测井仪器方法及原理
- 格式:pptx
- 大小:125.62 KB
- 文档页数:19
如何进行电磁法测井与数据解释电磁法测井是一种常用的地球物理勘探方法,用于探测地下的岩石和土壤的电磁特性,从而获取地下地质信息。
本文将介绍电磁法测井的基本原理、常见的测井仪器以及数据解释的方法。
1. 电磁法测井的原理电磁法测井是通过在地下传输人工产生的电磁场,然后测量地下岩石或土壤对电磁场的响应,以推断地下结构的一种方法。
在电磁法测井中,通常会使用不同频率的电磁场,以便探测不同深度的地下层。
2. 常见的电磁法测井仪器2.1 周期性极化电磁法测井仪器周期性极化电磁法测井仪器是一种较为常用的设备,可以快速获取一定深度范围的地下电磁响应信息。
它通过改变电磁场的频率和方向,来探测地下的电性差异。
2.2 宽频电磁法测井仪器宽频电磁法测井仪器是一种可以提供更广泛频率范围的仪器,可以更准确地探测地下介质的电性特征。
这种仪器在反演地下介质电阻率方面具有较高的分辨率和精度。
3. 电磁法测井数据的解释方法3.1 反演方法数据解释是将测井数据转化为地下结构信息的过程。
其中,反演方法是一种常用的数据解释方法,通过数值模型和计算方法,将测量的响应数据与地下模型进行比对,最终得到地下结构参数的估计值。
3.2 统计分析方法除了反演方法外,统计分析方法也常用于电磁法测井数据的解释。
这种方法通过对大量数据进行统计和分析,找出其中的规律和特点,从而获得地下结构的一些统计特征。
4. 电磁法测井在地下水、矿产勘探中的应用电磁法测井在地下水和矿产勘探中广泛应用。
在地下水领域,电磁法测井可以帮助确定地下水的存在与分布情况,为地下水资源的合理开发提供重要信息。
在矿产勘探领域,电磁法测井可以帮助寻找金属矿床、煤层、油气藏等矿产资源。
5. 电磁法测井技术的发展趋势随着科学技术的不断进步,电磁法测井技术也在不断发展。
未来,电磁法测井仪器将更加小型化、轻便化,数据解释方法将更加精确和高效,从而进一步提高电磁法测井的应用效果。
总结:电磁法测井是一种重要的地球物理勘探方法,通过测量地下岩石或土壤的电磁特性,可以获取地下结构的信息。
感应测井仪器的刻度原理及方法
x
一、感应测井仪器的刻度原理
感应测井仪器的刻度原理是基于分析由电感耦合器产生的中心电流信号,借助改变电源驱动电压来模拟不同的测井仪器参数(反应阻抗、截止频率等),并分析电感耦合器产生的中心电流信号的幅值、频率以及它们之间的比例关系,以及电感耦合器中心电流信号的相位关系来实现刻度的原理。
而在实际刻度工作中,电感耦合器的中心电流信号作为刻度的基本变量,利用它们变化的特性,通过对应变的方法,把参数变量逐步映射到测井仪器刻度上。
二、感应测井仪器的刻度方法
1、标定法。
根据电感耦合器的特性,在产生特定中心电流信号的工作状态下,通过调节电源电压,使测井仪器模拟出不同参数,进而获得不同的中心电流信号来得到刻度。
2、系统校准法。
利用调节测井仪器的参数来对系统进行校准,主要利用分析电感耦合器中心电流信号的幅值、频率以及它们之间的比例关系,以及电感耦合器中心电流信号的相位关系来获得刻度。
3、修正法。
根据电感耦合器的特性,运用修正法,将测井仪器的参数及中心电流信号进行修正,以达到刻度的目的。
- 1 -。
八侧向测井原理八侧向测井原理是一种常用的测井方法,用于获取地下岩石的物性参数。
它通过测量岩石在不同方向上的电阻率,来推断地层的性质和构造。
本文将详细介绍八侧向测井原理的基本概念和应用。
八侧向测井原理是利用地下岩石的电导率差异来进行测井的方法。
地下岩石的导电性与其孔隙度、孔隙液体的导电性以及岩石骨架的导电性有关。
通过测量不同方向上的电阻率,可以推断地下岩石的孔隙度、孔隙液体的电阻率以及岩石骨架的导电性。
八侧向测井的测井仪器通常由八个电极组成,分别布置在测井工具的八个侧面。
测井工具垂直下入井下,通过电极与地层接触。
在测井过程中,通过测量电极间的电阻,可以得到地层在不同方向上的电阻率。
在进行八侧向测井之前,需要进行校正工作。
校正是为了消除井壁效应和电极接触不良等因素对测量结果的影响。
校正方法通常包括进行电极校正、井壁效应校正和滤波处理等。
校正后,可以得到更准确的测井数据。
八侧向测井原理的应用非常广泛。
首先,它可以用于地层的岩性识别。
不同类型的岩石具有不同的电导率,通过测量地层在不同方向上的电阻率,可以推断地层的岩性。
其次,它可以用于油气藏的评价。
