数学第一轮总复习2016第二章 方程(组)与不等式(组)
- 格式:doc
- 大小:240.50 KB
- 文档页数:7
中考数学第一轮复习方程与不等式知识总结一、方程基础概念方程是数学中用于描述两个数学表达式之间相等关系的一种形式。
它通常由未知数、已知数和运算符号组成。
在中考数学中,方程是解决问题的重要工具之一。
理解方程的定义、解的概念以及方程解的性质是后续学习的基础。
二、一元一次方程解法一元一次方程是只含有一个未知数,且未知数的次数为1的方程。
其一般形式为`ax + b = 0`(其中`a ≠0`)。
解一元一次方程的基本步骤包括:去分母、去括号、移项、合并同类项、系数化为1。
掌握这些步骤,能够高效地求解一元一次方程。
三、二元一次方程组二元一次方程组是由两个或两个以上含有两个未知数的一次方程组成的方程组。
解二元一次方程组的基本思想是通过消元法(代入消元法或加减消元法)将二元一次方程组转化为一元一次方程来求解。
掌握二元一次方程组的解法,对于解决实际问题具有重要意义。
四、一元二次方程公式法一元二次方程是只含有一个未知数,且未知数的最高次数为2的整式方程。
其一般形式为`ax^2 + bx + c = 0`(其中`a ≠0`)。
对于一元二次方程的求解,当判别式`Δ= b^2 - 4ac`大于或等于0时,可以使用公式法求解。
公式法求解一元二次方程的公式为`x = [-b ±√(Δ)] / (2a)`。
掌握公式法,能够准确地求解一元二次方程的根。
五、不等式与解集不等式是表示两个数学表达式之间不等关系的一种形式。
它通常用“<”、“>”、“≤”、“≥”等符号表示。
不等式的解集是指满足不等式的所有未知数的值的集合。
理解不等式的性质,掌握不等式解集的表示方法,是求解不等式的基础。
六、一元一次不等式解法一元一次不等式是只含有一个未知数,且未知数的次数为1的不等式。
解一元一次不等式的基本步骤与解一元一次方程类似,包括去分母、去括号、移项、合并同类项等。
但需要注意的是,在解不等式时,当两边同时乘以或除以一个负数时,不等号的方向会发生变化。
北师大数学中考一轮综合复习 方程(组)与不等式(组)知识点1 一元一次方程1.等式及其性质 ⑴ 等式:用等号“=”来表示等量关系的式子叫等式.⑵ 性质:① 如果,那么b ±c ;② 如果,那么bc ;如果,那么bc2. 方程、一元一次方程的解、概念(1) 方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知数的值,叫做方程的解;求方程解的过程叫做解方程. 方程的解与解方程不同.(2) 一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为ax+b=0. 3. 解一元一次方程的步骤:①去分母;②去;③移;④合并;⑤系数化为1. 4. 一元一次方程的应用:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数. (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.b a ==±c a b a ==ac ba =()0≠c =c a ()0≠a【典例】例1(2021秋•营口期末)解下列方程:(1);(2).例2(2020秋•潮阳区期末)已知关于x的方程2(x+1)﹣m=−m−22的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.例3(2020秋•蓬江区校级月考)已知关于x的方程3x﹣6(x−b3)=4x和3x+b4−1−5x8=1有相同的解,求这个解.例4(2021春•绿园区期末)先阅读下列解题过程,然后解答问题.解方程:|x﹣5|=2.解:当x﹣5≥0时,原方程可化为x﹣5=2,解得x=7;当x﹣5<0时,原方程可化为x﹣5=﹣2,解得x=3.所以原方程的解是x=7或x=3.(1)解方程:|2x+1|=7.(2)已知关于x的方程|x+3|=m﹣1.①若方程无解,则m的取值范围是;②若方程只有一个解,则m的值为;③若方程有两个解,则m的取值范围是.例5(2021秋•佳木斯期末)第五中学计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工16件,乙工厂每天能加工24件,且单独加工这批服装甲工厂比乙工厂要多用20天.在加工过程中,学校需付甲工厂每天费用80元,需付乙工厂每天费用120元. (1)求这批校服共有多少件;(2)为了尽快完成这批校服,先由甲、乙两个工厂按原生产速度合作一段时间后,甲工厂停工了,而乙工厂每天的生产速度提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂共加工多少天;(3)经学校研究制定如下方案,方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按(2)问的方式完成.请你通过计算帮学校选择一种省钱的加工方案.例6(2020秋•道里区期末)为满足防控新冠疫情的需要,某医务物品供应商欲购买一批疫情防护套装.现有甲、乙两个医用物品生产厂家,均标价每套防护套装80元.甲的优惠方案:购买物品一律九折;乙的优惠方案:如果超出600套,则超出的部分打八折. (1)购进多少套防护套装时,从甲生产厂家与乙生产厂家的进货价钱一样?(2)第一次购进了1000套,第二次购进的数量比第一次购进数量的2倍多100套,求医务用品供应商两次购进防护套装最少花多少钱?【随堂练习】1.(2020秋•金安区校级期中)如果关于x 的方程x−43=8−x+22的解与方程4x ﹣(3a +1)=6x +2a ﹣1的解相同,求a 的值.2.(2020秋•建湖县校级月考)已知关于x 的一元一次方程1−x−mx3=0. (1)若该方程的解为x =1,求m 的值;(2)若该方程的解为正整数,求满足条件的所有整数m 的值.3.(2021秋•鱼台县期中)先阅读下列解题过程,然后解答后面两个问题. 解方程:|x ﹣3|=2.解:当x ﹣3≥0时,原方程可化为x ﹣3=2,解得x =5; 当x ﹣3<0时,原方程可化为x ﹣3=﹣2,解得x =1. 所以原方程的解是x =5或x =1. (1)解方程:|3x ﹣2|﹣4=0. (2)解关于x 的方程:|x ﹣2|=b .4.(2021秋•牡丹江期末)某体育用品商店销售足球和篮球,其中篮球的单价比足球多30元,已知购买4个足球和3个篮球的费用相等. (1)求购买每个足球、篮球的单价分别是多少元?(2)由于“双十二”的来临,商店决定对所售商品进行促销.现有两种促销方案可供选择:方案一:买5个篮球赠一个足球. 方案二:所购买的商品均打9折.当购买6个篮球和多少个足球时,两种促销方案所花费用一致?(3)在(2)条件下,购买10个篮球和5个足球最少费用为 元.5.(2020秋•讷河市期末)某班级组织学生集体春游,已知班级总人数多于20人,其中有15名男同学,景点门票全票价为30元,对集体购票有两种优惠方案. 