计算方法第一章电子教案(32学时-欧阳洁)
- 格式:pdf
- 大小:110.93 KB
- 文档页数:37
第一章 误差§1.误差的来源 实际问题——➠建立数学模型—➠确定数值计算方法——➠编制程序上机算出结果模型误差 截断误差或方法误差 舍入误差§2. 绝对误差、相对误差与有效数字(1) 绝对误差与绝对误差限定义: 绝对误差 x x x e e −==***)( .近似值------↑ ↑------精确值通常,由于x 不知道,所以无法得*e ,故估计*e 的上界*ε,即***||||ε≤−=x x e 或 **ε±=x x .↑------称为近似值*x 的绝对误差限,简称误差限。
(2) 相对误差与相对误差限110 ,210021±=±=x x定义: 相对误差 .)(****x x x x e x e e rr −=== 由于x 未知,所以***x e e r ≈; Q **2*****1)(x e x e x e x e −=−,当||**x e 较小时,***x e x e −是**x e 的平方级,可以忽略不计,∴ 取***x e e r=. 与绝对误差类似,只能估计相对误差绝对值的某个上界*r ε,即**||rr e ε≤ ↑------近似值*x 的相对误差限,得(差)。
(好),%10101|)(| %21002|)(|2*1*=≤=≤x e x e r r .(3) 有效数字若近似值*x 的误差不超过某位数字的半个单位,而从该位数字到*x 最左边的那个非零数字(即自左向右看,第一个出现的非零数字)共有n 位,那么这n 位数字都称有效数字,并称*x 具有n 位有效数字。
X XX x L L =*自左向右看,第一个非零数----↑ ↑-----误差不超过该位数的半个单位 例:L 14159.3==πx ,若取近似值14.3*≈x ,则01.0210015.0|)(|*×≤=L x e ,故*x 具有三位有效数字。
(4) 有效数字、绝对误差、相对误差之间关系如何呢?一般(*) )1010(10)1(121*−−−×++×+×±=n n m a a a x L 01≠a ,即n a a a ~ ;9~1:21是.9~0 且1)1(*1021101021||+−−−×=××≤−n m n m x x m m a x a 10)1(||101*1×+≤≤×Q111121***10211010||||||+−+−×=××≤−=∴n m n m r a a x x x e 定理1:若用)(*式表示的近似值*x 具有n 位有效数字,则其相对误差满足不等式 11*1021||+−×≤n r a e 其中1a 为*x 的第一个非零数字。
《计算方法》课程简介及教学大纲一、课程简介1.课程编号:201100112.课程名称:计算方法3.开课学院:数学课程组4.学时:325.类别:公共选修课6.先修课程:高等数学,线性代数7.课程简介:《计算方法》全面地介绍科学与工程计算中常用的计算方法,具体介绍了这些计算方法的基本理论与实际应用,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。
内容包括引论、线性代数方程组求解方法、非线性方程求根、函数插值、函数拟合、数值积分与数值微分、常微分方程初值问题的数值解法、自治微分方程稳定区域的计算等。
本课程的任务是通过各个教学(和实践)环节,运用各种教学手段和方法,使学生掌握数值计算的基本原理和各种方法的基本思想,并藉此培养学生分析问题和解决问题的能力,为学习后续课程、从事工程技术研究工作打下坚实的基础。
Course Code:20110011Name of Course:Computational MethodFaculty: Mathematics Course GroupCredit Hours: 32Classification: Elective coursePrerequisite:Advanced Mathematics, Linear AlgebraCourse Outline:Computational Method induces the calculation methods used in Scientific and Engineering roundly,and makes specific introduction to the calculation method of basic theory and practical application of these methods. It also makes a brief analysis of the calculation of effectiveness, stability, convergence effect, scopeand characteristics of the advantages and disadvantages. It includes introduction, method for solving linear algebraic equations, finding roots of nonlinear equations, function interpolation, function fitting, numerical differentiation and numerical integration, numerical methods for initial value problem for ordinary differential equations, autonomous differential equation and stability calculations.Through various teaching and practice, students will master the basic principles and methods of numerical calculation of the basic idea. This course aims to develop students' ability to analyze and solve problems, and lay a solid foundation for follow-up courses and engagment in engineering work.