。
2. 光电转换原理根据PN结反向特性可知,在一定反向电压范围内,反向电流很小且处于饱和状态。
此时,如果无光照射PN结,则因本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。
当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。
不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。
被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P区,形成光电流。
波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。
在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。
因此,光照射时,流过PN结的光电流应是三部分光电流之和。
二、光敏三极管光敏三极管和普通三极管的结构相类似。
不同之处是光敏三极管必须有一个对光敏感的PN 结作为感光面,一般用集电结作为受光结,因此,光敏二极管实质上是一种相当于在基极和集电极之间接有光敏二极管的普通二极管。
其结构及符号如图Z0130所示。
三、光敏二极管的两种工作状态光敏二极管又称光电二极管,它是一种光电转换器件,其基本原理是光照到P-N结上时,吸收光能并转变为电能。
三极管接成二极管的特点与用途在电子电路中,常见到晶体三极管接成二极管的形式使用,特别是在集成电路中,这种情况更为普遍。
在图1的分立元件组成的差动式放大电路中,T4三极管的基极和集电极是短接在一起的,构成了一个二极管,在电路中起温度补偿作用。
T4三极管的材料和类型与T3完全相同,这是因为同类型三极管的温度系数更为接近和一致,所以温度补偿的效果更好。
其补偿原理是:未加入T4、R2之前,T3、R1、R3构成一个恒流源。
I3=(Ec-Ube3)/[R3+(R1/B)],其特点是动态电阻大,静态电阻小,作为T1、T2的射极有源负载,抑制共模放大。
由于T3的Ube3易受温度影响,使I3也易受温度影响而发生变化。
加入了T4、B2之后,I3=Ec-Ube3-R1I4/[R3+(R1/β)],当温度变化引起Ube3↓时,由于T3与T4完全相同,Ubet 也↓,I4=Ec-Ube4/(R1+R2),使得I4↑从而使I3=Ec-Ube3↓-R1I4↑/[R3+(R1/β)]基本保持恒定,补偿了温度变化引起的电流变化,从而起到了温度补偿的作用。
就是说,在分立元件电路中,若三极管接成二极管使用,大都是作为温度补偿使用的。
转载请注明转自“维修吧-”在集成电路内使用的二极管,多用作温度补偿元件或电位移动电路,一般也是采用三极管构成。
三极管接成的二极管形式,大都采用集电极和基极短接的方式,这与集成电路的制造工艺有关。
这样接成的二极管正向压降,接近于同类型三极管的Ube值,其温度系数亦与Ube的温度系数接近,故能较好地补偿三极管发射结的温度特性。
这是模拟集成电路的一个重要特点。
在集成电路中,根据用途的不同,所使用的二极管相当于三极管的发射极一基极结或集电极一基极结组合而成。
由于集成电路采用硅材料作衬底,所以正向电压为0.6-0.9V,反向击穿电压,用发射极-基极结时为7—9V;用集电极-基极结时为30-50V。
在集成电路中,三极管接成二极管使用有多种组合方式,它的特性参数如附表所示。
利用温度补偿原理和半导体三极管PN结的非线性伏安特性,再和集成运算放大器配合,可以对输入信号实现对数运算和反对数运算。
组成电路如图2、3所示。
转载请注明转自“维修吧-”在上述电路中,三极管被接成二极管的形式,可以称为对数晶体管或对数元件,即把对数元件接于集成运算放大器的反馈回路中,就构成了对数放大器。
如把对数元件接于运算放大器的反相输入回路中,就可组成简单的反对数放大器。
在对数放大器和反对数放大器的基础上还可构成乘法运算放大器和除法运算放大器等,此处不再介绍。