油气藏中的油气具有较高的电阻率,而岩石和水具有较低的电阻率。
通过测量地层的电阻率,可以推断油气藏的分布和含量。
此外,八侧向测井还可以用于水文地质勘探、地下水资源评价和岩石工程等领域。
八侧向测井原理虽然在地质勘探中具有广泛的应用,但也存在一些限制。
首先,电阻率测量受到地层中的含水状况和孔隙度等因素的影响。
在含水状况较差的地层中,电阻率的测量结果可能不准确。
其次,八侧向测井需要与地层直接接触,因此只能在井下进行。
在地层未被钻井的地区,无法进行八侧向测井。
此外,八侧向测井的分辨率较低,无法对细小的地层变化进行准确的测量。
八侧向测井原理是一种常用的测井方法,通过测量地层在不同方向上的电阻率,来推断地下岩石的性质和构造。
它在地质勘探、油气评价和水文地质勘探等领域具有广泛的应用。
工程测井解释技术在测井处现有的套管监测测井仪器中,主要有以下几种测量方法:井下电视、脉冲回声仪(PET)、磁测井、多臂井径(MAC)、井温以及水泥胶结评介测井仪(CBL)。
以下将简单地介绍这几种方法的测量原理及解释方法。
资料解释1 .井下电视资料解释:变形:套管变形,发射波回不到换能器,则在照片上呈现黑影,黑影的大小反映变形的部位和形状。
图纸上呈现4条黑影的图像可以解释为套管椭圆变形。
孔洞:孔洞部分套管缺失,往往伴随着外漏,图纸上呈现小黑斑。
破裂:套管在固井水泥返高以上形成垂直裂缝内径变大的特征,在固井段呈不规则裂缝,在图纸上呈条形黑影。
错断:错断套管主要集中在射孔井段,断开点在接箍处尤多,断开区呈现黑色,黑影长度为断距。
腐蚀:套管内壁由于腐蚀产生深浅不等的锈斑,在图纸上显示为鱼鳞状黑斑。
综上所述。
超声电视法通过图纸上的黑影特征来判定套管的损伤类型,但是破洞、变形、套管壁上的附着水泥块等因素都显示为黑影。
因此,当黑影特征不明显时则产生多解性,只有通过多种方法综合解释才能得出正确结论。
2.多臂井径资料解释:整圆腐蚀:最大、最小井径均增大,剩余壁厚减小;半圆腐蚀:最大井径增大,最小井径基本不变,剩余壁厚减小;套管缩径:最大、最小井径均减小,剩余壁厚增大;套管椭圆:最大井径增大,最小井径减小,剩余壁厚减小;套管破裂:最大、最小井径均增大(有明显异常,一般数值大于130mm,或参考射孔段对比),剩余壁厚减小;孔洞或大砂眼:最大井径增大(有明显异常,一般数值大于130mm,最小井径基本不变或参考射孔段对比),剩余壁厚减小。
3.磁测井资料解释:一般情况下,由于我们将套管的磁导率电导率作为常数,但实际上每两根钢级相同,规格相同的套管磁导率、电导率均不相同,故资料解释上将每一根套管作为独立单位来处理。
腐蚀:壁厚变小〈相对于同一根套管的壁厚最大值〉。
外腐蚀的判断为:壁厚变小,井径基本不变;内腐蚀的判断为:壁厚变小,井径变大;穿孔的判断一般情况下,与射孔段处壁厚、井径测量值比较判断。
精品课程作业:第一章双测向测井习题一1.为什么要测量地层的电阻率?2.测量地层电阻率的基本公式是什么?3.普通电阻率测井测量地层电阻率要受到那些因素的影响?4.聚焦式电阻率测井是如何实现对主电流聚焦?如何判断主电流处于聚焦状态?5.画出双测向电极系,说明各电极的名称及作用。
6.为什么双测向的回流电极B和参考电极N要放在无限远处?“无限远处” 的含义是什么?7.为什么说监控回路是一个负反馈系统?系统的增益是否越高越好?8.为什么说浅屏流源是一个受控的电压源?9.试导出浅屏流源带通滤波器A3的传递函数。
10.已知该带通滤波器的中心频率为128Hz,求带通宽度、11.为什么说深测向的屏流源是一个受控的电流源。
12.监控回路由几级电路组成?各起何作用?13.试画出电流检测电路的原理框图,说明各单元的功用?14.双测向测井仪为什么要选用两种工作频率?15.测量地层冲洗带电阻率的意义是什么?16.和长电极距的电阻率测井方法相比,微电阻率测井方法有什么异同?17.为了模拟冲洗带电阻率R xo为1000Q - m和31.7Q • m,计算出微球形聚焦测井仪的相应刻度电阻值R(K=0.041m)。
18.为了测量地层真电阻率,应当选用何种电极系?19.恒流工作方式有什么优点?20.求商工作方式有什么有缺点?21.给定地层电阻率变化范围为0.5〜5000Q - m,电极系常数为0.8m,测量误差8为5%,屏主流比n为103,试计算仪器参数:G、G、G j、W0、W lmax、r、E(用求商式)。
