激光清洗技术的原理及应用ppt课件
- 格式:ppt
- 大小:1.12 MB
- 文档页数:13
激光清洗技术的工作原理有哪些激光清洗技术的原理脉冲式的Nd:YAG激光清洗的过程依赖于激光器所产生的光脉冲的特性,基于由高强度的光束、短脉冲激光及污染层之间的相互作用所导致的光物理反应。
其物理原理可概括如下:a)激光器发射的光束被需处理表面上的污染层所吸收。
b)大能量的吸收形成急剧膨胀的等离子体(高度电离的不稳定气体),产生冲击波。
c)冲击波使污染物变成碎片并被剔除。
d)光脉冲宽度必须足够短,以避免使被处理表面遭到破坏的热积累。
e)实验表明当金属表面上有氧化物时,等离子体产生于金属表面。
等离子体只在能量密度高于阈值的情况下产生,这个阈值取决于被去除的污染层或氧化层。
这个阈值效应对在保证基底材料安全的情况下进行有效清洁非常重要。
等离子体的出现还存在第二个阈值。
如果能量密度超过这一阈值,则基底材料将被破坏。
为在保证基底材料安全的前提下进行有效的清洁,必须根据情况调整激光参数,使光脉冲的能量密度严格处于两个阈值之间。
激光清洗实际应用激光清洗不但可以用来清洗有机的污染物,也可以用来清洗无机物,包括金属的锈蚀、金属微粒、灰尘等。
下面介绍一些实际应用情况,这些技术已非常成熟,已被广泛应用。
1、模具的清洗:每年全世界的轮胎生产企业制造数亿个轮胎,生产过程中轮胎模具的清洗必须迅速可靠,以节省停机的时间。
传统的清洗方法包括喷沙、超声波或二氧化碳清洗等,但这些方法通常必须在高热的模具经数小时冷却后,再移往清洗设备进行清洁,清洁所需的时间长,并容易损害模具的精度,化学溶剂及噪声还会产生安全和环保等问题。
利用激光清洗方式,由于激光可利用光纤来传输,因此在使用上深具弹性;由于激光清洗方式可用光纤连接而将光导至模具的死角或不易清除的部位进行清洗,因此使用方便;由于橡胶并无气化,因此不会产生有毒害的气体,影响工作环境的安全。
激光清洗轮胎模具的技术已经大量在欧美的轮胎工业中被采用,虽然初期投资成本较高,但可在节省待机时间、避免模具损坏、工作安全及节省原材料上所获得的收益迅速得到回收。
激光设备的清洗工艺1.前言随着科学技术的高速发展,激光技术已越来越多地应用于人们的生产和生活的各个领域。
从超市的条形码、激光打印机到激光美容、治疗近视,并已为人们所熟悉。
激光设备用于工业生产的切割、钻孔以及焊接也为许多人所了解。
但激光设备在清洗行业的应用,人们还不够熟悉和了解。
激光清洗技术是近10年来飞速发展的一种新型清洗技术,它以自身的优势和不可替代性在许多领域中逐步取代了传统清洗工艺。
下面对激光设备为什么能够进行1.前言随着科学技术的高速发展,激光技术已越来越多地应用于人们的生产和生活的各个领域。
从超市的条形码、激光打印机到激光美容、治疗近视,并已为人们所熟悉。
激光设备用于工业生产的切割、钻孔以及焊接也为许多人所了解。
但激光设备在清洗行业的应用,人们还不够熟悉和了解。
激光清洗技术是近10年来飞速发展的一种新型清洗技术,它以自身的优势和不可替代性在许多领域中逐步取代了传统清洗工艺。
下面对激光设备为什么能够进行清洗?可用于清洗什么?清洗的效率效果如何?作一简单介绍。
2.激光与清洗传统清洗工业有各种各样的清洗方式,多是利用化学药剂和机械方法进行清洗。
在我国环境保护法规要求越来越严格、人们环保和安全意识日益增强的今天,工业生产清洗中可以使用的化学药品种类将变得越来越少。
如何寻找更清洁,且不具损伤性的清洗方式是我们不得不考虑的问题。
而激光清洗具有无研磨、非接触、无热效应和适用于各种材质的物体等清洗特点,被认为是最可靠、最有效的解决办法。
同时,激光清洗可以解决采用传统清洗方式无法解决的问题。