方案一:所有人按全票价的90%购票;方案二:前20人全票,从第21人开始每人按全票价的80%购票; (1)若共有35名同学,则选择哪种方案较省钱? (2)当女同学人数是多少时,两种方案付费一样多?知识点2 一元二次方程1.一元二次方程:在整式方程中,只含一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.一元二次方程的一般形式是)0(02≠=++a c bx ax .其中2ax 叫做二次项,bx 叫做一次项,c 叫做常数项;a 叫做二次项的系数,b 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程的求根公式 .(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为0;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程的根的判别式为=∆. (1)>0一元二次方程有两个不相等的实数根,即.(2)=0一元二次方程有两个相等的实数根,即2ba-. (3)<0一元二次方程没有实数根.4. 一元二次方程根与系数的关系)0(2≥=a a x )0()(2≥=-a a b x ()02≠=++a o c bx ax 2()x m n +=0n ≥20(0)ax bx c a ++=≠21,240)x b ac =-≥()002≠=++a c bx ax ac b 42-ac b 42-⇔()002≠=++a c bx ax =2,1x ac b 42-⇔==21x x ac b 42-⇔()002≠=++a c bx ax关于x 的一元二次方程有两根分别为,,那么 a b -,c a. 【典例】例1(2020秋•合肥期末)用适当的方法解方程 (1)2(x +2)2﹣8=0 (1)2x 2+x −12=0.例2(2021秋•潍坊期中)解下列关于x 的方程: (1)3x 2﹣54=0;(2)(x ﹣1)(x +2)=2(x +2); (3)(x ﹣1)2﹣2(x ﹣1)=8.例3 (2020秋•兰州期中)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y +4=0,解得y 1=1,y 2=4.当y =1时,即x ﹣1=1,解得x =2;当y =4时,即x ﹣1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.请利用这种方法求下列方程: (1)(2x +5)2﹣(2x +5)﹣2=0; (2)32x ﹣4×3x +3=0.例4(2021秋•金乡县期中)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y +4=0,解得y 1=1,y 2=4,当y =1时,即x ﹣1=1,解得:x =2;当y =4时,即x ﹣1=4,解得:x =5,所以原方程的解:x 1=2,x 2=5.请利用这种方法求方程(2x +5)2﹣7(2x +5)+12=0的解.20(0)ax bx c a ++=≠1x 2x =+21x x =⋅21x x例5(2020秋•白银期末)已知关于x的一元二次方程(x﹣3)(x﹣2)=m2(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.例6(2021秋•长安区校级期末)某公司自主研发一款健康的产品﹣﹣燕窝饮品,主要成分是水果和燕窝.经过一段时间的门店销售发现,当售价是40元/杯,每天可售出60杯.若每杯每降低1元,就会多售出3杯.已知每杯饮品的实际成本是20元,每天的其他费用是300元,物价局规定每件销售品的利润率不得高于成本的80%.若每天的毛利润可达到600元.(1)求该饮品的售价;(2)为支持今年的“洪灾”行动,该门店每卖一杯饮品,向某救助基金会捐款1元,求该店每月(按30天计算)的捐款金额.【随堂练习】1.(2021秋•江油市期末)解下列一元二次方程:(1)x2+10x+16=0;(2)x(x+4)=8x+12.2.(2021秋•博兴县月考)解方程:(1)2x2﹣12x+5=0.(2)2x2﹣5x+1=0(用配方法).3.(2021秋•呼和浩特期末)已知关于x的一元二次方程x2+4x+2k=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x12+x22=k2+2k,求出k的值.4.(2021秋•振兴区校级月考)华美科技大厦一商户销售一种电子产品,每件进价为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?5.(2020秋•法库县期末)2020年突如其来的新型冠状病毒疫情,给生鲜电商带来了意想不到的流量和机遇,据统计某生鲜电商平台1月份的销售额是1440万元,3月份的销售额是2250万元.(1)若该平台1月份到3月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某水果在“盒马鲜生”平台上的售价为20元/千克时,每天能销售200千克,售价每降价2元,每天可多售出100千克,为了推广宣传,商家决定降价促销,同时尽量减少库存,已知该水果的成本价为12元/千克,若使销售该水果每天获利1750元,则售价应降低多少元?知识点3 分式方程1.分式方程:分母中含有未知数的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母中,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解,是否是所列分式方程的解;(2)检验所求的解,是否为增根.【典例】例1(2021秋•铁岭县期末)解下列分式方程:(1)+4=;(2)﹣1=.例2(2020春•百色期末)增根是一个数学用语,其定义为在方程变形时,有时可能产生不适合原方程的根.对于分式方程:2x−3+mxx2−9=3x+3.(1)若该分式方程有增根,则增根为.(2)在(1)的条件下,求出m的值,例3(2021春•平阴县期末)请阅读下面解方程(x2+1)2﹣2(x2+1)﹣3=0的过程.解:设x2+1=y,则原方程可变形为y2﹣2y﹣3=0.解得y1=3,y2=﹣1.当y=3时,x2+1=3,∴x=±.当y=﹣1时,x2+1=﹣1,x2=﹣2,此方程无实数解.∴原方程的解为:x1=,x2=﹣.我们将上述解方程的方法叫做换元法,请用换元法解方程:()2﹣2()﹣8=0.例4 (2020秋•河南期末)随着人们环保意识的增强,混动汽车也成了广大消费者的宠儿.某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为70元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.4元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?