实验二-基尔霍夫定律和叠加原理的验证(实验报告标准答案)
- 格式:doc
- 大小:308.50 KB
- 文档页数:9
基尔霍夫定律和叠加原理的验证-实验报告本科实验报告20XX 年11 月5 日实验报告一、实验目的和要求实验目的:1、验证基尔霍夫电流、电压定律的正确性,加深对基尔霍夫定律的理解。
2、验证叠加定理及其适用范围。
3、掌握万用表、直流电流表及稳压电源的使用方法。
实验要求:1,基尔霍夫定律实验研究:实验电路图如图1所示,实验前先任意设定三条支路和三个闭合回路的电流正方向。
分别将两路直流稳压源接入点路。
按照电路板实际情况及要求进行操作。
将直流稳压源接入电路中,测量各个节点之间的电压值,并作出记录,与计算值相比较,得到相应的实验所需结果。
2,叠加定律实验研究:实验电路图如图2所示,电压源,电流源,电阻,稳压二极管组成。
在A、B之间接入电压源,开关S断开,测量各点电压与各支路电流,研究电压源单独工作时电路各部分状况,将测量数据记录于表中。
将A、B间短路,开关S接通,接入电流源,再次测量各点电压与各支路电流,研究电流源单独作用时电路各部分状况,将测量结果记录于表中。
将电压源US和电流源IS同时接通,重复上述测量,将测量数据记录于表中。
根据表1中的测量数据验证叠加定律是否成立。
将AD中的稳压二极管换成线性电阻,重复以上三步,分析实验数据。
装订线二、实验内容和原理实验原理:1,基尔霍夫电流定律:对电路中任一节点而言,应有ΣI=0。
2,基尔霍夫电压定律:对电路中任一闭合回路而言,应有ΣU=0。
3,叠加定理:若干个电源在某线性网络的任一支路产生的电流或在任意两个节点之间产生的电压,等于这些电源分别单独作用于该网络时,在该部分所产生的电流与电压的代数和。
但是,对于非线性网络,叠加定律将不再适用,也不能用叠加定律计算或处理功率,能量等二次的物理量。
实验内容:详见“操作方法和实验步骤”。
装订线三、主要仪器设备1,直流稳压电源:HY3002D-3 三路直流稳压电源为三位数字电压、电流显示的含有三路独立的电源输出的直流稳压电源,其中两路为0~30V连续可调,最大输出电流分别为2A;一路固定5V输出,最大输出电流3A。
实验基尔霍夫定律和叠加原理的验证一、实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。
3.进一步掌握仪器仪表的使用方法。
二、实验原理1.基尔霍夫定律基尔霍夫定律是电路的基本定律。
它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
(1)基尔霍夫电流定律(KCL)在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。
(2)基尔霍夫电压定律(KVL)在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。
基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。
当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。
基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。
2.叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。
某独立源单独作用时,其它独立源均需置零。
(电压源用短路代替,电流源用开路代替。
)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。
三、实验设备与器件1.直流稳压电源 1 台2.直流数字电压表1 块3.直流数字毫安表1 块4.万用表 1 块5.实验电路板1 块四、实验内容1.基尔霍夫定律实验按图2-1接线。
图2-1 基尔霍夫定律实验接线图U2=12V。
(3)将电路实验箱上的直流数字毫安表分别接入三条支路中,测量支路电流,数据记入表2-1。
此时应注意毫安表的极性应与电流的假定方向一致。
(4)用直流数字电压表分别测量两路电源及电阻元件上的电压值,数据记入表2-1。
2.叠加原理实验(1)线性电阻电路按图2-2接线,此时开关K 投向R 5(330Ω)侧。
实验二基尔霍夫定律及叠加原理的验证一.实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2.学会用电流插头、插座测量各支路电流的方法。
3.验证线性电路叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解。
二.实验原理基尔霍夫定律是电路的基本定律,测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。
即对电路中的任一个节点而言,应有∑I=0;对任何一个闭合回路而言,应有∑U=0。
运用上述定律时必须注意电流的正方向,此方向可预先任意设定。
叠加原理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。
线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K倍。
三.实验设备1.直流电压表0~20V2.直流毫安表3.恒压源(+6V,+12V,0~30V)4.实验线路板四.实验电路基尔霍夫定律实验线路如图2—1所示叠加原理实验线路如图2-2所示。
五.实验内容基尔霍夫定律1.实验前先任意设定三条支路的电流参考方向,如图中的I1、I2、I3所示,并熟悉线路结构,掌握各开关的操作使用方法。
2.分别将E1、E2两路直流稳压源(E1为+6V,+12V切换电源,E2接0~30V可调直流稳压源)接入电路,令E1=6V,E2=12V。
3.熟悉电源插头的结构,将电流插头的两端接至数字毫安表的“+、-”两端。
4.将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。