二、课程教学大纲1. 课程编号:20110011 6. 先修课程:高等数学,线性代数2. 课程类别:公共选修课 7.课内总学时:323. 开课学期:第二学年一学期 8.实验/上机学时:04. 适用专业:全校各专业 9.执笔人:陈丙振5.考核方式:考查1.课程教学目的《计算方法》全面地介绍科学与工程计算中常用的计算方法,具体介绍了这些计算方法的基本理论与实际应用,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。
教材聂玉峰、王振海等《数值方法简明教程》,高等教育出版社,2011作业计算方法作业集(A、B)参考书¾封建湖,车刚明计算方法典型题分析解集(第三版)西北工业大学出版社,2001¾封建湖,聂玉峰,王振海数值分析导教导学导考(第二版)西北工业大学出版社,2006¾车刚明,聂玉峰,封建湖,欧阳洁数值分析典型题解析及自测试题(第二版)西北工业大学出版社,2003西北工业大学理学院欧阳洁2第一章绪论§1 引言§2 误差的度量与传播§3 选用算法时应遵循的原则西北工业大学理学院欧阳洁3§1 引言科学与工程领域中运用计算机求解问题的一般过程:1 实际问题的提出2 建立数学模型3 设计可靠、高效的数值方法4 程序设计5 上机实践计算结果6 数据处理及结果分析西北工业大学理学院欧阳洁4学习算法的意义科学计算(数值模拟)已经被公认为与理论分析、实验分析并列的科学研究三大基本手段之一。
计算方法课程的研究对象具有广泛的适用性,著名流行软件如Maple、Matlab、Mathematica 等已将其绝大多数内容设计成函数,简单调用之后便可以得到运行结果。
但由于实际问题的具体特征、复杂性, 以及算法自身的适用范围决定了应用中必须选择、设计适合于自己特定问题的算法,因而掌握数值方法的思想和内容至关重要。
西北工业大学理学院欧阳洁5鉴于实际问题的复杂性,通常将其具体地分解为一系列子问题进行研究,本课程主要涉及如下几个方面问题的求解算法:¾非线性方程求根¾线性代数方程组求解¾函数插值¾曲线拟合¾数值积分与数值微分¾常微分方程初值问题的数值解法¾矩阵特征值与特征向量计算西北工业大学理学院欧阳洁6§2 误差的度量与传播一误差的来源与分类模型误差:数学模型与实际问题的误差观测误差:观测结果与实际问题的误差截断误差:数学模型的理论解与数值计算问题的精确解之间的误差舍入误差:对超过某有限位数的数据进行舍入所产生的误差西北工业大学理学院欧阳洁75 使用数值稳定性好的公式一个算法,如果初始数据微小的误差仅使最终结果产生微小的误差,或在运算过程中舍入误差在一定条件下能够得到控制,则称该算法(数值)稳定,否则称其为(数值)不稳定.西北工业大学理学院欧阳洁26总结1.数值运算的误差估计2.绝对误差、相对误差与有效数字3.数值运算中应遵循的若干原则西北工业大学理学院欧阳洁30。
《计算方法》教案课程名称:计算方法适用专业:医学信息技术适用年级:二年级任课教师:***编写时间:2011年 8月新疆医科大学工程学院张利萍教案目录《计算方法》教学大纲 (4)一、课程的性质与任务 (4)二、课程的教学内容、基本要求及学时分配 (4)三、课程改革与特色 (5)四、推荐教材及参考书 (5)《计算方法》教学日历..................................... 错误!未定义书签。
第一章绪论 .. (6)第1讲绪论有效数字 (6)第2讲误差………………………………………………………………………………第二章线性方程组的直接法 (14)第3讲直接法、高斯消去法 (14)第4讲高斯列主元消去法 (22)第5讲平方根法、追赶法 (29)第三章插值法与最小二乘法 (31)第6讲机械求积、插值型求积公式 (32)第7讲牛顿柯特斯公式、复化求积公式 (37)第8讲高斯公式、数值微分 (42)第9讲第10讲第12讲第四章数值积分与数值微分 (48)第11讲欧拉公式、改进的欧拉公式 (48)第12讲龙格库塔方法、亚当姆斯方法 (52)第13讲收敛性与稳定性、方程组与高阶方程 (56)第14讲第15讲第五章微分常微分方程的差分方法 (59)第16讲迭代收敛性与迭代加速 (60)第17讲牛顿法、弦截法 (64)第18讲第19讲第20讲第六章线性方程组的迭代法 (67)第21讲迭代公式的建立 (68)第22讲第23讲第24讲向量范数、迭代收敛性 (71)第25讲《计算方法》教学大纲课程名称:计算方法/Computer Numerical Analysis B学时/学分:54/4先修课程:高等数学、线性代数、高级语言程序设计(如:Matlab语言)适用专业:计算机科学与技术、信息管理与信息系统开课学院(部)、系(教研室):医学工程技术学院、医学信息技术专业一、课程的性质与任务计算方法是一门专业必修课。
