第5章 杆件的轴向拉伸与压缩变形
- 格式:ppt
- 大小:1.46 MB
- 文档页数:30
教学课题 轴向拉伸与压缩的变形、虎克定律课时教学目标或要求 1纵向变形与横向变形2绝对变形与相对变形(应变)3虎克定律4教学重点、难点教学方法、手段教学过程及内容轴向拉伸与压缩的变形计算一、变形和应变杆件在轴向拉伸压缩过程中,其轴向尺寸和横向尺寸都要发生变化,设等截面直杆的原长为l ,横向尺寸为b 。
发生轴向拉伸后的长度为1l ,横向尺寸为1b 。
下面讨论杆件的变形。
1.绝对变形杆件长度的伸长量称为纵向绝对变形,用l ∆表示,则 l l l -=∆1横向绝对变形用b ∆表示,其计算为:b b b -=∆12.相对变形绝对变形的大小与杆件的长度有关,为消除长度对变形量的影响,引入相对变形的概念。
相对变形指单位长度的变形,又称线应变,用ε表示,则纵向的线应变: l l∆=ε图13.1.1横向线应变用1ε表示,其计算为 : b b∆=1ε3.泊松比杆件的横向变形和纵向变形是有一定的联系的,大量的实验证明,对于同一种材料,在弹性变形范围内,其横向相对变形与纵向相对变形的比值为一常数,称为泊松比,用表示。
因为横向应变与纵向应变恒为相反数,故比值为负,因此泊松比取其绝对值。
即εεμ1=二、虎克定律实验表明,杆件在轴向拉伸和压缩过程中,当应力不超过一定的限度时,杆件的轴向变形与轴力及长度成正比,与杆件的横截面面积成反比,这一关系称为虎克定律。
即A Nll ∝∆引入比例常数E ,则有EA Nll =∆ εσ⋅=E表明在弹性限度内,应力和应变成正比。
E---为弹性模量,表明了材料抵抗拉压变形的能力,其单位与应力的单位相同。
EA---抗拉刚度应用注意:1.虎克定律只在弹性范围内成立;2.应用公式时在杆长l 内,轴力N 、弹性模量E 及截面面积A 都应为常数,如果不满足的话,应分段考虑。
具体分析见下面的例子。
例:一阶梯钢杆如图,已知AC 段的截面面积为A=500mm 2,CD 段的截面面积为A200mm 2,杆的受力情况及各段长度如图13.1.2所示,材料的弹性模量为E=200GPa ,试求杆的总变形量。
第五章拉伸和压缩一、填空题1.轴向拉伸或压缩的受力特点是作用于杆件两端的外力__大小相等___和__方向相反___,作用线与__杆件轴线重合_。
其变形特点是杆件沿_轴线方向伸长或缩短__。
其构件特点是_等截面直杆_。
2.图5-1所示各杆件中受拉伸的杆件有_AB、BC、AD、DC_,受压缩的杆件有_BE、BD__。
图5-13.内力是外力作用引起的,不同的__外力__引起不同的内力,轴向拉、压变形时的内力称为_轴力__。
剪切变形时的内力称为__剪力__,扭转变形时的内力称为__扭矩__,弯曲变形时的内力称为__剪力与弯矩__。
4.构件在外力作用下,_单位面积上_的内力称为应力。
轴向拉、压时,由于应力与横截面__垂直_,故称为__正应力__;计算公式σ=F N/A_;单位是__N/㎡__或___Pa__。
1MPa=__106_N/m2=_1__N/mm2。
5.杆件受拉、压时的应力,在截面上是__均匀__分布的。
6.正应力的正负号规定与__轴力__相同,__拉伸_时的应力为__拉应力__,符号为正。
__压缩_时的应力为__压应力_,符号位负。
7.为了消除杆件长度的影响,通常以_绝对变形_除以原长得到单位长度上的变形量,称为__相对变形_,又称为线应变,用符号ε表示,其表达式是ε=ΔL/L。
8.实验证明:在杆件轴力不超过某一限度时,杆的绝对变形与_轴力__和__杆长__成正比,而与__横截面面积__成反比。
9.胡克定律的两种数学表达式为σ=Eε和ΔL=F N Lo/EA。
E称为材料的_弹性模量__。
它是衡量材料抵抗_弹性变形_能力的一个指标。
10.实验时通常用__低碳钢__代表塑性材料,用__灰铸铁__代表脆性材料。
11.应力变化不大,应变显著增大,从而产生明显的___塑性变形___的现象,称为__屈服___。
12.衡量材料强度的两个重要指标是__屈服极限___和__抗拉强度__。