例如,工件表面粘有亚微米级的污染颗粒时,这些颗粒往往粘得很紧,常规的清洗办法不能够将它去除,而用纳米激光辐射工件表面进行清洗则非常有效。
还由于激光对工件是无接触清洗,对精密工件或其精细部位清洗十分安全,可以确保其精度。
所以激光清洗在清洗行业中独具优势。
激光为什么能够用来清洗?为什么对被清洗物体不会造成损害呢?首先了解一下激光的本质。
激光清洗技术发展与应用深度解析世界上第1台激光器诞生于1960年由美国科学家西奥多哈罗德梅曼教授利用红宝石研发,从此开启了激光造福人类的大门。
在接下来的时间里应用于各种领域的激光器相继诞生。
激光技术的推广使得医疗、装备制造、精准测量和再制造工程等领域科技飞速发展加快了社会进步的步伐。
在清洗领域中激光的应用更是取得了重要成果。
与传统的清洗方法相比如机械摩擦、化学腐蚀和高频超声等激光清洗可以实现全自动化运行其具有工作效率高、成本低、对环境无污染、对基材无损伤和材料的适用范围广等优点完全符合绿色、环保的加工理念是目前最可靠、有效的清洗方式。
清洗是对废旧机械零部件检测和加工的前提采用激光清洗技术可以有效地控制基体表面形貌和表面粗糙度实现基材清洗后性能的提升也可应用于大型零部件制造、表面处理或者再制造领域。
虽然目前激光清洗还没有完全取代传统的清洗方式但随着国家对制造业节能、减排等环保意识的增强激光清洗将以它独特的优点逐渐走进人们的生活。
01激光清洗的原理在20世纪80年代中期,Beklemyshev、Allrn等科学家针对实际工作需要将激光技术与清洗技术结合起来并进行了相关研究自此激光清洗(Laser Cleanning)这一技术理念诞生.众所周知污染物与基体之间的结合力分为共价键、双偶极子、毛细作用以及范德华力等作用力如能将此作用力克服或破坏那么就会达到脱污的效果。
激光清洗是利用激光光束具有大的能量密度、方向可控和汇聚能力强等特性,使污染物与基体之间的结合力受到破坏或者使污染物直接气化等方式进行脱污,降低污染物与基体的结合强度,进而达到清洗工件表面的作用。
激光清洗原理图如图1所示。
当工件表面污染物吸收激光的能量后,其快速气化或瞬间受热膨胀后克服污染物与基体表面之间的作用力,由于受热能量升高,污染物粒子进行振动后而从基体表面脱落。
整个激光清洗过程大致分为4个阶段,即激光气化分解、激光剥离、污染物粒子热膨胀、基体表面振动和污染物脱离。
激光清洗工艺参数设计一、引言激光清洗技术作为一种新型的表面处理技术,以其非接触、无污染、高精度和高效率等特点,在工业生产、文物保护等领域得到了广泛应用。
激光清洗的工艺参数设计是影响清洗效果的关键因素,合理的参数设计能够提高清洗效率和质量,降低能耗和成本。
本文将从激光清洗的基本原理出发,探讨激光清洗工艺参数的设计方法,以期为相关领域的研究和实践提供参考。
二、激光清洗的基本原理激光清洗是利用高能激光束照射在待清洗物体表面,使表面的污染物吸收激光能量后迅速熔化、汽化或达到点燃点,同时产生很强的冲击波,使污染物瞬间从物体表面剥离,从而达到清洗的目的。
激光清洗的过程中,激光参数、作用时间、光斑大小等因素都会影响清洗效果。
三、激光清洗工艺参数设计1. 激光功率密度激光功率密度是指单位面积上的激光功率,是影响激光清洗效果的重要参数。
功率密度过低,无法使污染物有效吸收激光能量;功率密度过高,则可能导致待清洗物体表面损伤。
因此,在设计激光清洗工艺时,需要根据污染物的性质和待清洗物体的材质,选择合适的激光功率密度。
2. 激光脉冲宽度激光脉冲宽度是指激光束持续作用在物体表面的时间。
脉冲宽度过短,激光能量无法充分作用于污染物;脉冲宽度过长,则可能导致激光能量向物体内部传导,造成热损伤。
因此,在设计激光清洗工艺时,需要根据污染物的厚度和导热性能,选择合适的激光脉冲宽度。
3. 激光光斑大小激光光斑大小是指激光束照射在物体表面的区域大小。