计算方法课程教学大纲(Calculation Method)一、课程概况课程代码:0821018学分:3学时:48(其中:讲授学时32 ,实验学时16 ,上机学时0)先修课程:数学分析,高等代数等适用专业:小学教育(理)专业建议教材:《计算方法》,易大义,浙江大学出版社,2017.5课程归口:理学院课程的性质与任务:本课程是小学教育(理)专业的一门重要基础课。
通过本课程的学习,使学生系统地获得计算方法的基本知识、必要的基础理论;提高学生的数学视野、数学思维能力、逻辑推理能力;提高学生的数学素养,为学生学习后续相关课程及终身学习奠定必要的数学基础。
二、课程目标目标1.能够获得课程基本概念与性质。
目标2. 能够掌握本课程要求的计算方法。
目标3. 能够具有一定的抽象概括、逻辑推理等能力。
目标4. 能够具有一定的运算能力。
目标5. 能够具有一定的数学思维与分析能力。
本课程支撑专业人才培养方案中毕业要求3-1、毕业要求3-2,毕业要求6-2对应关系如表所示。
三、课程内容及要求(一)数值计算的基本概念1.教学内容(1)能够了解数值计算的研究对象和内容(2)能够了解数值算法的基本概念(3)能够了解误差的基本理论(4)能够了解数值算法设计的若干原则2.基本要求(1)重点与难点:误差的计算。
(2)教学方法:启发式互动讲授结合多媒体辅助;适当课堂练习;及时了解学生的作业状况并对共同的问题作及时解答;安排好课后答疑。
3.思政内容注重理论联系实际,尊重客观规律,树立社会主义核心价值观,增强专业素养,强调理论对实践的指导意义。
(二)非线性方程的迭代法1.教学内容(1)能够了解二分法(2)能够掌握Picard迭代法(3)能够掌握牛顿型迭代法2.基本要求(1)重点与难点:Picard迭代法、牛顿型迭代法及其实现。
(2)教学方法:启发式互动讲授结合多媒体辅助;适当课堂练习;及时了解学生的作业状况并对共同的问题作及时解答;安排好课后答疑。
教材
李信真,车刚明,欧阳洁,封建湖
计算方法,西北工业大学版社,2000
作业
计算方法作业集(A、B)
参考书
¾封建湖,车刚明
计算方法典型题分析解集(第三版)
西北工业大学出版社,2001
¾封建湖,聂玉峰,王振海
数值分析导教导学导考(第二版)
西北工业大学出版社,2006
¾车刚明,聂玉峰,封建湖,欧阳洁
数值分析典型题解析及自测试题(第二版)
西北工业大学出版社,2003
欧阳洁2
第一章绪论
§1 计算方法的任务与特点
§2 误差知识
§3 选用算法时应遵循的原则
欧阳洁3
§1 计算方法的任务与特点科学与工程领域中运用计算机求解问题的一般过程:
1 实际问题的提出
2 建立数学模型
3 设计可靠、高效的数值方法
4 程序设计
5 上机实践计算结果
6 数据处理及结果分析
欧阳洁4
学习算法的意义
科学计算(数值模拟)已经被公认为与理
论分析、实验分析并列的科学研究三大基本手
段之一。
计算方法课程的研究对象具有广泛的适用性,著名流行软件如Maple、Matlab、Mathematica等已将其绝大多数内容设计成函
数,简单调用之后便可以得到运行结果。
但由于实际问题的具体特征、复杂性, 以及算法自身的适用范围决定了应用中必须选择、
设计适合于自己特定问题的算法,因而掌握数
值方法的思想和内容至关重要。
欧阳洁5
计算方法的任务
数学模型可算化
(1)用有限维空间代替无限维空间
(2)用有限过程代替无限过程
(3)用简单问题替代复杂问题
研究算法的可靠性
收敛性、稳定性、误差估计
研究算法的复杂度
时间复杂度、空间复杂度、逻辑复杂度
欧阳洁6
鉴于实际问题的复杂性,通常将其具体地
分解为一系列子问题进行研究,本课程主要涉
及如下几个方面问题的求解算法:
¾非线性方程求根
¾线性代数方程组求解
¾矩阵特征值与特征向量计算
¾函数插值
¾函数逼近与曲线拟合
¾数值积分与数值微分
¾常微分方程数值解法
欧阳洁7
§2 误差知识
一误差的来源与分类
二绝对误差、相对误差、有效数字三数值运算的误差估计
欧阳洁8
一误差的来源与分类
模型误差:数学模型与实际问题的误差
观测误差:
观测结果与实际问题的误差
截断误差:数学模型的理论解与数值计算问
题的精确解之间的误差
舍入误差:对超过某有限位数的数据进行舍
入所产生的误差
欧阳洁9
二绝对误差、相对误差、有效数字
1.绝对误差与绝对误差限
2. 相对误差与相对误差限
3. 有效数字与有效数
4. 有效数字与相对误差的关系
欧阳洁11
三数值运算的误差估计近似数参加运算后所得之值一般也是近似值,含有误差,将这一现象称为误差传播。
初始误差导致后续计算结果产生误差,我们称其为初值误差传播。
1. 函数运算的误差估计
2. 算术运算的误差估计
欧阳洁22
§3 选用算法时应遵循的原则
除了算法的正确性之外,数值运算中还应
遵循其他原则。
欧阳洁29
欧阳洁31
2 防止大数“吃掉”小数;
如:21
2110,10,10−≈≈≈C B A 故应变形,计算(A +C ) +B 。
C
B A ++在四位计算机上计算A +B +
C 时,有
)1000.0(10)0000.0(10)1000.0(10222222−+=)1000.0(10)1000.0(10)1000.0(1022222−+≈0
=
5 使用数值稳定性好的公式
一个算法,如果初始数据微小的误差
仅使最终结果产生微小的误差,或在运算
过程中舍入误差在一定条件下能够得到控
制,则称该算法(数值)稳定,否则称其
为(数值)不稳定.
欧阳洁33
总结
1.数值运算的误差估计
2.绝对误差、相对误差与有效数字
3.数值运算中应遵循的若干原则
欧阳洁37。