例5(2020秋•连山区期末)为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?【随堂练习】1.(2021秋•黔西南州期末)解方程:(1);(2).2.(2021秋•攸县期中)已知关于x的方程无解,求m的值.3.(2021秋•庆阳期末)庆阳香包又称“绌绌”,是甘肃庆阳的一种民俗物品.某商店准备用3000元购进A、B两种香包共150个,已知购买A种香包与购买B种香包的费用相同,且A种香包的单价是B种香包单价的2倍.(1)求A、B两种香包的单价各是多少元;(2)若计划用4500元的资金再次购进A、B两种香包共200个,已知A、B两种香包的单价不变,求A,B两种香包各购进多少个.4.(2021秋•铁西区期末)元旦将至,天猫某电商用4400元购入一批玩具盲盒,然后以每个60元的价格出售,很快售完.电商又以9600元的价格再次购入该商品.数量是第一次购入数量的1.6倍,售价每个上调了16元,进价每个也上调了16元.(1)该电商第一次购入的玩具盲盒每个进价是多少元?(2)该电商既要尽快售完第二次购入的玩具盲盒,又要使在这两次销售中获得的总利润不低于4000元.打算将第二次购入的部分盲盒按每个九折出售,最多可将多少个盲盒打折出售?知识点4 方程组(1)二元一次方程:含有两个未知数(元)并且未知数的次数是2的整式方程.(2) 二元一次方程组:由2个或2个以上的含有相同未知数的二元一次方程组成的方程组叫二元一次方程组.(3)二元一次方程的解:适合一个二元一次方程的两个未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有无数个解.(4)二元一次方程组的解:使二元一次方程组成立的未知数的值,叫做二元一次方程组的解.(5)①代入消元法、②加减消元法.【典例】例1(2021秋•甘州区校级期末)解方程组:(1);(2)例2(2021•饶平县校级模拟)已知关于x,y的方程组和有相同解,求(﹣a)b值.例3(2021秋•沙坪坝区校级期中)已知关于x,y的二元一次方程组的解满足x+y=2,求实数x,y,m的值.例4(2020秋•太原期末)某景点的门票价格如下表:(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?例5(2020•越秀区校级二模)今年是脱贫攻坚最后一年,某镇拟修一条连通贫困山区村子的公路,现有甲、乙两个工程队.若甲、乙合作,36天可以完成,需用600万元;若甲单独做20天后,剩下的由乙做,还需40天才能完成,这样所需550万元.(1)求甲、乙两队单独完成此项工程各需多少天?(2)求甲、乙两队单独完成此项工程各需多少万元?【随堂练习】1.(2021秋•芗城区校级期中)解下列方程组:(1);(2).2.(2021春•沈丘县期末)已知方程组与有相同的解,求m,n的值.3.(2021秋•长丰县月考)已知关于x,y的二元一次方程组.(1)当方程组的解为时,求a的值.(2)当a=﹣2时,求方程组的解.(3)小冉同学模仿第(1)问,提出一个新解法:将代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.4.(2021秋•宝山区校级月考)某汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知甲,乙两种货车运货情况如表:第一次第二次甲种货车(辆)25乙种货车(辆)36累计运货(吨)1328(1)甲、乙两种货车每辆可装多少吨货物?(2)王先生要租用该公司的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?5.(2021•济宁模拟)某超市第一次用6000元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍多20件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):甲 乙 进价(元/件) 20 28 售价(元/件)2640(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润? (3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多560元,则第二次乙商品是按原价打几折销售的?知识点5不等式(组)1. 用不等号连接起来的式子叫不等式;使不等式成立的未知数的值叫做不等式的解;一些使不等式成立的未知数的值叫做不等式的解集.求一个不等式的解的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质:(1)若<,则+<; (2)若>,>0则> (或> ); a b a c c b a b c ac bc c a cb(3)若>,<0则 < (或< ). 3.一元一次不等式:只含有一个未知数,且未知数的次数是一次且系数不等于0的不等式,称为一元一次不等式;一元一次不等式的一般形式为ax >b 或;解一元一次不等式的一般步骤:去分母、去括号 、移项、合并同类项、系数化为1.4.一元一次不等式组:几个含有相同未知数的一元一次不等式合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”;的解集是,即“大小小大中间找”;的解集是空集,即“大大小小取不了”. 6.求不等式(组)的特殊解:不等式(组)的解一般有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案. 7.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥答:检验所求解是否符合题意,写出答案(包括单位).a b c ac bc c a cb ax b <a b <x a x b <⎧⎨<⎩x a <x ax b >⎧⎨>⎩x b >x ax b>⎧⎨<⎩a x b <<x ax b <⎧⎨>⎩x【典例】例1(2020秋•肇源县期末)若0<m <1,m 、m 2、1m的大小关系是( )A .m <m 2<1mB .m 2<m <1mC .1m<m <m 2D .1m<m 2<m例2(2020秋•嵊州市期中)解不等式(组)并把解表示在数轴上 (1)3x +2>14; (2)1+x 2−2x+13≤1.例3(2020春•海珠区校级月考)解下列不等式: (1)2x ﹣1<﹣6; (2)x−12<4x−53;(3)解不等式组:{x −3(x −2)≥41+2x 3>x −1,并在数轴上表示它的解集.例4(2020秋•道里区期末)某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?【随堂练习】1.(2020秋•萧山区期中)解下列不等式 (1)3x ﹣4≤4+2(x ﹣2);(2)2+x 3>2x−15+12.(2020秋•江干区校级期中)求出不等式组的解集,并在数轴上表示出来. {5x −2>3(x +1)x−12≤1−1−x 33.