5.用直流数字电压表分别测量两路电源及电阻元件上的电压值,记入数据表2-1中叠加原理1.E1为+6V、+12V切换电源,取E1=+12V,E2为可调直流稳压电源调至+6V;2.令E1电源单独作用时(将开关K1投向E1侧,开关K2投向短路侧),用直流电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,3.令E2电源单独作用时(将开关K1投向短路侧,开关K2投向E2侧),重复实验步骤2的测量和记录。
(1)实验前,可任意假定三条支路 向。
图2-1中的电流 13的方CB 和 F B CE Q。
①ADEFA 、 BADU 1 6VR 4路的绕行方B 闭合回路的绕行方向可设为R 5U 2 12V实验二基尔霍夫定律和叠加原理的验证一、 实验目的1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2. 验证线性电路中叠加原理的正确性及其适用范围, 加深对线性电路的叠加 性和齐次性的认识和理解。
3. 进一步掌握仪器仪表的使用方法。
二、 实验原理1. 基尔霍夫定律基尔霍夫定律是电路的基本定律。
它包括基尔霍夫电流定律 (KCL )和基尔霍 夫电压定律(KVL )。
(1) 基尔霍夫电流定律(KCL )在电路中,对任一结点,各支路电流的代数和恒等于零,即习二0。
(2) 基尔霍夫电压定律(KVL )在电路中,对任一回路,所有支路电压的代数和恒等于零,即二0。
基尔霍夫定律表达式中的电流和电压都是代数量, 运用时,必须预先任意假 定电流和电压的参考方向。
当电流和电压的实际方向与参考方向相同时, 取值为 正;相反时,取值为负。
基尔霍夫定律与各支路元件的性质无关, 无论是线性的或非线性的电路,还 是含源的或无源的电路,它都是普遍适用的。
2. 叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中 每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。
某独立源单独作用时,其它独立源均需置零。
(电压源用短路代替,电流源用开路代替。
)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加 或减小K 倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压 值)也将增加或减小K 倍。
三、实验设备与器件1•直流稳压电源 1台 2.直流数字电压表 1块 3.直流数字毫安表 1块 4.万用表1块 5.实验电路板1块四、实验内容1. 基尔霍夫定律实验 按图2-1接线。
I 3mA1 / 6510 Q方个闭I 1R 1 F ------------ ►—[ ! --------------- ① 分别将两路直流稳压电源接入电路, ② 令电源U 1单独作用, 及各电阻元件两]6V ■丿 (mA ——图3.42厶心 入电路,令 I U 1=12V ,U k =?V 。
实验基尔霍夫定律和叠加原理的验证欧阳歌谷(2021.02.01)一、实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。
3.进一步掌握仪器仪表的使用方法。
二、实验原理1.基尔霍夫定律基尔霍夫定律是电路的基本定律。
它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
(1)基尔霍夫电流定律(KCL)在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。
(2)基尔霍夫电压定律(KVL)在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。
基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。
当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。
基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。
2.叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。
某独立源单独作用时,其它独立源均需置零。
(电压源用短路代替,电流源用开路代替。
)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。
三、实验设备与器件1.直流稳压电源 1 台2.直流数字电压表1 块3.直流数字毫安表1 块4.万用表 1 块5.实验电路板1 块四、实验内容1.基尔霍夫定律实验按图2-1接线。
向。
图2-1中的电流I 1、I 2、I 3的方向已设定,三个闭合回路的绕行方向可设为ADEFA 、BADCB 和FBCEF 。
(2)分别将两路直流稳压电源接入电路,令U 1=6V ,U 2=12V 。
(3)将电路实验箱上的直流数字毫安表分别接入三条支路中,测量支路电流,数据记入表2-1。
(1)实验前,可任意假定三条支路 11、12、I 3 的 CB *向。
图2-?中的电流 ADEFA 、 BADR 4路的绕行方B 新亍方向可设为+U 2 12VR 5实验基尔霍夫定律和叠加原理的验证一、 实验目的1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2. 验证线性电路中叠加原理的正确性及其适用范围, 加深对线性电路的叠加 性和齐次性的认识和理解。
3. 进一步掌握仪器仪表的使用方法。
二、 实验原理1. 基尔霍夫定律基尔霍夫定律是电路的基本定律。
它包括基尔霍夫电流定律 (KCL )和基尔霍 夫电压定律(KVL )。
(1) 基尔霍夫电流定律(KCL )在电路中,对任一结点,各支路电流的代数和恒等于零,即习二0。
(2) 基尔霍夫电压定律(KVL )在电路中,对任一回路,所有支路电压的代数和恒等于零,即二0。
