数学人教版九年级下册反比例函数(第1课时)教学设计
- 格式:doc
- 大小:199.00 KB
- 文档页数:7
人教版九年级下册26.1.1反比例函数课程设计1. 教学目标本节课的教学目标如下:1.了解反比例函数的概念与特性;2.掌握反比例函数的图像与性质;3.学会利用反比例函数解决实际问题。
2. 教学重点1.反比例函数的概念与特性;2.反比例函数的图像与性质。
3. 教学难点1.反比例函数的应用。
4. 教学准备1.讲义、板书、PPT等教具材料;2.反比例函数的定义、性质等相关背景知识。
5. 教学内容及方法5.1 课前预习让学生自学反比例函数在数学中的概念和常见性质,关注反比例函数的定义和性质,熟记常见图像和性质。
5.2 课堂讲解1.提出问题反比例函数的定义与常见性质,可以简要概括为“当x增大时,y随之减小,x 减小时,y随之增大”。
所以这个函数有什么其他性质呢?2.讲解反比例函数图像及其基础性质反比例函数的图像是两条曲线y=a/x和y=-a/x。
直截了当。
在这里,教师要讲解反比例函数的基础性质,包括单调性、对称性和渐近线等,以加深学生的理解。
3.运用反比例函数解决实际问题做实际问题是反比例函数学习的重要部分。
教师可以提供一些相关例子,向学生展示应如何建立数学模型以应对应用难题。
5.3 课后作业1.完成课后习题,巩固反比例函数的相关知识点;2.找到一些有关反比例函数的经典范例,并解读其中涉及的数学知识点及其应用。
6. 教学评估生动活泼地向学生解析反比例函数的概念、性质及应用,结合小组讨论或个人实际操作形式,通过探究和讨论等形式评估学生的反比例函数掌握程度。
7. 反思与总结综合反思本节课的教学方法、评估方式及效果,逐渐形成自己的教学理念,将教学不断提升到更高水平。
人教版数学九年级下册26.1.1《反比例函数》教学设计一. 教材分析《反比例函数》是人教版数学九年级下册第26章第一节的内容,主要介绍了反比例函数的定义、性质及图象。
这一节内容是学生在学习了正比例函数和一次函数的基础上进行的,是进一步深化函数知识的重要环节,也为后续学习函数的应用打下了基础。
二. 学情分析九年级的学生已经具备了一定的函数知识,能够理解正比例函数和一次函数的概念和性质。
但是,对于反比例函数这一概念,学生可能较难理解,需要通过具体实例和生活实际来帮助学生理解和掌握。
三. 教学目标1.了解反比例函数的定义和性质。
2.能够绘制反比例函数的图象。
3.能够运用反比例函数解决实际问题。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的绘制。
五. 教学方法1.采用问题驱动法,通过设置问题引导学生思考和探索。
2.利用信息技术手段,如多媒体演示和数学软件,帮助学生直观理解反比例函数的性质和图象。
3.结合实际例子,让学生感受反比例函数在生活中的应用。
六. 教学准备1.多媒体演示文稿。
2.数学软件。
3.实际例子和问题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60千米/小时的速度行驶,行驶1小时后,剩余路程与速度之间的关系是什么?”引导学生思考和讨论。
2.呈现(10分钟)利用多媒体演示文稿,呈现反比例函数的定义和性质,引导学生直观理解。
同时,利用数学软件,展示反比例函数的图象,让学生感受反比例函数的特点。
3.操练(10分钟)让学生利用数学软件,自己绘制一些反比例函数的图象,加深对反比例函数性质的理解。
同时,让学生解答一些与反比例函数有关的问题,巩固所学知识。
4.巩固(10分钟)通过一些练习题,让学生进一步巩固反比例函数的概念和性质。
5.拓展(10分钟)让学生思考和讨论反比例函数在实际生活中的应用,如广告宣传、经济分析等,引导学生将所学知识运用到实际中。
人教版九年级数学下册《26.1.2 反比例函数的图象和性质(1)》优秀教学设计一. 教材分析人教版九年级数学下册《26.1.2 反比例函数的图象和性质(1)》这一节,是在学生已经学习了正比例函数的基础上进行教学的。
本节内容主要介绍反比例函数的图象和性质,通过实例让学生理解反比例函数的概念,掌握反比例函数的图象特征和性质,为后续的反比例函数应用打下基础。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和性质已经有了一定的了解。
但是,反比例函数相对于正比例函数来说,概念较为抽象,学生可能难以理解和接受。
因此,在教学过程中,需要通过具体实例和实际操作,帮助学生理解和掌握反比例函数的图象和性质。
三. 教学目标1.让学生通过具体实例,理解反比例函数的概念,掌握反比例函数的图象特征和性质。
2.培养学生运用函数知识解决实际问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.反比例函数的概念和性质的理解。
2.反比例函数图象的特征和性质的掌握。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等多种教学方法,引导学生通过自主学习、合作交流,掌握反比例函数的图象和性质。
六. 教学准备1.教学PPT。
2.反比例函数的图象和性质的相关案例。
3.学生分组合作学习的任务单。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾正比例函数的知识,为新课的学习做好铺垫。
2.呈现(15分钟)利用PPT展示反比例函数的图象和性质,让学生通过观察和分析,发现反比例函数的特点。
3.操练(20分钟)让学生通过实际操作,绘制反比例函数的图象,进一步理解和掌握反比例函数的性质。
4.巩固(10分钟)通过一些练习题,让学生巩固反比例函数的知识,提高解题能力。