(2020春•沙河口区期末)为了让居民早日用上天然气,市燃气公司要给某小区用户改装天然气.现有360户申请了但还未改装的用户,此外每天还有新的申请.已知燃气公司每个小组每天改装的数量相同,且每天新申请的户数也相同,若安排2个小组同时做,则30天可以改装完所有新、旧申请;若再增加3个小组同时做,则可以减少20天就改装完所有新、旧申请.(1)求该小区7天内有多少需要改装的新、旧申请用户?(2)如果要求在7天内改装完所有新、旧申请,但前3天只能安排4个小组改装,那么最后几天至少需要增加多少个小组,才能完成任务?4.(2020•广西)某市为创建“全国文明城市”,计划购买甲、乙两种树苗绿化城区,购买50棵甲种树苗和20棵乙种树苗需要5000元,购买30棵甲种树苗和10棵乙种树苗需要2800元.(1)求购买的甲、乙两种树苗每棵各需要多少元.(2)经市绿化部门研究,决定用不超过42000元的费用购买甲、乙两种树苗共500棵,其中乙种树苗的数量不少于甲种树苗数量的14,求甲种树苗数量的取值范围.(3)在(2)的条件下,如何购买树苗才能使总费用最低?综合运用1.(2020秋•常熟市期中)若关于x 的方程x+m 3=x −m2与方程3+4x =2(3﹣x )的解互为倒数,求m 的值.2.(2020秋•武都区期末)解方程: (1)x−12=4x 3;(2)5x+13−2x−16=1.3.(2020秋•武汉月考)解不等式组{3−2(x −1)<3x 1−x−13≥0,把其解集在数轴上表示出来,并写出它的整数解.4.(2020秋•白云区期中)已知方程x 2﹣(k +1)x +k ﹣1=0是关于x 的一元二次方程. (1)求证:对于任意实数k ,方程总有两个不相等的实数根; (2)若方程的一个根是2,求k 的值及方程的另一个根.5.(2020秋•朝阳县期末)某工厂生产一批小家电,2018年的出厂价是144元,2019年,2020年连续两年改进技术,降低成本,2020年出厂价调整为100元. (1)这两年出厂价下降的百分比相同,求平均下降率.(2)某商场今年销售这批小家电的售价为140元时,平均每天可销售20台,为了减少库存,商场决定降价销售,经调查发现小家电单价每降低5元,每天可多售出10台,如果每天盈利1250元,单价应降低多少元?6.(2020秋•鞍山期末)假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km 的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度. (2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?7.(2020秋•本溪期末)某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎.该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从三水荷花世界打车到大旗头古村,总里程为23千米,耗时30分钟,求小强需支付多少车费.8.(2020秋•长沙月考)我市创全国卫生城市,梅溪湖社区积极响应,决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱,若购买4个垃圾箱比购买5个温馨提示牌多350元,垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)如果该街道需购买温馨提示牌和垃圾箱共3000个.该街道计划费用不超过35万元,而且垃圾箱的个数不少于温馨提示牌的个数的1.5倍,求有几种可供选择的方案?并找出资金最少的方案,求出最少需多少元?。
第一轮复习第二章方程与不等式2.3方程组年级: 九年级 科目:数学:主备人:胡北平复习目标:1、会熟练用加减,代入消元法解二元一次方程组。
2、能用二元一次方程组解决实际问题。
复习重点:会熟练用加减,代入消元法解二元一次方程组 复习难点:能用二元一次方程组解决实际问题。
复习过程:一、知识点梳理1、让学生用3分钟时间把河南中考第19页内容填写完成,然后对照参考答案进行修正并进行二次记忆时间2分钟。
2、提问:二元一次方程组的解法有哪几种?解二元一次方程组的基本思想是什么?列二元一次方程组的一般步骤是什么?二.自学例题,第9页到第20页例2、例4、时间5分钟,教师答疑。
三、对应考点练习:考点一 考查基本概念(挑学生口答):1、若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,,则这个方程可以是________.(只要写出一个)2、下列方程组中,是二元一次方程组的有( )个①⎩⎨⎧=-+=9432b a b a ②2527x y x y ⎧+=⎪⎨⎪+=⎩,. ③⎩⎨⎧-==11b a ④ 1x y xy x y +=⎧⎨-=⎩ ⑤2,9;x y y z -=⎧⎨+=⎩A.1个 B.2个 C.3个 D.4个考点二:一元一次方程组的解法(两名学生板演)3、(2011年南京市)解方程组42 5.x y x y +=⎧⎨-=⎩,4、(2011年山东青岛)2536x y x y +=⎧⎨-=⎩,①.②考点三: 整体思想(学生口述其方法):5、 (2011年枣庄市)已知方程组⎩⎨⎧=+=-9.30531332b a b a 的解是⎩⎨⎧==2.13.8b a ,则方程组⎩⎨⎧=-++=--+9.30)1(5)2(313)1(3)2(2y x y x 的解是( ) (A) ⎩⎨⎧==2.13.8y x (B) ⎩⎨⎧==2.23.10y x (C) ⎩⎨⎧==2.23.6y x (D) ⎩⎨⎧==2.03.10y x考点四: 构造二元一次方程组解决问题(学生口述其方法):6、(2010年 成都)已知代数式1312a x y -与23b a b x y -+-是同类项,那么a b ,的值分别是( ) A .21a b =⎧⎨=-⎩,B .21a b =⎧⎨=⎩,C .21a b =-⎧⎨=-⎩,D .21a b =-⎧⎨=⎩,四、典例分析:(方案设计型实际问题)教师引导,学生小组分析交流,两名学生板演时间6分钟教师点评解疑。
第二章 方程与不等式第七讲 一次方程(组)【基础知识回顾】一、 等式的概念及性质:1、等式:用“=”连接表示 关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式 即:若a=b,那么a c= ,若a=b (c≠o )那么a c= 【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值 】二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的解4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。