光斑大小过小,清洗效率较低;光斑大小过大,则可能导致清洗精度降低。
因此,在设计激光清洗工艺时,需要根据清洗要求和待清洗物体的形状、尺寸等因素,选择合适的激光光斑大小。
4. 激光扫描速度激光扫描速度是指激光束在物体表面移动的速度。
扫描速度过慢,可能导致激光能量在局部区域过度积累,造成物体表面损伤;扫描速度过快,则可能无法使污染物充分吸收激光能量。
因此,在设计激光清洗工艺时,需要根据污染物的性质和待清洗物体的热传导性能,选择合适的激光扫描速度。
钕铁硼激光清洗方法概述钕铁硼激光清洗方法是一种采用激光技术进行表面清洗的高效、环保且非接触式的清洗方法。
通过利用激光束的高能量密度和短脉冲宽度,能够快速而彻底地清除物体表面附着的污垢、油脂、氧化膜等,被广泛应用于电子、航空航天、汽车制造、半导体等领域。
本文将重点介绍钕铁硼激光清洗方法的原理、设备和应用。
原理钕铁硼激光清洗方法基于光-物质相互作用的原理。
当高功率的钕铁硼激光束照射到物体表面时,激光能量被吸收并转化为物体表面的热能。
瞬间的高温导致附着在物体表面的污垢、油脂等物质迅速蒸发和剥离,从而达到清洗的效果。
此外,激光束的高能密度还可以使表面有机物发生燃烧,从而进一步加速清洗效果。
设备钕铁硼激光清洗设备主要由以下几个部分组成:1. 激光发生器:产生高功率的钕铁硼激光束。
2. 光学系统:用于聚焦和调整激光束的形状和尺寸。
3. 扫描系统:控制激光束的移动轨迹,实现对不同表面的清洗。
4. 控制系统:控制激光的输出参数和扫描系统的运动参数。
应用钕铁硼激光清洗方法在各个领域中有广泛的应用,其中包括但不限于以下几方面。
电子行业在电子元器件制造过程中,表面清洗是确保元器件质量和性能稳定的关键步骤。
钕铁硼激光清洗方法能够快速而有效地清除电子元器件表面的氧化物、油脂和粉尘等污染物,从而提高产品质量和生产效率。
航空航天业在航空航天制造过程中,需要对飞机、卫星等部件进行表面清洗和涂覆处理。
传统的清洗方法往往会产生废水和废液处理问题,而钕铁硼激光清洗方法可以实现无废水、无废液、无二次污染的清洗效果,减少环境污染的同时提高生产效率。
汽车制造业在汽车制造过程中,钕铁硼激光清洗方法可用于清洗发动机零部件、汽车玻璃、车身零件等。
相比传统的化学清洗和机械清洗方法,激光清洗方法无需使用化学溶剂和大量的清洗装置,能够显著节约清洗成本和能源消耗,同时提高清洗效果和零部件的使用寿命。
半导体制造业在半导体制造过程中,需要对硅片、芯片和半导体设备等进行表面清洗和处理。
光应用的新领域一激光清洗激光应用的新领域—激光清洗的原理及应用概况。
介绍了两种激光清洗的实例高重复率激光高速清洗固体表面, 和激光清除宇宙空间垃圾。
激光清洗及特点激光清洗是利用激光高速有效地清除清洁对象表面附着物或表面涂层的技术。
就其清洗机理而言, 可分为两大类。
一类是利用清洁基片也称为母体与表面附着物对某一波长激光能量, 具有差别很大的吸收系数。
辐射到表面的激光能量, 大部分被表面附着物所吸收, 使之受热或汽化挥发、或瞬间膨胀, 并被表面形成的蒸汽流带动脱离物体表面, 达到清洗目的。
而基片吸收能量极小, 不会被损伤。
对此类激光清洗, 选择合适的波长和控制好激光能量, 是现安全高效清洗的关键。
另一类是适用于清洁基片与表面附着物的激光能量吸收系数差别不大, 或基片对涂层受热形成的酸性蒸汽较敏感, 或涂层受热后会产生有毒物质等情况的清洗方法。
通常利用高功率高重复率的脉冲激光冲击被清洗的表面, 使部分光束转换成声波。
声波击中下层硬表面后, 返回的部分与激光产生的入射声波发生干涉, 产生高能波, 使涂层发生微小爆炸, 涂层被粉碎、压成粉末, 再被真空泵清除, 而底下的基片不会损伤。