基尔霍夫定律表达式中的电流和电压都是代数量, 运用时,必须预先任意假 定电流和电压的参考方向。
当电流和电压的实际方向与参考方向相同时, 取值为 正;相反时,取值为负。
基尔霍夫定律与各支路元件的性质无关, 无论是线性的或非线性的电路,还 是含源的或无源的电路,它都是普遍适用的。
2. 叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中 每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。
某独立源单独作用时,其它独立源均需置零。
(电压源用短路代替,电流源用开路代替。
)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加 或减小K 倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压 值)也将增加或减小K 倍。
三、实验设备与器件1•直流稳压电源 1台 2.直流数字电压表 1块 3.直流数字毫安表 1块 4.万用表1块 5.实验电路板1块四、实验内容1. 基尔霍夫定律实验 按图2-1接线。
510 QR 3n+mA1 / 6 I 31mA 匸① 分别将两路直流稳压电源接入电路,② 令电源U 1单独作用,BC 短接,,i 元件两端电压,数据记入表2-绊-_T表2-2叠加原理实验数据(12及各电阻〕6V 测量项目 实验内容E U 1单独作用 U 1 U 2 R 』 (V)-r~(mA)510Q(V)U 2单独作用图2-2叠 R 2124—2V ,U k =6V 。
实验二基尔霍夫定律和叠加原理的验证一、实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。
3.进一步掌握仪器仪表的使用方法。
二、实验原理1.基尔霍夫定律基尔霍夫定律是电路的基本定律。
它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
(1)基尔霍夫电流定律(KCL)在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。
(2)基尔霍夫电压定律(KVL)在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。
基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。
当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。
基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。
2.叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。
某独立源单独作用时,其它独立源均需置零。
(电压源用短路代替,电流源用开路代替。
)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。
三、实验设备与器件1.直流稳压电源 1 台2.直流数字电压表 1 块3.直流数字毫安表 1 块4.万用表 1 块5.实验电路板 1 块四、实验内容1.基尔霍夫定律实验按图2-1接线。
图2-1 基尔霍夫定律实验接线图(1)实验前,可任意假定三条支路电流的参考方向及三个闭合回路的绕行方向。
图2-1中的电流I1、I2、I3的方向已设定,三个闭合回路的绕行方向可设为ADEFA、BADCB和FBCEF。
(2)分别将两路直流稳压电源接入电路,令U1=6V,U2=12V。
南昌大学电工学实验报告学生姓名:王学瑞学号 61 专业班级:本硕111班实验时间: 16 时 00 分第三周星期二指导老师:郑朝丹成绩:基尔霍夫定律和叠加原理的验证实验目的:1.验证基尔霍夫定的正确性,加深对基尔霍夫定律的理解。
2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。
3.进一步掌握仪器仪表的使用方法。
实验原理:1.基尔霍夫定律基尔霍夫定律是电路的基本定律。
它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
(1)基尔霍夫电流定律(KCL)在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。
(2)基尔霍夫电压定律(KVL)在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。
基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。
当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。
基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。
2.叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个南昌大学电工学实验报告学生姓名:王学瑞学号 61 专业班级:本硕111班实验时间: 16 时 00 分第三周星期二指导老师:郑朝丹成绩:独立电源单独作用时在该支路中所产生的电流或电压的代数和。
某独立源单独作用时,其它独立源均需置零。
(电压源用短路代替,电流源用开路代替。
)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。
实验设备与器件:1.基尔霍夫定律电路板 1 块;导线若干2.直流稳压电源两路3.直流数字电压表,电流表4.万用表实验内容:1.基尔霍夫定律实验(1)实验前,可任意假定三条支路电流的参考方向及三个闭合回路的绕行方南昌大学电工学实验报告学生姓名:王学瑞学号 61 专业班级:本硕111班实验时间: 16 时 00 分第三周星期二指导老师:郑朝丹成绩:向。