】四、二元一次方程组及解法:1、 解二元一次方程组的基本思路是: ;2.解方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解 2、二元一次方程组的解应写成 五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【重点考点例析】 一、选择题1.一元一次方程2x=4的解是( )A .x=1 B .x=2 C .x=3 D.x=4x=ay=b 的形式2.已知方程组2535x yx y+=⎧⎨+=⎩,则x+y的值为()A.-1 B.0 C.2 D.3A.4150048000x yx y+=⎧⎨+=⎩B.4150068000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500648000x yx y+=⎧⎨+=⎩二、填空题12.方程组31x yx y+=⎧⎨-=⎩的解是.13.若方程组7353x yx y+=⎧⎨-=-⎩,则3(x+y)-(3x-5y)的值是.14.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为.15.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.三、解答题20.解方程组128 x yx y=+⎧⎨+=⎩.21.解方程组251x yx y+=⎧⎨-=⎩.【基础知识回顾】一、一元二次方程的定义:1、一元二次方程:含有个未知数,并且未知数最高次数是2的方程2、一元二次方程的一般形式:其中二次项是一次项是,是常数项【名师提醒:1、在一元二次方程的一般形式要特别注意强调a≠0这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正】二、一元二次方程的常用解法:1、直接开平方法:如果ax 2 =b 则X 2 = X1= X2=2、配方法:解法步骤:①、化二次项系数为即方程两边都二次项系数,②、移项:把项移到方程的边③、配方:方程两边都加上把左边配成完全平方的形式④、解方程:若方程右边是非负数,则可用直接开平方法解方程3、公式法:如果方程ax 2+bx+c=0(a≠0) 满足b 2-4ac≥0,则方程的求根公式为4、因式分解法:一元二次方程化为一般形式后,如果左边能分解因式,即产生A.B=0的形式,则可将原方程化为两个方程,即、从而得方程的两根【名师提醒:一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是法和法】三、一元二次方程根的判别式关于X的一元二次方程ax 2+bx+c=0(a≠0)根的情况由决定,我们把它叫做一元二次方程根的判别式,一般用符号表示①当时,方程有两个不等的实数根②当时,方程看两个相等的实数根方程有两个实数跟,则③当时,方程没有实数根【名师提醒:在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数】四、一元二次方程根与系数的关系:关于X的一元二次方程ax 2 +bx+c=0(a±0)有两个根分别为X1、X2则x1+x2 = x1x2 =【重点考点例析】一、选择题1.方程x2-5x=0的解是()A.x1=0,x2=-5 B.x=5 C.x1=0,x2=5 D.x=0 2.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为()A.1 B.-1 C.2 D.-23.已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根4.一元二次方程2x2-5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解6.已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.4 B.-4 C.1 D.-17.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥08.若关于x的方程x2-4x+m=0没有实数根,则实数m的取值范围是()A.m<-4 B.m>-4 C.m<4 D.m>49.关于x的一元二次方程(a-1)x2-2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.-110.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4 B.x-6=4 C.x+6=4 D.x+6=-4 11.用配方法解方程x2-2x-1=0时,配方后得的方程为()A.(x+1)2=0 B.(x-1)2=0 C.(x+1)2=2 D.(x-1)2=2二、填空题三、解答题21.选择适当的方法解下列方程:(1)27(23)28x -=; (2)223990y y--= (3)221x +=; (4)2(21)3(21)20x x ++++= 23.关于x 的一元二次方程为(m-1)x 2-2mx+m+1=0.(1)求出方程的根;(2)m 为何整数时,此方程的两个根都为正整数?24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25.要建一个面积为150m 2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为am ,另三边用竹篱笆围成,如图,如果篱笆的长为35m ,(1)求鸡场的长与宽各为多少?(2)题中墙的长度a 对题目的解起着怎样的作用?第九讲 分式方程【基础知识回顾】一、分式方程的概念分母中含有 的方程叫做分式方程【名师提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】二、分式方程的解法:1、解分式方程的基本思路是 把分式方程转化为整式方程:即分式方程 ﹥整式方程2、解分式方程的一般步骤:①、 ②、 ③、3、增根:转化 去分母 A B D E F在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。