5.拓展(10分钟)让学生运用反比例函数的知识,解决一些实际问题,提高学生的应用能力。
6.小结(5分钟)对本节课的内容进行总结,让学生明确反比例函数的图象和性质。
第二十六章 反比例函数 26.1.2 反比例函数的图象和性质第1课时 反比例函数的图象和性质学习目标:1. 经历画反比例函数的图象、归纳得到反比例函数的图象特征和性质的过程; (重点、难点)2. 会画反比例函数图象,了解和掌握反比例函数的图象和性质. (重点)3. 能够初步应用反比例函数的图象和性质解题. (重点、难点)一、知识链接回顾我们上一课的学习内容,你能写出200 m 自由泳比赛中,游泳所用的时间 t (s ) 和游泳速度 v (m /s ) 之间的数量关系吗?试一试,你能在坐标轴中画出这个函数的图象吗?一、要点探究探究点1:反比例函数的图象和性质 画出反比例函数x y 6=与xy 12=的图象. 【提示】画函数的图象步骤一般分为:列表→描点→连线. 需要注意的是在反比例函数中自变量 x 不能为 0. 解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点.连线:用光滑的曲线顺次连接各点,即可得x y 6=与xy 12=的图象.思考 观察这两个函数图象,回答问题: (1)每个函数图象分别位于哪些象限?(2)在每一个象限内, 随着x 的增大,y 如何变化?你能由它们的解析式说明理由吗? (3)对于反比例函数xky =(k >0),考虑问题(1)(2),你能得出同样的结论吗?【要点归纳】反比例函数xky =(k >0) 的图象和性质: 由两条曲线组成,且分别位于第一、三象限,它们与 x 轴、y 轴都不相交; 在每个象限内,y 随 x 的增大而减小. 【针对训练】 反比例函数xy 3=的图象大致是 ( )A .B .C .D .反比例函数xy 8=的图象上有两点 A (x 1,y 1),B (x 2,y 2),且A ,B 均在该函数图象的第一象限部分,若 x 1>x 2,则 y 1与y 2的大小关系为 ( ) A . y 1 > y 2 B . y 1 = y 2 C . y 1 < y 2 D . 无法确定【提示】因为8>0,且 A ,B 两点均在该函数图象的第一象限部分,根据 x 1>x 2,可知y 1,y 2的大小关系观察 当 k =-2,-4,-6时,反比例函数xky =的图象,有哪些共同特征?思考 回顾上面我们利用函数图象,从特殊到一般研究反比例函数xky =(k >0) 的性质的过程,你能用类似的方法研究反比例函数xky =(k <0)的图象和性质吗?【要点归纳】反比例函数xky =(k <0) 的图象和性质: (1) 当 k > 0 时,双曲线的两支分别位于第一、三象限,在每一象限内,y 随 x 的增大而减小;(2) 当 k < 0 时,双曲线的两支分别位于第二、四象限,在每一象限内,y 随 x 的增大而增大.k 的正负决定了反比例函数的图象所在的象限和增减性【针对训练】点(2,y 1)和(3,y 2)在函数xy 2-=的图象上,则y 1 y 2(填“>”“<”或“=”).已知反比例函数()721-+-=a a x a y ,在每一个象限内,y 随 x 的增大而增大,求a 的值.【针对训练】 已知反比例函数()|4||83--=m x m y 在每一个象限内,y 随着 x 的增大而减小,求 m 的值.二、课堂小结1. 反比例函数xy5.1=的图象在 ( )A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限2. 在同一直角坐标系中,函数y = 2x与xy1-=的图象大致是( )3. 已知反比例函数xmy2-=的图象在第一、三象限内,则m的取值范围是________.4. 下列关于反比例函数xy12-=的图象的三个结论:(1)经过点(-1,12) 和点(10,-1.2);(2)在每一个象限内,y随x的增大而减小;(3)双曲线位于第二、四象限.其中正确的是________(填序号).5. 已知反比例函数xky=的图象过点(-2,-3),图象上有两点A (x1,y1),B (x2,y2),且x1 > x2 > 0,则y1-y2________0.6. 已知反比例函数52-=mmxy,它的两个分支分别在第一、第三象限,求m的值.能力提升:7. 已知点(a-1,y1),(a+1,y2)在反比例函数xky=(k>0)的图象上,若y1<y2,求a的取值范围.参考答案合作探究一、要点探究探究点1:反比例函数的图象和性质解:列表:-1 -1.2 -1.5 -2 -3 -6 6 3 2 1.5 1.2 1 -2 -2.4 -3 -4 -6 -12 12 6 4 3 2.4 2 描点、连线如图所示.【针对训练】 CC 【针对训练】<解:由题意得a 2 + a -7=-1,且a -1<0.解得a =-3.【针对训练】 解:由题意得 | m |-4=-1,且 3m -8>0.解得m =3.当堂检测1.B2. D3. m >24. (1)(3)5. <6. 解:因为反比例函数52-=m mxy 的两个分支分别在第一、第三象限,所以有m 2-5=-1,且m >0,解得m =2. 能力提升:7. 解:由 k >0知在每个象限内,y 随 x 的增大而减小.① 当这两点在图象的同一支上时,∵y 1<y 2,∴a -1>a +1, 无解; ②当这两点分别位于图象的两支上时, ∵y 1<y 2,∴ y 1<0<y 2.∴a -1<0,a +1>0, 解得-1<a <1.故 a 的取值范围为-1<a <1.。