V第二章感应测井习题二1.在麦克斯韦方程组中,忽略了介质极化的影响,试分析这种做法的合理性。
2.已知感应测井的视电导率韦500 (Ms/m),按感应测井公式计算地层的真电导率,要求相对误差小于1%。
3.单元环的物理意义是什么?4.相敏检波器可以从感应测井信号中检出有用信号,那么,为什么在设计线圈系时好要把信噪比作为一个重要的设计指标?5.画出1503双感应测井仪深感应部分的电路原理框图,说明各部分电路功能。
井径测井原理、计算方法、主要应用、仪器刻度、质量控制井径测井是一种地球物理测井方法,主要用于测量井孔直径的变化,了解地层的岩性、物性和含水性等信息。
以下是关于井径测井的原理、计算方法、主要应用、仪器刻度以及质量控制等方面的详细介绍。
一、井径测井原理井径测井的原理基于井孔直径的变化与地层的岩性、物性和含水性等因素之间的关系。
当地层性质一定时,井孔直径的变化主要受井孔形状的影响。
因此,通过测量井孔直径的变化,可以了解地层的岩性、物性和含水性等信息。
二、井径测井计算方法井径测井的计算方法主要是通过测量井孔直径的变化,计算出地层的岩性、物性和含水性等信息。
具体来说,可以通过以下步骤进行计算:1.测量井孔直径的变化;2.根据测量结果,计算出地层的岩性、物性和含水性等信息;3.将计算得到的信息与实验室分析结果进行对比,以验证计算结果的准确性。
三、井径测井的主要应用井径测井的主要应用包括以下几个方面:1.确定地层的岩性、物性和含水性等信息;2.评价地层的渗透性;3.确定地层的厚度和埋深;4.预测地层的产水量;5.监测地下水的开采情况。
四、仪器刻度井径测井的仪器刻度是保证测量准确性的重要环节。
一般来说,井径测井的仪器刻度需要考虑以下几个方面:1.刻度标准:需要建立一套标准的刻度体系,以保证测量结果的准确性;2.刻度环境:需要在特定的环境下进行刻度,以保证刻度结果的可靠性;3.刻度周期:需要定期进行刻度,以保证测量结果的准确性。
五、质量控制为了保证井径测井的测量结果准确性,需要进行严格的质量控制。
具体来说,需要做到以下几点:1.保证仪器的精度和稳定性;2.保证测量环境的稳定性和可靠性;3.保证测量人员的专业素质和技术水平;4.对测量结果进行多次重复测量,以保证测量结果的准确性;5.将测量结果与实验室分析结果进行对比,以验证测量结果的准确性。
六、总结井径测井是一种重要的地球物理测井方法,可以用于了解地层的岩性、物性和含水性等信息。
测井仪器方法及原理重点测井仪器是用于测量地下井筒中岩石、流体等特性参数的仪器设备。
测井仪器主要包括测量工具和解释分析系统两个部分。
测量工具是指用于测量地层特性数据的设备,包括钻井前测量、钻井过程测量和完井后测量等不同阶段的测井工具。
解释分析系统是指用于对测井数据进行分析和解释的软件系统。
下面将具体介绍测井仪器的方法及原理重点。
首先是测井仪器的电测法。
电测法是利用地层中存在的电阻率差异,通过测量电流和电压的方式来揭示地层特性。
电测法主要包括测量电阻率和测量自然电位。
测量电阻率的方法有直流电阻率测量和交流电阻率测量。
直流电阻率测量是通过在井筒内放置电极,通过测量电流和电压的比值来计算电阻率。
交流电阻率测量则是利用井筒内放置的发射电极和接收电极之间的电场产生的电流信号,通过测量电流的方式,利用频率依赖性原理计算电阻率。
测量自然电位的方法主要包括测量自然电位剖面和测量井中自然电位分布。
自然电位是指地层中存在的电流不均匀分布所引起的电势差。
测量自然电位剖面是通过在井筒中浸泡阳极和阴极电极,利用其产生的电势差来反映地层的电势差分布情况。
测量井中自然电位分布则是通过在井中放置电极,利用地层中已存在的电流分布来测定电势差。
其次是测井仪器的声波测量法。
声波测量法是利用声波在地层中传播的速度和衰减特性来推断地层的弹性特性。
声波测量法主要包括测量声波传播速度和测量声波衰减。
测量声波传播速度的方法主要有固体弹性波测井和液相声波测井两种。
固体弹性波测井是通过在地层中产生固体弹性波,利用输入信号与接收信号的时间差计算声波传播速度。
液相声波测井则是通过在井筒中产生液相声波,利用井筒中声波传播速度推断地层参数。
测量声波衰减的方法主要有吸音测井和质量流测井。
吸音测井是通过发送声波信号,在地层中测量声波传播过程产生的能量损失,从而推断地层的声波衰减特性。
质量流测井则是通过在井筒中产生旋涡流,在流体中测量声波信号的能量衰减情况。
最后是测井仪器的放射性测量法。