第二章 方程(组)与不等式(组)【必刷题071】关于x 的方程mx 2m -1+(m -1)x -2=0如果是 一元一次方程,则其解为______________.【必刷题072】若以二元一次方程x+2y-b=0的解为坐标的点(x,y )都在直线121-+-=b x y上,则常数b=( ) A.21B.2C.-1D.1【必刷题073】若关于x ,y 的二元一次方程 ⎩⎨⎧2x +y =-3m +2,x +2y =4的解满足x +y >-32,求出满足条件的m 的所有正整数值.【必刷题074】若关于x 的方程kx 2-x -34=0有实数根,则实数k 的取值范围是( ) A.k =0 B .k ≥-13且k ≠0C .k ≥-13D .k >-13第二章 方程(组)与不等式(组)【必刷题075】关于x 的方程013)1(2=-++x x m 有两实根,则m 的取值范围是 .【必刷题076】关于x 的一元二次方程026)2(22=-++++k k x x k 有有一个根是0,则k= .【必刷题077】已知方程0120212=+-x x 的两个根分别为x 1,x 2,则2212021x x -的值为( ) A.1 B.-1 C.2021 D.-2021【必刷题078】关于x 的一元二次方程 x 2+(a 2-2a)x +a -1=0的两个实数根互为相 反数,则a 的值为( )A.2 B .0 C .1 D .2或0【必刷题079】已知关于x的一元二次方程(a2-3)x2-(a-1)x+1=0的两个实数根互为倒数,则a的值为( )A.2或-2 B.2 C.-2 D.0【必刷题080】已知m,n是方程x2+2x-5=0 的两个实数根,则m2-mn+3m+n=________.【必刷题081】若x1,x2是一元二次方程x2+x-3=0的两个实数根,则x32-4x21+17的值为( )A.-2 B.6 C.-4 D.4【必刷题082】已知a≥2,m2-2am+2=0,n2-2an+2=0,m≠n,则(m-1)2+(n-1)2的最小值是( )A.6 B.3 C.-3 D.0【必刷题083】解关于x的方程:2(1)20a x ax a--+=【必刷题084】解方程:3x2+2x-1x2-2x=0.【必刷题085】解方程:x-3x-2+1=32-x.【必刷题086】若不等式组⎩⎨⎧x+13<x2-1,x<4m无解,则m的取值范围为( )A.m≤2 B.m<2 C.m≥2 D.m>2【必刷题087】关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为( )A.-5<a<-3 B.-5≤a<-3 C.-5<a≤-3 D.-5≤a≤-3【必刷题088】已知关于x 的不等式3x -m +1>0的最小整数解为2,则实数m 的取值范围是________.【必刷题089】已知关于x 的不等式组无实数解,a 的取值范围是 .【必刷题090】若不等式-1≤2-x 的解集中x 的每一个值,都能使关于x 的不等式 3(x-1)+5>5x+2(m+x)成立,则m 的取值范围是 ( C ).【必刷题091】若关于x 的不等式mx -n >0的解集是x <35.则关于x 的不等式(m +n)x >n -m的解集是 .【必刷题092】若关于x 的不等式组有且只有2个整数解,则a 的取值范围是 .【必刷题093】已知不等式组的解集为x>-1,则k 的取值范围是 .【必刷题094】若不等式组的解集中的任意x,都能使不等式x-5>0成立,则a 的取值范围是 .【必刷题095】 已知不等式组⎩⎪⎨⎪⎧x 2+x +13>0,x +5a +43>43x +1+3a有且只有三个整数解,试求a 的取值范围.中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题096】若关于x 的不等式组中任意x 的值均不在4≤x ≤7范围内,求a 的取值范围.【必刷题097】若数a 使关于x 的不等式组⎩⎨⎧x 3-2≤14x -7,6x -2a>51-x有且仅有三个整数解,且使关于y 的分式方程1-2y y -1-a1-y =-3的解为正数,则所有满足条件的整数a 的值之和是多少?【必刷题098】关于x 的方程(k-1)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是 .中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题099】已知关于x 的一元二次方程x 2-kx+k-3=0的两个实数根分别为x 1,x 2,且+=5,则k 的值是?【必刷题100】已知关于x 的一元二次方程x 2-4x-2m+5=0有两个不相等的实数根. (1)求实数m 的取值范围;(2)若该方程的两个根都是符号相同的整数,求整数m 的值.【必刷题101】若关于x 的分式方程=3的解是非负数,则b的取值范围是 .若关于x 的分式方程=3无解,则b 的取值范围是 .若关于x 的分式方程=3有增根,则b 的取值范围是 .中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题102】若关于x的分式方程=有增根,则m的值为 .若关于x的分式方程=有无解,则m的值为 .若关于x的分式方程=的解是非负数,则b 的取值范围是 .【必刷题103】若x<2,且+|x-2|+x-1=0,则x=.【必刷题104】若分式方程-4=的解为整数,则整数a=.【必刷题105】若关于x的方程+=无解,则m的值为.若关于x的方程+=有增根,则m的值为.若关于x的方程+=的解是非负数,则m取值范围是 .中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题106】如果不等式组的解集为x>2,那么m的取值范围是?【必刷题107】已知关于x的不等式组无解,则实数a的取值范围是?【必刷题108】若关于x的不等式x+m<1只有3个正整数解,则m的取值范围是?【必刷题109】若不等式>-x-的解都能使不等式(m-6)x<2m+1成立,则实数m的取值范围是?【必刷题110】若关于x,y的二元一次方程组的解满足0<x-2y<1,求k的取值范围.中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题111】若关于x 的不等式组 有且只有三个整数解,求m 的取值范围.【必刷题112】关于x ,y 的二元一次方程组⎩⎨⎧mx +y =n ,x -ny =2m 的解是⎩⎨⎧x =0,y =2,则m +n 的值为 .【必刷题113】某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2 240元,则这种商品的进价是________元.【必刷题114】用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A ,B 两种型号的钢板共________块.中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题115】若关于x ,y 的二元一次方程组⎩⎨⎧x -3y =4m +3,x +5y =5的解满足x +y ≤0,则m 的取值范围是________.【必刷题116】下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为________.【必刷题117】对于实数a ,b ,定义关于“⊗”的一种运算:a ⊗b =2a +b ,例如3⊗4=2×3+4=10. (1)求4⊗(-3)的值;(2)若x ⊗(-y )=2,(2y )⊗x =-1,求x +y 的值.【必刷题118】关于x 的一元二次方程x 2-4x +m =0的两实数根分别为x 1,x 2,且x 1+3x 2=5,则m 的值为?