《26.1反比例函数(第一课时)》教学设计巴州二中刘炜娜一、内容和内容解析1. 内容反比例函数概念2. 内容解析反比例函数是初中函数学习的重要内容,通过反比例函数概念的学习,既加深对函数概念的理解,又加强对反比例变化规律的认识.从函数角度看,当一个变化变量时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;从反比例变化规律看,在变化过程中,这两个变量的乘积始终为定值.成反比例函数的两个变量的乘积为定值是反比例函数的特征.通过对现实生活中的数学中问题的分析,发现变量间的反比例关系,归纳得出反比例函数的概念,再运用反比例函数的概念对数学和现实生活中的问题进行分析,通过具体实例,确定反比例函数的解析式,是本节课的研究思路.基于以上分析,本节课的教学重点是:理解反比例函数的概念.二、学情分析初二的学生曾在小学六年级(下)学过“反比例”,在八年级(上)学过“分式”,在八年级(下)学过“一次函数”.对“反比例”“函数”“分式”等概念已经有了初步的认识,在此基础上来讨论反比例函数有了一定的经验积累,为这里的学习奠定了较好的基础.但是,初二的学生演绎推理、归纳、运用数学思想的意识比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,因此,本节课从现实的情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解,并类比一次函数的概念,抽象概括出反比例函数的概念.由于学生还处于小组合作式学习的初级阶段,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导.三、教学目标和目标解析1.教学目标知识与技能:(1)从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解;(2)使学生理解并掌握反比例函数的概念,能判断一个函数是否为反比例函数;(3)能够根据已知条件,用待定系数法求函数解析式.过程与方法:(1)经历对两个变量之间相依关系的讨论,培养学生的辩证唯物主义观点;(2)经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识;(3)经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会函数的建模思想.情感态度与价值观:(1)经历抽象反比例概念的过程,体会数学学习的重要性,提高学生学习数学的兴趣;(2)通过分组讨论,培养学生合作交流意识和探索精神.2.目标解析达成知识与技能目标(1)、(2)的标志是:对实际问题和数学问题的分析,抽象概括得出反比例函数的概念,知道自变量和对应函数值成反比例的特征.达成知识与技能目标(3)的标志是:能根据问题中的变量关系,确定反比例函数的解析式.四、教学问题诊断分析学生虽已学过一次函数,但对函数的基本概念的理解未必深刻。
《反比例函数》教学设计学习目标1、理解并掌握反比例函数的概念。
2、能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
3、能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式学习难点:理解反比例函数的概念。
学习准备:1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?学习过程:一、探索研讨【活动1】问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;_________________(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;_________________(3)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S(平方千米/人)随全市总人口数n(单位:人)的变化而变化。
_________________上面的函数关系式,都具有_____________的形式,其中_________是常数。
【活动2】下列问题中,变量间的对应关系可用这样的函数式表示吗?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;_________________(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;_________________(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
_________________概念:如果两个变量x,y 之间的关系可以表示成___________的形式,那么y 是x 的反比例函数,反比例函数的自变量x____为零。
反比例函数(第一课时)教学设计方案
问题3 你能尝试写出这种函数的一般形式吗?能给这类函数下定义吗?
形如____________( ) 的函数称为反比例函数(inverse proportional function),其中x是自变量,y是函数,自变量的取值范围____________
2、概念的剖析
观察反比例函数解析式与正比例函数比较并思考:
1. 两者从形式上有何异同?反比例函数自变量的次数是1吗?为什么?
2. 反比例函数中,两个变量的取值范围是什么?
3. 你能举出生活中类似的例子吗?
4. 下列哪个等式中的y是x的反比例函数?
5. 反比例函数的解析式有几种不同的表达形式?
(设计意图:在列出函数解析式后,不急于解释、引导,让反比例函数现身,而是设计问题串,类比已学函数,抽象出(3)(4)(5)的比例的本质特征:等式的右边都是都是分式,两个变量的乘积为定值。
这样反比例函数的模型建立就会水到渠成,然后顺着学生的思维的自然发展,通过剖析、辨别、距离、练习等活动,全方位理解概念。
)
3、运用概念
例1 当a取什么值时,函数是反比例函数?