实验一(一)基尔霍夫定律一、实验目的1.对基尔霍夫电压定律和电流定律进行验证,加深对两个定律的理解。
2.学会用电流插头、插座测量各支路电流的方法。
二、原理说明KCL和KVL是电路分析理论中最重要的的基本定律,适用于线性或非线性电路、时变或非变电路的分析计算。
KCL和KVL是对于电路中各支路的电流或电压的一种约束关系,是一种“电路结构”或“拓扑”的约束,与具体元件无关。
而元件的伏安约束关系描述的是元件的具体特性,与电路的结构(即电路的接点、回路数目及连接方式)无关。
正是由于二者的结合,才能衍生出多种多样的电路分析方法(如节点法和网孔法)。
KCL指出:任何时刻流进和流出任一个节点的电流的代数和为零,即Σi(t)=0或ΣI=0KVL指出:任何时刻任何一个回路或网孔的电压降的代数和为零,即Σu(t)=0或ΣU=0运用上述定律时必须注意电流的正方向,此方向可预先任意设定。
实验线路如图1所示。
图11.实验前先任意设定三条支路的电流参考方向,如图中的I1、I2、I3所示,并熟悉线路结构,掌握各开关的操作使用方法。
2.分别将两路直流稳压源接入电路,令E1=6V,E2=12V,其数值要用电压表监测。
3.熟悉电流插头和插孔的结构,先将电流插头的红黑两接线端接至数字毫安表的“+、-”极;再将电流插头分别插入三条支路的三个电流插孔中,读出相应的电流值,记入表1中。
4.用直流数字电压表分别测量两路电源及电阻元件上的电压值,数据记入表1中。
五、实验注意事项1.两路直流稳压源的电压值和电路端电压值均应以电压表测量的读数为准,电源表盘指示只作为显示仪表,不能作为测量仪表使用,恒压源输出以接负载后为准。
2.谨防电压源两端碰线短路而损坏仪器。
3.若用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性。
当电表指针出现反偏时,必须调换电流表极性重新测量,此时读得的电流值必须冠以负号。
六、预习思考题1.根据图1-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定毫安表和电压表的量程。
叠加原理实验报告篇一:2.基尔霍夫定律和叠加原理的验证(实验报告答案)含数据处理实验二基尔霍夫定律和叠加原理的验证一、实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。
3.进一步掌握仪器仪表的使用方法。
二、实验原理1.基尔霍夫定律基尔霍夫定律是电路的基本定律。
它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
(1)基尔霍夫电流定律(KCL)在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。
(2)基尔霍夫电压定律(KVL)在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。
基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。
当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。
基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。
2.叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。
某独立源单独作用时,其它独立源均需置零。
(电压源用短路代替,电流源用开路代替。
)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K 倍。
三、实验设备与器件1.直流稳压电源 1 台2.直流数字电压表 1 块3.直流数字毫安表 1 块4.万用表 1 块5.实验电路板1 块四、实验内容1.基尔霍夫定律实验按图2-1接线。
图2-1 基尔霍夫定律实验接线图(1)实验前,可任意假定三条支路电流的参考方向及三个闭合回路的绕行方向。
图2-1中的电流I1、I2、I3的方向已设定,三个闭合回路的绕行方向可设为ADEFA、BADCB 和FBCEF。
实验二-基尔霍夫定律和叠加原理的验证(实验报告答案)————————————————————————————————作者:————————————————————————————————日期:实验二基尔霍夫定律和叠加原理的验证一、实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。
3.进一步掌握仪器仪表的使用方法。
二、实验原理1.基尔霍夫定律基尔霍夫定律是电路的基本定律。
它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
(1)基尔霍夫电流定律(KCL)在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。
(2)基尔霍夫电压定律(KVL)在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。
基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。
当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。
基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。
2.叠加原理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。
某独立源单独作用时,其它独立源均需置零。
(电压源用短路代替,电流源用开路代替。
)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。