中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题119】关于x的一元二次方程x2-(k -1)x-k+2=0有两个实数根x1,x2,若(x1-x2+2)(x1-x2-2)+2x1x2=-3,则k的值?【必刷题120】某校办厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件,若设这个百分数为x,则可列方程为____ ___【必刷题121】已知关于x的方程ax2+2x-3=0有两个不相等的实数根,则a的取值范围是________.【必刷题122】已知关于x的一元二次方程x2+(2m-1)x+m2-3=0有实数根.(1)求实数m的取值范围;(2)当m=2时,方程的根为x1,x2,求代数式(x21+2x1)(x22+4x2+2)的值.【必刷题123】解方程:xx-2-1=4x2-4x+4中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题124】关于x的一元二次方程x2-3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,求此时m的值.【必刷题125】若方程x2-2x-4=0的两个实数根为α,β,则α2+β2的值为?【必刷题126】若α,β是关于x的一元二次方程x2-2x+m=0的两实根,且1α+1β=-23,则m等于?中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题127】已知a ,b 是方程x 2+x -3=0的两个实数根,则a 2-b +2 019的值是?【必刷题128】设a ,b 是方程x 2+x -2 019=0的两个实数根,则(a -1)(b -1)的值为 ________.【必刷题129】已知x 1,x 2是关于x 的一元二次方程x 2+2x +k -1=0的两个实数根, 且x 21+x 22-x 1x 2=13,则k 的值为________.【必刷题130】已知x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,且满足(x 1-1)(x 2-1)=8k 2,则k 的值为 ________.【必刷题131】已知关于x 的一元二次方程 x 2-6x +(4m +1)=0有实数根. (1)求m 的取值范围;(2)若该方程的两个实数根为x 1,x 2, 且|x 1-x 2|=4,求m 的值.中考数学总复习必刷题专项训练第二章 方程(组)与不等式(组)【必刷题132】 关于x 的方程k 2x -4-1=x x -2的解为正数,则k 的取值范围是________.【必刷题133】 已知关于x 的分式方程2x -mx -3=1的解是非正数,则m 的取值范围是________.【必刷题134】若关于x 的分式方程x x -2+2m2-x =2m 有增根,则m 的值为________. 若关于x 的分式方程x x -2+2m 2-x=2m 无解,则m 的值为________. 若关于x 的分式方程x x -2+2m 2-x=2m 的解为非负数,则m 的值为________.中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题135】关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为?【必刷题136】某学校计划购买A、B两种型号的小黑板共60块,购买一块A型小黑板100元,购买一块B型小黑板80元,要求总费用不超过5 250元,并且购买A型小黑板的数量至少占总数量的13,请你通过计算,求出购买A、B 两种型号的小黑板有哪几种方案?【必刷题137】甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3 000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7 800元,那么甲至少加工了多少天?中考数学总复习必刷题专项训练第二章方程(组)与不等式(组)【必刷题138】定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[-1.2]=-2;②[a-1]=[a]-1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是________(写出所有正确结论的序号).【必刷题139】若关于x,y的方程组⎩⎨⎧3x-5y=2m3x+5y=m-18,的解满足x<0且y<0,求m的范围.【必刷题140】已知不等式组⎩⎪⎨⎪⎧x2+x+13>0,x+5a+43>43x+1+3a有且只有五个整数解,试求a的取值范围.。
第二章 方程(组)与不等式(组)课时7.一次方程及方程组【考点链接】一、等式与方程的有关概念1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程 的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1. 二、二元一次方程(组)及解法1.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.2. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组.3.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.4.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解. 5. 解二元一次方程的方法步骤: 二元一次方程组 方程.消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种. 6.易错知识辨析:(1)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘 以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏 乘没有分母的项;③解方程时一定要注意“移项”要变号.(2)二元一次方程有无数个解,它的解是一组未知数的值;(3)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值; (4)利用加减法消元时,一定注意要各项系数的符号.【河北三年中考试题】1.(2008年,3分)图8所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,消元转化则一块巧克力的质量是 g .2.(09,3分)如图9,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是 cm . 3.(2010年,2分)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是A .48)12(5=-+x xB .48)12(5=-+x xC .48)5(12=-+x xD .48)12(5=-+x x 19.