(设计意图:掌握反比例函数的一般形式及其条件,特别是常数k
通过这题的练习,进一步加深对反比例函数的概念的理解)
例2 课本第3页例1
分析:类比求一次函数解析式的过程,显然要运用待定系数法,先设出解析式,再根据已知条件求出待定探究系数。
三、拓展应用,升华新知
例3 已知,与x成反比例,且当=1时=9求与x的函数解析式。
《反比例函数》第一课时教学设计于都县乱石初中黎彰慧课题名称:初中数学《反比例函数》第一课时教学目标:知识与技能:1.理解并掌握反比例函数的概念,根据实际问题能列出反比例函数关系式;。
2.能判断一个给定的函数是否为反比例函数。
过程与方法:通过探索现实生活中数量间的反比例关系,体会和认识反比例函数式刻画现实世界中特定数量关系的一种数学模型,进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化的观点。
情感、态度与价值观:经历反比例函数的形成过程、使学生体验函数是描述变量间对应关系的重要数学模型,培养学生观察、推理、分析的能力和合作交流的意识、体验数形结合的思想。
教学重点、难点设计:对于反比例函数的概念的形成过程是这节课的重点,也是难点,教学中要重点联系实际,让概念在实际的背景下形成,使学生体会到反比例函数能够反映实际事物的变化规律,同时通过与一次函数、正比例函数的类比更好地认识和理解反比例函数,教学中进行类比、变化与对应等数学思想的渗透。
教学准备与方法设计:通过多媒体教学的应用,让概念和规律方法的获得主要以学生自主探究为主,通过实际问题的分析讨论得到反比例函数的概念,通过与一次函数、正比例函数的类比获得反比例函数解析式的求法,通过练习、巩固学生的知识,检验规律的正确性。
学生知识状况分析由于本节课比较抽象,学生理解起来比较困难,因此,在学习反比例函数概念的过程中,充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解.教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向.教学过程一:创设问题情境,引入新课活动目的给学生设置疑问,激发学生学习兴趣。
活动过程我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数,但1200中,是在现实生活中,并不是只有这两种类型的表达式,如为vt=1200,则t=vt和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.二:新课讲解活动目的 在探索具体问题中数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数作为一种数学模型。
26.2.1实际问题与反比例函数第一课时教学目标1、知识与技能1)运用反比例函数的概念和性质解决实际问题。
2)利用反比例函数求出问题中的值。
2、过程与方法在运用反比例函数解决实际问题的过程中,进一步体会数学建模思想,培养学生的数学应用意识,在“实际问题—建立模型—拓展应用”的过程中,发展学生分析问题, 解决问题的能力。
3、情感态度与价值观在运用反比例函数解决实际问题的过程中,体验数学的实用性,提高学生学习数学的兴趣,同时也培养了学生合作交流的意识。
教学重点:运用反比例函数的意义和性质解决实际问题。
难点:把实际问题转化为反比例函数这一数学模型。
专家建议1、应用题是学生比较难的一个知识内容,鉴于此可以引导小组讨论,交流意见,不仅加深了学生对反比例函数的理解与应用,还提高了学生发现问题和分析问题的能力,以及语言表达能力,更注重提高学生的综合应用能力。
2、教学中可以采用引例举证的教学方式,利用生活中的实例,活跃课堂气氛,调动学生积极性,进一步提高教学效率。
3、由于本节内容比较抽象,学生立体想像能力较差,所以应结合实际生活中的活例,让学生身临其境,将复杂的问题简单化、具体化。
没有调查就没有发言权,促使学生通过“猜想—假设—验证—归纳—总结”等一系列过程,进行自主学习,小组讨论后得出结论。
教学用具:多媒体教学方法:小组合作探究、讲练结合教学教程:一、复习巩固,情景导入师:请同学们认真思考,完成下列问题。
列函数关系式表示下列数量关系1、京沈高速公路全长658km ,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t (h )与行驶的平均速度v (km/h )之间的函数关系式为 2、完成某项任务可获得500元报酬,考虑由x 人完成这项任务,试写出人均报酬y (元)与人数x (人)之间的函数关系式 3、某住宅小区要种植一个面积为1000的矩形草坪,草坪的长y 随宽x 的变化而变化;_______________________4、已知北京市的总面积为168平方千米,人均占有的土地面积s 随全市总人口n 的变化而变化;______________________5、已知反比例函数y=x6,当x=2时,y= 2 ;当y =2时,x= 2 。
实际问题与反比例函数第1课时实际问题与反比例函数(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中的水将用多长时间排完?【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.第2课时实际问题与反比例函数(2)【知识与技能】运用反比例函数解决实际应用问题,增强数学建模思想.【过程与方法】经历“实际问题一数学建模一拓展应用”的过程,发展学生分析问题,解决问题的能力.【情感态度】进一步锻炼学生的数学应用能力,增强数学应用意识,提高学习数学的兴趣. 【教学重点】用反比例函数的有关知识解决实际应用问题.【教学难点】构建反比例函数模型解决实际应用问题,巩固反比例函数性质.一、情境导入,初步认识“给我一个支点,我可以撬动地球”,古希腊科学家阿基米德曾如是说,他的“杠杆定律”通俗地讲是:阻力×阻力臂=动力×动力臂.由上述等式,我们发现,当阻力、阻力臂一定时,动力和动力臂成反比例函数关系.二、典例精析,掌握新知例1 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200 N和0.5 m.(1 )动力F和动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?