激光清洗与机械磨擦清洗、化学腐蚀清洗、液体固体强力冲击清洗等传统清洗方法相比,有明显的优点。
它高效、快捷、成本低对基片的热负荷和机械负荷小, 清洗为非损伤性废物可回收, 无环境污染安全可靠, 不损害操作人员健康多功能, 可以清除各种不同厚度、不同成份的涂层清洁过程易于实现自动化控制, 实现远距离遥控清洗。
激光清洗的发展与现状1975年日刊报道了前苏联的几位科学家将激光技术用于清除水面漂浮的石油。
不仅可以提高清除效率, 做到无二次污染, 而且能够回收石油。
年前苏联的两位科学家又报道了用20W连续二氧化碳激光器清洁柏油路面的燃料斑和油斑, 高效而快捷。
随着气体激光器技术不断完善、价格降低半导体激光器功率不断提高、发光波长扩展固体激光器日益成熟, 使得激光光源更趋于多样化、小型化, 易于操纵控制。
激光清洗防锈的原理
激光清洗防锈的基本原理是:
1. 使用高功率脉冲激光作为清洗工具,如Nd:YAG脉冲激光。
2. 激光通过聚焦光学系统聚集能量,照射到金属表面。
3. 金属表面吸收激光能量,快速升温并膨胀。
4. 高温使金属表面和锈层产生爆炸性脱落。
5. 脉冲时间极短,热影响区局限,不损伤基体。
6. 去除锈层后,可以进行激光熔化或再生,修复表面。
7. 激光Parameters可调控,适用于不同厚度锈层。
8. 可去除不同类型金属材料表面的锈层污染。
9. 工作环境无化学污染,无二次废物产生。
10. 可用于清洗工件表面、船体防锈等领域。
11. 结合机器人技术,可以实现自动化清洗。
12. 激光清洗效率高、无损伤,是一种高效的无污染防锈技术。
激光清洗原理激光清洗传统清洗工业有各种各样的清洗方式,多是利用化学药剂和机械方法进行清洗。
在我国环境保护法规要求越来越严格、人们环保和安全意识日益增强的今天,工业生产清洗中可以使用的化学药品种类将变得越来越少。
下面我们就来看看激光清洗原理。
激光清洗原理脉冲式的Nd:YAG激光清洗的过程依赖于激光器所产生的光脉冲的特性,基于由高强度的光束、短脉冲激光及污染层之间的相互作用所导致的光物理反应。
其物理原理可概括如下:a)激光器发射的光束被需处理表面上的污染层所吸收。
b)大能量的吸收形成急剧膨胀的等离子体(高度电离的不稳定气体),产生冲击波。
c)冲击波使污染物变成碎片并被剔除。
d)光脉冲宽度必须足够短,以避免使被处理表面遭到破坏的热积累。
e)实验表明当金属表面上有氧化物时,等离子体产生于金属表面。
等离子体只在能量密度高于阈值的情况下产生,这个阈值取决于被去除的污染层或氧化层。
这个阈值效应对在保证基底材料安全的情况下进行有效清洁非常重要。
等离子体的出现还存在第二个阈值。
如果能量密度超过这一阈值,则基底材料将被破坏。
为在保证基底材料安全的前提下进行有效的清洁,必须根据情况调整激光参数,使光脉冲的能量密度严格处于两个阈值之间。
每个激光脉冲去除一定厚度的污染层。
如果污染层比较厚,则需要多个脉冲进行清洗。
将表面清洗干净所需要的脉冲数量取决于表面污染程度。
由两个阈值产生的一个重要结果是清洗的自控性。
能量密度高于第一阈值的光脉冲将一直剔除污染物,直到达到基底材料为止。
然而,因为其能量密度低于基底材料的破坏阈值,所以基底不会受到破坏。
激光清洗实际应用激光清洗不但可以用来清洗有机的污染物,也可以用来清洗无机物,包括金属的锈蚀、金属微粒、灰尘等。
下面介绍一些实际应用情况,这些技术已非常成熟,已被广泛应用。
1模具的清洗:每年全世界的轮胎生产企业制造数亿个轮胎,生产过程中轮胎模具的清洗必须迅速可靠,以节省停机的时间。
传统的清洗方法包括喷沙、超声波或二氧化碳清洗等,但这些方法通常必须在高热的模具经数小时冷却后,再移往清洗设备进行清洁,清洁所需的时间长,并容易损害模具的精度,化学溶剂及噪声还会产生安全和环保等问题。