(2011)(本小题满分8分)已知2x y =⎧⎪⎨=⎪⎩x ,yy a =+的解. 求(a +1)(a -1)+7的值22.(2011)(本小题满分8分)甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.⑴问乙单独整理多少分钟完工?⑵若乙因式作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工? 20.(2012)(本小题满分8分)如图10 ,某市A ,B 两地之间有两条公路,一条是市区公路AB ,另一条是外环公路AD -DC -CB 这两条公路围成等腰梯形ABCD ,其中CD ∥AB ,AB ︰AD ︰DC = 10︰5︰2. (1)求外环公路总长和市区公路总长的比;(2)某人驾车从A 地出发,沿市区公路去B 地,平均速度是40km/h .返回时沿外环公路行驶,平均速度是80km/h .结果比去时少用了110h .求市区公路总长.课时8.一元二次方程及其应用【考点链接】1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数,图9图8图10市区公路叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用 直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二 次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项, 右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)2b x b ac a-=-≥.(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x . (3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.4. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .5.列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。
【河北三年中考试题】1.(2008年,2分)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=2.(2010年,3分)已知x = 1是一元二次方程02=++n mx x 的一个根,则 222n mn m ++的值为 . 8.(2012)用配方法解方程x 2+4x +1=0,配方后的方程是( )A .(x +2)2=3B .(x -2)2=3C . (x -2)2=5D .(x +2)2=5 21、(2014)嘉淇同学用配方法推导一元二次方程ax ²+bx+c=0(a ≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:(1)嘉淇的解法从第 步开始出现错误;事实上,当b 2-4ac>0时,方程ax ²+bx+c=0(a ≠0)的求根公式是 。
(2)用配方法解方程:x 2-2x-24=012. (2015)若关于x 的方程022=++a x x 不存在...实数根,则a 的取值范围是( ) A.a<1 B.a>1 C.a ≤1 D.a ≥1课时9.分式方程及其应用【考点链接】1.分式方程:分母中含有 的方程叫分式方程. 2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程; (2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答. 4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 . 5.列分式方程解应用题中常用的数量关系及题型 (1)数字问题(包括日历中的数字规律)①设个位数字为c ,十位数字为b ,百位数字为a ,则这个三位数是 ; ②日历中前后两日差 ,上下两日差 。
(2)体积变化问题。
(3)打折销售问题①利润= -成本; ②利润率= ×100%. (4)行程问题。
(5)教育储蓄问题①利息= ; ②本息和= =本金×(1+利润×期数); ③利息税= ; ④贷款利息=贷款数额×利率×期数。
6.易错知识辨析:(1) 去分母时,不要漏乘没有分母的项. (2) 解分式方程的重要步骤是检验。
【河北三年中考试题】 1.(2010年,8分)解方程:1211+=-x x . 7.(2013)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10m ,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x +10C .120x -10=100x D .120x +10=100x课时10.一元一次不等式(组)【考点链接】1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质:(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a c b); (3)若a >b ,c <0则ac bc (或c a cb).3.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.4.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”;x ax b >⎧⎨>⎩的解集是x b >,即“大大取大”;x ax b>⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”;x ax b <⎧⎨>⎩的解集是空集,即“大大小小取不了”. 6.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案. 7.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义. (2)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或bx a <)当0a <时,b x a <(或bx a>)【河北三年中考试题】1.(2008年,2分)把某不等式组中两个不等式的解集表示在数轴上,如图1所示, 则这个不等式组可能是( ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,2.(2010年,2分)把不等式2x -< 4的解集表示在数轴上,正确的是( )A B DC图14.(2012)下列各数中为不等式组23040xx->⎧⎨-<⎩,解的是()A.-1B.0 C.2 D.4。