【分析】显然本题应用杠杆定律相关知识来解决问题,首先由阻力和阻力臂的数据得到动力F与动力臂l的函数关系式为F=600l(l>0),再把l=1 . 5代入,求出动力的大小.注意“橇动石头至少需要多大的力”表面上看是不等关系,但用相等关系来解决更方便些.而(2)中的问题即可用F=400×12= 200代入求动力臂的长度的最小值,也可利用不等关系,600l≤400×12,得l的范围是l≥3,而动力臂至少应加长1.5米才行.【教学说明】在本例教学时,应仍由学生自主探究,构建适合题意的反比例函数关系式,让学生加深对反比例函数意义的理解,进一步增强分析问题和解决问题的能力.教师在学生练习过程中,巡视指导,帮助有困难同学形成正确认知,在大部分学生自主完成后,可提出以下问题让学生思考,巩固提高:(1 )用反比例函数知识解释:在我们使用撬棍时,为什么动力臂越长就越省力?(2)你能再举一些应用杠杆原理做实际例子吗?例2—个用电器的电阻是可调节的,其范围是110〜220Ω,已知电压为220 V,这个用电器的电路图如图所示.(1 )输出功率犘与电阻只有怎样的函数关系?(2)这个用电器功率的范围是多少?【分析】要想顺利解决本题,应了解电学中关于电功率P、电阻R和电压U的关系,即有PR= U2,可以发现2UPR=或2URP=.这样由于用电器电压U = 220V是确定的,从而可得(1)的解应为P =2220R,再把R = 110和R = 220代入可得电功率P值分别为440 W和220 W,故电功率P的范围为220≤P≤440.事实上,这里还可以由2220RP=及 110≤R≤220,得110≤2220P≤220,得220≤P≤440.【教学说明】教学时,教师应先让学生熟悉与本例相关的电学知识,即PR= U2,然后让学生独立完成,由于题目难度不大,学生应该能予以解决,对个别有困难的同学,可予以指导,也可让他们与同伴交流,从而能解决问题,在大多数同学完成以后,教师仍可设置以下两个问题,让学生进一步加深对知识的理解:(1 )想一想,为什么收音机的音量,某些台灯的亮度以及电风扇的转速都可以调节?(2)你还能列举一些生活中用电器应用反比例函数性质的例子吗?培养学生学以致用的能力,即能用所学知识解决现实世界中实际问题的能力,也可增强学生的学习兴趣.三、运用新知,深化理解1.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6小时到达目的地.(1)当他按原路返回来,汽车的平均速度v与时间t有怎样的函数关系?(2)如果该司机必须在4 h之内回到甲地,则返程时的平均速度不能低于多少?2.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需贴瓷砖,已知楼体的外表面面积为5×103 m2 .(1)所需的瓷砖块数n与每块瓷砖的面积 S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2:2: 1,则需要三种瓷砖各多少块?3.如图是放置在桌面上的一个圆台,已知圆台的上底面积是下底面积的1/4,此时圆台对桌面的压强为100 Pa.若把圆台翻过来放,则它对桌面的压强是多大呢?【教学说明】由学生独立完成,然后相互交流,发现问题,及时纠正,从而巩固对反比例函数的性质的理解.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1. ( 1 )V=806t ⨯ ,V =480t (t >0). (2)V =4804= 120 (km/h). 2.(1)n • S = 5× 103 , n =3510S⨯ (S >0). (2)80cm 2=8×10-3m 2.353510 6.2510810n -⨯==⨯⨯(块), 则有n 灰=6.25×105×25= 2.5×105(块),n 白=6.25×105×25 =2.5×105(块) ,n 蓝=6.25×105×51=1.25×105(块).3. 解:设下底面积为S 0,则上底面积为04S . 由F p S= ,且当S = S 0时,p = 100,∴0100F pS S ==⨯ . 同一物体质量不变,∴ F=100S 0是定值.000100400(Pa)44S S F S p S S ∴====当时,. 因此,当把圆台翻过来放置时,它对桌面的压强是400Pa.四、师生互动,课堂小结1.请举出一些应用反比例函数的实例,同伴之间相互交流.2.说说这节课你又有哪些收获?1. 布置作业:从教材“习题26.2”中选取.2. 完成创优作业中本课时的“课时作业”部分.本节课讨论了反比例函数的其他一些应用(主要是在物理学科中的应用).在这些实际应用中,备课时应注意到与学生的实际生活相联系,并且注意用函数观点来对这些问题做出某种解释,从而加深对函数的认识,并突出知识之间的内在联系,特别是与物理知识之间的联系.。
《反比例函数》 教学设计第 1 课时《反比例函数》人教版数学九年级下册第二十六章第一节内容,反比例函数从形式上看虽然简洁,但它在日常生活中和其它学科的学习中都有着十分重要的作用.本节教材主要研究反比例函数的概念及其解析式.在学习本节课之前,学生已经研究了正比例函数、一次函数和二次函数等函数模型,从本节课开始进一步研究反比例函数,并通过反比例函数图象得出它的性质,最后通过实际问题的研究来体会反比例函数的实用价值.教材从生活现实和数学中具有反比例关系的问题出发,抽象出描述反比例变化规律的数学模——反比例函数,让学生体会反比例函数的意义.为了巩固反比例函数的概念,教材通过例1,由反比例函数的自变量和函数值,确定常数k 的值,从而得到反比例函数的解析式,根据反比例函数的解析式,就可以得到与任意自变量对应的函数值.1. 认识反比例函数是描述具有反比例变化规律的数学模型;结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式.2. 让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯.3.让学生经历在实际问题中探索数量关系的过程,体会数学在解决实际问题中的作用.【教学重点】理解反比例函数的概念.【教学难点】抽象得出反比例变化规律的数学模型.多媒体课件、教具等.一、提出问题,思考引入问题1 ⑴在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时,y,则称x为,y叫x的.⑵一次函数的解析式一般形式是,当时,称为正比例函数,二次函数的解析式的一般形式是.