由此看来,由三极管连接而成的二极管,有与众不同的特点和奇妙的用途,这对我们使用已有的电子元件开发新的应用电路,给予了一个很好的启示。
集成直流对数放大器摘要:在对数放大器应用中,直流对数放大器在压缩传感器信号动态范围的应用中仍然占据主导地位,是一种高性价比的解决方案。
本文推导了直流对数放大器的传输函数,从双极型晶体管的VBE到IC特性。
讨论了目前集成直流对数放大器的电路结构以及各种误差对对数性能的影响,并给出了MAX4206设计范例。
最后,还给出了通过校准改善对数放大器性能的方法以及设计细节。
本文还发表于Maxim工程期刊,第56期(PDF, 950kB)。
半个多世纪以来,工程师一直采用对数放大器来压缩信号和进行计算。
尽管在计算应用中,数字IC几乎全部取代了对数放大器,工程师还是采用对数放大器进行信号压缩。
因此,对数放大器仍旧是许多视频、光纤、医疗、测试以及无线系统中的关键元件。
顾名思义,对数放大器的输出和输入之间为对数函数关系(由于对应不同的底,对数函数之间仅差一个常数系数,因此对数的底并不重要)。
利用对数函数,您可以压缩系统信号的动态范围。
将宽动态范围的信号进行压缩有多种优点。
组合应用对数放大器和低分辨率ADC 通常可以节省电路板空间,并降低系统成本。
否则,可能需要采用高分辨率ADC。
而且,通常当前系统中已经包含低分辨率ADC,或者微控制器已内置这种ADC。
转换成对数参数也有利于很多实际应用,例如以分贝表示测量结果的应用,或者转换特性为指数或近似指数的传感器应用。
上世纪90年代,光纤通信领域开始采用对数放大器电路来测量某些光学应用中的光信号强度。
在这之前,精密对数放大器IC不但成本高,而且体积也较大;只有少数电子系统能承担这种高昂的成本。
这些IC解决方案的唯一替代方案是采用分立元件构建对数放大器。
由分立元件构建对数放大器不但电路板面积更大,而且通常对温度变化敏感,必须仔细进行设计和布板。
还需要各构成元件之间高度匹配,以便在较宽的输入信号范围内保证良好的性能。
从那以后,半导体制造商开发出了体积更小、价格更低的集成对数放大器产品,其温度特性较好并且也增加了更多功能。
对数放大器的分类对数放大器主要分为3类。
第一类是直流对数放大器,一般处理变化较慢的直流信号,带宽可达到1MHz。
毫无疑问,最普遍的实现方法是利用pn结固有的对数I-V传输特性。
这些直流对数放大器采用单极性输入(电流或者电压),通常是指二极管、跨二级管、线性跨导和跨阻对数放大器等。
由于采用电流输入,直流对数放大器通常用于监视宽动态范围的单极性光电二极管电流—值或者比例值。
不但光纤通信设备需要光电二极管电流监视功能,化学和生物样品处理设备中也可以找到这种电路。
也有其它类型的直流对数放大器,例如基于RC电路时间-电压对数关系的对数放大器。
但是这种电路一般比较复杂,彼此差异较大,分辨率和转换时间与信号有关,并且对温度变化比较敏感。
第二类对数放大器是基带对数放大器。
这类电路处理快速变化的基带信号,适用于需要对交流信号进行压缩的应用(通常是某些音频和视频电路)。
放大器输出与瞬时输入信号的对数成正比。
一种特殊的基带对数放大器是“真对数放大器”,其输入双极性信号,并输出与输入极性一致的压缩电压信号。
真对数放大器可用于动态范围压缩,例如射频IF级和医疗超声波接收器电路等。
最后一类对数放大器是解调对数放大器,或连续检波对数放大器。
这类对数放大器对RF信号进行压缩和解调,输出整流信号包络的对数值。
RF收发器普遍采用解调对数放大器,通过测量接收到的RF信号强度来控制发射器输出功率。
经典的直流对数放大器在典型的基于pn结的直流对数放大器中,采用双极型晶体管来产生对数I-V关系。
如图1所示,运算放大器的反馈通路采用了晶体管(BJT)。
根据所选的不同晶体管类型(npn或者pnp),对数放大器分别是电流吸收或者电流源出型(图1a和1b)。
采用负反馈,运算放大器能够为BJT的基-射结提供足够的输出电压,可确保所有输入电流由器件的集电极吸入。