13.采用___退火___的热处理方法可以消除冷作硬化现象。
eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第5章)范钦珊 唐静静2006-12-18第5章轴向拉伸与压缩5-1试用截面法计算图示杆件各段的轴力,并画轴力图。
解:(a)题(b)题(c)题(d)题习题5-1图F NxF N(kN)x-3F Nx A5-2 图示之等截面直杆由钢杆ABC 与铜杆CD 在C 处粘接而成。
直杆各部分的直径均为d =36 mm ,受力如图所示。
若不考虑杆的自重,试求AC 段和AD 段杆的轴向变形量AC l Δ和AD l Δ解:()()N N 22ssππ44BCAB BC AB ACF l F l l d dE E Δ=+33321501020001001030004294720010π36.××+××=×=××mm ()3N 232c100102500429475286mm π10510π364..CDCD AD AC F l l l d E ΔΔ×××=+=+=×××5-3 长度l =1.2 m 、横截面面积为1.10×l0-3 m 2的铝制圆筒放置在固定的刚性块上;-10F N x习题5-2图刚性板固定刚性板A E mkN习题5-4解图直径d =15.0mm 的钢杆BC 悬挂在铝筒顶端的刚性板上;铝制圆筒的轴线与钢杆的轴线重合。
若在钢杆的C 端施加轴向拉力F P ,且已知钢和铝的弹性模量分别为E s =200GPa ,E a =70GPa ;轴向载荷F P =60kN ,试求钢杆C 端向下移动的距离。
解: a a P A E l F u u ABB A −=−(其中u A = 0)∴ 935.0101010.11070102.1106063333=×××××××=−B u mm钢杆C 端的位移为33P 32s s601021100935450mm π20010154...BC C B F l u u E A ×××=+=+=×××5-4 螺旋压紧装置如图所示。
第五章拉伸和压缩一、填空题1.轴向拉伸或压缩的受力特点是作用于杆件两端的外力__大小相等___和__方向相反___,作用线与__杆件轴线重合_。
其变形特点是杆件沿_轴线方向伸长或缩短__。
其构件特点是_等截面直杆_。
2.图5-1所示各杆件中受拉伸的杆件有_AB、BC、AD、DC_,受压缩的杆件有_BE、BD__。
图5-13.内力是外力作用引起的,不同的__外力__引起不同的内力,轴向拉、压变形时的内力称为_轴力__。
剪切变形时的内力称为__剪力__,扭转变形时的内力称为__扭矩__,弯曲变形时的内力称为__剪力与弯矩__。
4.构件在外力作用下,_单位面积上_的内力称为应力。
轴向拉、压时,由于应力与横截面__垂直_,故称为__正应力__;计算公式σ=F N/A_;单位是__N/㎡__或___Pa__。
1MPa=__106_N/m2=_1__N/mm2。
5.杆件受拉、压时的应力,在截面上是__均匀__分布的。
6.正应力的正负号规定与__轴力__相同,__拉伸_时的应力为__拉应力__,符号为正。
__压缩_时的应力为__压应力_,符号位负。
7.为了消除杆件长度的影响,通常以_绝对变形_除以原长得到单位长度上的变形量,称为__相对变形_,又称为线应变,用符号ε表示,其表达式是ε=ΔL/L。
8.实验证明:在杆件轴力不超过某一限度时,杆的绝对变形与_轴力__和__杆长__成正比,而与__横截面面积__成反比。
9.胡克定律的两种数学表达式为σ=Eε和ΔL=F N Lo/EA。
E称为材料的_弹性模量__。
它是衡量材料抵抗_弹性变形_能力的一个指标。
10.实验时通常用__低碳钢__代表塑性材料,用__灰铸铁__代表脆性材料。
11.应力变化不大,应变显著增大,从而产生明显的___塑性变形___的现象,称为__屈服___。
12.衡量材料强度的两个重要指标是__屈服极限___和__抗拉强度__。
13.采用___退火___的热处理方法可以消除冷作硬化现象。