⑶一条直线经过点(2,3)、(4,7),求该直线的解析式,以上这种求函数解析式的方法叫.问题2 下列问题中,变量间的对应关系可用怎样的函数关系式表示?⑴京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v (单位:km/h)的变化而变化;⑵某住宅小区要种植一个面积为1000平方米的矩形草坪,草坪的长为y随宽x的变化;⑶已知北京市的总面积为41.6810平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.设计意图:问题1通过复习函数的概念、一次函数、二次函数的解析式及待定系数法求函数解析式等知识,为本节课探究反比例函数的概念及确定其解析式作好知识储备.问题2用实际问题引出现实中的反比例关系,为后续反比例函数的意义教学做好铺垫.二、合作交流,探究新知问题3 ⑴上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? 三个问题的关系式是1463v t =,1000y x=,41.6810S n ⨯=. ⑵这些关系式有什么共同点?⑶它们是正比例函数吗?是一次函数吗?是二次函数吗?这类函数称之为什么函数? 归纳整理出反比例函数的意义:一般地,形如k y x=(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.追问1:反比例函数xk y =中自变量x 在分式的什么位置?自变量的取值范围是什么? 追问2:你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴交流.三、运用新知.例1 下列哪些式子表示y 是关于x 的反比例函数?每一个反比例函数中相应的k 值是多少? ⑴x y 4=;⑵x y 5-=;⑶16+=x y ;⑷3=x y ;⑸123=xy ;⑹xy 32-=;⑺x y -=. 解:⑵⑸⑹是反比例函数,它们的系数分别为5-,13,32-. 例2 已知y 是x 的反比函数,并且当x =2时,y =6.⑴写出y 关于x 的函数解析式.⑵当x =4时,求y 的值.分析:因为y 是x 的反比例函数,所以先设x k y =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式.解:⑴设x k y =.因为当x =2,y =6,所以有26k =,解得k =12.因此xy 12=. ⑵把x =4时代入x y 12=,得3412==y . 例3:已知y 与2x 成反比例,并且当x =3时y =4,⑴写出y 和x 的函数解析式;⑵求当x =1.5时y 的值.解:⑴设2x k y =.因为当x =3,y =4,所以有234k =,解得k =36.因此236xy =. ⑵把x =1.5代入236x y =,得165.1362==y . 四、巩固新知练习1 用函数解析式表示下列问题中变量间的对应关系: ⑴苹果每千克x 元,花10元钱可买y 千克的苹果;⑵矩形的面积为4,一条边的长为x ,另一条边的长为y .练习2 已知y 是x 的反比例函数,并且当x =3时,y =-8. ⑴写出y 与x 之间的函数关系式.⑵求y =2时x 的值.练习3 y 是x 的反比例函数,下表给出了x 与y 的一些值:x -2 -1 21-21 1 3⑴写出这个反比例函数的表达式;⑵根据函数表达式完成上表.练习4 已知函数21y y y+=,1y 与x +1成正比例,2y 与x 成反比例,且当x =1时,y =0;当x =4时,y =9.求当x =-1时y 的值.五、归纳小结回顾本课所学主要内容,并请学生回答以下问题:1. 我们今天学习了反比例函数的哪些知识?2. 反比例函数中的两个变量的关系是什么?3. 反比例函数对自变量取值有何要求?4. 如何根据已知条件求反比例函数的解析式? 略.。
人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计一. 教材分析人教版数学九年级下册26.1.2《反比例函数的图象和性质》是反比例函数部分的重要内容。
本节内容是在学生已经掌握了比例函数的知识基础上进行学习的,通过本节课的学习,使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质,并能运用反比例函数解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于比例函数有一定的了解,但反比例函数作为一种新的函数形式,对学生来说还比较陌生。
因此,在教学过程中,需要引导学生通过观察、分析、归纳等方法,自主探究反比例函数的图象和性质,提高学生的动手操作能力和思维能力。
三. 教学目标1.知识与技能:使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质。
2.过程与方法:通过观察、分析、归纳等方法,培养学生自主探究的能力。
3.情感态度与价值观:激发学生学习函数的兴趣,培养学生的团队协作精神。
四. 教学重难点1.反比例函数的概念及其图象的画法。
2.反比例函数的性质及其运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和思维能力。
六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件,用于辅助教学。
2.学生活动材料:反比例函数图象和性质的练习题,用于巩固所学知识。
3.教学设备:投影仪、计算机等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾比例函数的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示反比例函数的图象和性质,引导学生观察、分析,并总结反比例函数的特点。
3.操练(10分钟)教师布置练习题,学生独立完成,巩固所学知识。
教师选取部分学生的作业进行讲解和点评。
4.巩固(5分钟)教师通过提问方式检查学生对反比例函数图象和性质的掌握情况,并对学生的回答进行指导和纠正。
反比例函数教学设计
教学过程
(一)观察分析,引入新知
生活中的数学问题:
(1)开学初老师到文具店给同学们去买奖品,已知中性笔每支2元钱,笔记本每本3元钱,购买x支笔和10个笔记本用于了y元,你会用含x的式子表示y吗?