注意,悬浮二极管方案会使运放输出电压中包含等效输入失调;基极接地的方法则不会出现这一问题。
图1a. 直流对数放大器的基本BJT实现方案,具有电流吸收输入,产生负输出电压图1a. 直流对数放大器的基本BJT实现方案,具有电流吸收输入,产生负输出电压图1b. 将BJT由npn型改为pnp型,对数放大器变为电流源出电路,输出为正极性。
图1b. 将BJT由npn型改为pnp型,对数放大器变为电流源出电路,输出为正极性。
增加输入串联电阻后,直流对数放大器也可以采用电压输入。
采用运算放大器的虚地作为参考端,输入电压通过电阻转换为成比例的电流。
显然,运算放大器输入失调必须尽可能小,才能实现精确的电压-电流转换。
双极型晶体管实现方案对温度变化敏感,但采用基准电流和片内温度补偿能够显著降低这种敏感性,下文将对此进行讨论。
基本对数放大器电路基本对数放大器在IC设计中使用了跨导线性电路,因此也称做跨导线性(Translinear)对数放大器。
跨导线性电路是电流模电路的主要组成部分,是许多线性和非线性模拟集成电路的理论基础。
跨导线性的概念在1975年由Barrie Gillbert创立,跨导线性对数放大器就是基于双极性(BJT)三极管的对数特性。
如图1图1 三极管的对数特性若将ic视为激励信号电流,UBE看作响应信号电压,将输入偏流为零的隔离放大器接在集电极C与基极B之间以隔离iB的影响。
可以看出,理想BJT的UBE与其ic是理想的对数关系。
等式中,Is是BJT的饱和电流,它与温度密切相关。
此外热电压UT也依赖于温度。
在集成的跨导线性对数放大器中这种受温度影响的缺点已被一个具有同样温度变化特性的三极管修正,而且可以确保对数斜率的稳定性。
信号压缩在现实世界中,一些信号往往具有很宽的动态范围。
比如雷达、声纳等无线电系统中,接收机前端信号动态范围可达120dB以上;光纤接收器前端的电流也可从“pA”级到“mA”级。
宽动态范围往往给应用设计带来很多问题。
一方面,线性放大器无法处理这样宽的动态范围。
另一方面,DA变换中,在保证分辨率的情况下,模数转换器的位数会随动态范围的增大而增大。
因此,在处理宽动态范围的信号时,常常将其动态范围压缩到一个可以处理的程度。
如果一个系统中阻抗是线性的,信号的功率与电压的平方成正比,信号的动态范围既可以用电压表示也可以用功率来表示。
在工程应用中,动态范围的压缩分为“线性压缩”和“非线性压缩”。
线性压缩是指放大器的增益与信号的大小无关,输出基本保持恒定。
线性压缩的特点使谐波失真小,其本质是一种“压控放大器”(VCA)。
非线性压缩方面最好的例子就是对数放大器。
它是输入输出信号成对数关系的器件,它对信号动态范围的压缩不需要像AGC系统那样提取输入信号的电平来控制增益,其增益与信号的大小成反比,在通信、雷达、电子对抗、电子测量中有着广泛的应用。
对数放大器的实质多年来,人们对对数放大器本质的认识有一些模糊。
通常人们把它看作是一种放大器,反而淡化了其非线性的特性,把它们看作特殊类型的放大器更是不对。
尽管这些电路提供一些放大功能,如在RF和IF放大器中,它对小信号呈现出高增益等等,但它们真正的用途是实现精确的对数变换,严格地说,这些电路应该叫做“对数变换器”。
但多年来人们已经习惯了“对数放大器”的叫法。
IC厂商也不愿因为改名而使用户对他们的产品性质和用途造成误解。
因此,本文也将沿用“对数放大器”这一名称。
对数放大器的分类在许多文献中,对数放大器的分类也是相当混乱的,根据实现对数函数依据的不同,有的将其分为二极管、三极管对数放大器和级联对数放大器,有的将其分为真对数放大器和似对数放大器等等。
但几十年来,随着半导体理论、工艺和模拟集成电路的发展,许多对数放大器实现的方法已经被淘汰,其分类方法也未尽科学。
目前根据市场上现有的对数放大器结构和应用领域的不同,可将对数放大器分为三类:基本对数放大器、基带对数放大器和解调对数放大器。
基本对数放大器也称跨导线性(Translinear)对数放大器,它基于双极性三极管(BJT)的对数特性来实现信号的对数变换。