(2)已知一个正方体的边长为x,表面积为y,你能用含x的式子表示出y吗?
(3)我计划用60元钱去买格尺,单价x元的格式,正好买了y把,你能用含x的式子表示y吗?
(4)我买回了30支笔,平均分给p个同学,每个同学恰好分了q支笔,你能用含p的式子表示q吗?
(5)学校距离文具店有6千米,开车从学校到文具店所用的时间为x(小时),
行驶的速度为y(千米/时),你能用含x的式子表示y吗?
师生活动:教师给出问题,学生独立完成,教师组织学生展示结果,并提出以下问题,让学生思考回答:
(1)在每个问题中,谁是常量,谁是变量?并且每个问题当中有几个量?
(2)这五个问题中,哪个问题中的两个变量间具有我们已经学习过的函数关系?是什么函数?
(3)什么是一次函数?什么是二次函数?
设计意图:通过对问题的讨论分析,让学生学会用函数的观点分析生活中变量之间的关系,通过对一次函数和二次函数定义的复习,不仅有助于学生对旧知的复习和巩固,同时为后面让学生类比一次函数和二次函数的定义归纳概括反比例函数的定义打下基础。
教师追问:问题(3)、(4)、(5)中的两个变量之间具有函数关系吗?试说明理由。
它们的解析式有什么共同特点?
师生活动:教师给出问题,学生小组讨论,教师参与讨论,组织学生交流、解答问题。
设计意图:通过对问题的讨论分析,进一步加深学生对函数概念的理解,再引导学生从函数的角度分析两个变量之间的关系,并能够用反比例关系式表示出来,初步建立反比例函数模型。
(二)归纳概括,建立模型
问题:能否根据上面函数的共同特点,类比一次函数和二次函数的概念,归纳得到反比例函数的概念?
一般地,形如
k
y
x
= (k为常数,且0
k≠) 的函数叫做反比例函数,其中x
是自变量,y是x的函数。
教师追问:反比例函数概念中对k和自变量x有什么要求?反比例函数的表达式有其它表示形式吗?
师生活动:教师提出问题,学生思考,讨论后交流,教师引导学生用规范的数学语言表达反比例函数的概念,并从自变量x在表达式中处于分式的分母上这个方面,引导学生发现自变量x的取值范围是不等于0的一切实数。
设计意图:让学生从不同的情境中抽象出相同的数学模型,再进行抽象得出概念
的过程,并非教师所强加,而是学生自己走向概念,让学生感受到反比例函数的基本特征,发展学生用数学语言描述反比例函数的能力,体会从实际问题中抽象出反比例函数的方法。
用以突出本节课的教学重点。
(三)辨析概念,体会应用
练习1:下了函数是反比例函数吗?若是,请指出k 的值。
11
52123245043
556782-()=()=()=()=.()=-==2=
y y xy y x x
x y x y y x y x x --+()()() 练习2:请同学们自己在练习本上写出4个反比例函数,并指出k 的值.
师生活动:教师给出练习,学生独立完成,练习1以口答的形式完成,练习2在练习本上完成,部分同学的结果用投影展示,教师给予激励性评价。
设计意图:明晰反比例函数的概念,练习1引导学生用反比例函数的概念去判断函数是否为反比例函数,练习2要求学生自己创造反比例函数,从两个方面加深学生对反比例函数概念的理解,把握反比例函数两个变量的乘积为定值这一基本特征。
应用反比例函数概念来巩固反比例函数概念,逐渐突破本节课的教学难点。
习3:当m =_____时,函数422y m x =
-是反比例函数 练习4:若函数2
1()m y m x -=-是反比例函数,则m =_____ 练习5:一个矩形的面积202cm ,相邻两边长是x cm 和y cm ,那么变量y 是x 的函数吗?是反比例函数吗?
练习6:已知北京市的总面积为1.68×104km 2,全市总人口为n ,那么北京市人均占有的土地面积S (km 2/人)是人口数n 的函数吗?是反比例函数吗?
师生活动:教师给出练习,学生独立完成,请4位同学分别讲解练习3、4、5、6题,发展学生的思维能力和语言表达能力,教师给予激励性评价。
设计意图:练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。
练习5和练习6又回归到了生活中的实际问题,通过对练习5和练习6的解决,培养学生发现问题,解决问题的能力,感受数学源于生活,数学服务于生活。
用以突破本节课的教学难点。
(四)例题讲解,培养能力
例已知y是x的反比例函数,并且当2
x=时,6
y=.
(1)写出y关于x的函数解析式;
(2)当4
x=时,求y的值.
师生活动:教师提出问题,学生思考、交流、解答问题,教师引导学生理解“y 是x的反比例函数”这句话的意义,总结得出求反比例函数解析式的关键是确定k的值。
设计意图:使学生会根据已知条件求反比例函数的解析式,进一步熟悉函数值的求法。
突出本节课的重点。
练习7:已知y是x的反比例函数,下表给出了x与y的一些值
(1)确定这个反比例函数的解析式。
(2)根据解析式完成上面的表格。
练习8:已知y与2x成反比例,并且当3
x=时,4
y=.
(1)写出y关于x的函数解析式;
(2)当15
.
x=时,求y的值;
(3)当6
y=时,求x的值.
师生活动:教师提出问题,学生独立思考,解答问题,教师巡视学生完成情况,请学生用投影展示解答过程,教师给予适当评价。
设计意图:巩固用待定系数法求反比例函数解析式的方法,练习8中y与2x成
反比例,引导学生把2x看作一个整体,设为
2
0 ()
k
y k
x
=≠,进一步加深对反比例函数概念的理解,用以突破本节课的难点。
(五)归纳小结提高认识
师生活动:教师与学生一起回顾本节课所学主要内容,并请学生回答下列问题:
(1)我们今天学习了反比例函数的那些知识?如何获得反比例函数的概念?
(2)反比例函数对自变量的取值有何要求?
(3)如何根据已知条件求反比例函数的解析式?
设计意图:通过设置问题的形式进行小结,让学生能够梳理知识体系,加深对知识的理解,把课堂教学传授的知识尽快化为学生的知识。
对回答正确的学生给予表扬与肯定,对总结不到位、有遗漏的学生给予鼓励和帮助,让学生都能学有所获,不断成长。
(六)布置作业
必做题:教科书第3页练习1,习题26.1第1,2题。
选做题:1.请你举出一个反比例函数的实例。
2.如果y 是z 的反比例函数,z 是x 的正比例函数,且0x ,那么y 与
x 具有怎样的函数关系?
设计意图:为了适应各层次学生的需求,进行分层作业,设计了必做题和选做题,这样既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到“拔尖”和“减负”的目的。
总的设计意图是反馈教学,巩固提高。
(七)板书设计
设计意图:简明扼要地呈现出本节课的整体逻辑框架和重要知识点,使学生对本节课的教学重点和教学过程能够一目了然,加深学生对本节课学习的印象。
教学评价
在本节课的教学过程中,我始终注重以学生为主体,教师为主导,充分发挥学生的自主性,引导学生自己得出反比例函数的概念。
在对学生的评价中,我通过体态语言,表情语言及口头表扬多种评价方式激励学生。
在教学中,教师对回答问题正确的学生给予表扬与肯定,必要时可给予一定的掌声,对回答不正确的学生要及时给予鼓励,让同学或老师帮助解决,在师与生、
生与生之间形成一种
良好的学习氛围,各种信息处于良性的动态交流之中。
这样一种发自内心的评价更容易被学生接受。
教学设计特色说明与教学反思
本节课主要通过对现实生活和数学中问题的分析,以问题串的形式,层层推进,让学生发现变量间的反比例关系,类比一次函数和二次函数的概念自己归纳出反比例函数的概念,教师只是起到了引导的作用,充分发挥了学生的自主性。
本节课的另一特色是练习题设置由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。
特别是练习1引导学生用反比例函数的概念去判断函数是否为反比例函数,练习2要求学生自己创造反比例函数,从两个方面加深学生对反比例函数概念的理解,应用反比例函数概念来巩固反比例函数概念,逐渐突破本节课的教学难点。
练习5和练习6又回归到了生活中的实际问题,应用反比例函数的概念对练习5和练习6的解决,培养学生发现问题,解决问题的能力,感受数学源于生活,数学又服务于生活,有效突破本节课的教学难点。
通过对本节课的教学,发现本教数学设计存在的两点不足:第一在引导学生探究反比例函数自变量的取值范围时,只是从自变量x在表达式中处于分式的分母上这个方面,引导学生发现自变量x的取值范围是不等于0的一切实数,忽略了自变量x在实际问题中所代表的实际意义。
第二没有加深对反比例函数表达式三中形式的对比,只是一带而过,学生对其它两种表达形式认识不够深刻,可能导致学生在列出乘积式后不会辨别,或者解决两个变量的积是一个常数这类问题时出现困难。