三、实验设备与器件1.直流稳压电源 1 台2.直流数字电压表 1 块3.直流数字毫安表 1 块4.万用表 1 块5.实验电路板 1 块四、实验内容1.基尔霍夫定律实验按图2-1接线。
(1)实验前,可任意假定三条支路电流的参考方向及三个闭合回路的绕行方 向。
图2-1中的电流I 1、I 2、I 3的方向已设定,三个闭合回路的绕行方向可设为ADEFA 、BADCB 和FBCEF 。
(2)分别将两路直流稳压电源接入电路,令U 1=6V ,U 2=12V 。
(3)将电路实验箱上的直流数字毫安表分别接入三条支路中,测量支路电流, 数据记入表2-1。
此时应注意毫安表的极性应与电流的假定方向一致。
(4)用直流数字电压表分别测量两路电源及电阻元件上的电压值,数据记 入表2-1。
表2-1 基尔霍夫定律实验数据被测量 I 1(mA) I 2(mA) I 3(mA) U 1(V) U 2(V) U F A (V) U A B (V) U A D (V) U CD (V) U DE (V) 计算值 1.93 5.99 7.92 6.00 12.00 0.98 -5.99 4.04 -1.97 0.98 测量值 2.08 6.38 8.43 6.05 11.990.93-6.244.02-2.080.97相对误差 7.77%6.51%6.43%0.8%-0.08% -5.10% 4.17% -0.50% -5.58% -1.02%2.叠加原理实验(1)线性电阻电路按图2-2接线,此时开关K 投向R 5(330Ω)侧。
图3.42.图2-1 基尔霍夫RRI I61UUmA mA mA +-+-+-+-+-I RRR513351511A BCD EF图2-2 叠加原RRI I61UUmA mA mA+-+-+-+-+-I RR51510511A BC DEFR 33IN4007K①分别将两路直流稳压电源接入电路,令U1=12V,U2=6V。
②令电源U1单独作用,BC短接,用毫安表和电压表分别测量各支路电流及各电阻元件两端电压,数据记入表2-2。
表2-2 叠加原理实验数据(线性电阻电路)测量项目实验内容U1(V)U2(V)I1(mA)I2(mA)I3(mA)U A B(V)U C D(V)U A D(V)U D E(V)U F A(V)U1单独作用12. 0408. 69-2. 42 6. 30 2. 420. 80 3. 23 4. 44 4. 44U2单独作用0 6.05- 1. 19 3. 58 2. 37- 3. 59-1. 18 1. 21- 0. 60- 0. 60U1、U2共同作用12. 04 6.057. 55 1. 16 8.62- 1. 16- 0. 38 4. 44 3. 84 3. 842U2单独作用012.03- 2. 397. 18 4. 75- 7. 17- 2 . 37 2. 44- 1. 21- 1. 21③令U2单独作用,此时FE短接。
重复实验步骤②的测量,数据记入表2-2。
④令U1和U2共同作用,重复上述测量,数据记入表2-2。
⑤取U2=12V,重复步骤③的测量,数据记入表2-2。
(2)非线性电阻电路按图2-2接线,此时开关K投向二极管IN4007侧。
重复上述步骤①~⑤的测量过程,数据记入表2-3。
表 2-3 叠加原理实验数据(非线性电阻电路)测量项目实验内容U1(V)U2(V)I1(mA)I2(mA)I3(mA)U A B(V)U C D(V)U A D(V)U D E(V)U F A(V)U1单独作用12.0308.73- 2.56 6.19 2. 570. 60 3.17 4. 47 4. 47U2单独作用0 6.060000- 6 000U1、U2共同作用12.03 6.067. 9507. 950- 1. 94 4.04 4. 03 4. 042U2单独作用012.050000- 12000(3) 判断电路故障按图2-2接线,此时开关K投向R5(330Ω)侧。
任意按下某个故障设置按键,重复实验内容④的测量。
数据记入表2-4中,将故障原因分析及判断依据填入表2-5。
表 2-4 故障电路的实验数据测量项目实验内容U1、U2共同作用U1(V)U2(V)I1(mA)I2(mA)I3(mA)U A B(V)U C D(V)U A D(V)U D E(V)U F A(V)故障一12.08 6.04 0 3.26 3.26 -3.26 -1.06 1.63 0 10.34 故障二12.05 6.07 11.67 4.35 16.02 -4.35 -1.42 0 5.97 5.97 故障三12.03 6.02 7.81 0 7.81 0 -2.02 3.98 3.98 3.98表 2-5 故障电路的原因及判断依据原因和依据故障内容故障原因判断依据故障一FA之间开路I1=0;U F A=10.34 V故障二AD之间电阻短路UAD= 0 ;I3=16.02 mA故障三CD之间电阻开路I2= 0;U AB = 0 ;U CD =2.02V五、实验预习1. 实验注意事项(1)需要测量的电压值,均以电压表测量的读数为准。
U1、U2也需测量,不应取电源本身的显示值。
(2)防止稳压电源两个输出端碰线短路。
(3)用指针式电压表或电流表测量电压或电流时,如果仪表指针反偏,则必须调换仪表极性,重新测量。
此时指针正偏,可读得电压或电流值。
若用数显电压表或电流表测量,则可直接读出电压或电流值。
但应注意:所读得的电压或电流值的正确正、负号应根据设定的电流参考方向来判断。
(4)仪表量程的应及时更换。
2. 预习思考题(1)根据图2-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表2-1中,以便实验测量时,可正确地选定毫安表和电压表的量程。
答:基尔霍夫定律的计算值根据基尔霍夫定律列方程如下:(1) I1 + I2 = I3 (KCL)(2) (510+510)I1 + 510 I3 = 6 (KVL)(3) (1000+330)I3 + 510 I3 = 12 (KVL)由方程(1)、(2)、(3)解得:I1 = 0.00193A= 1.93 mAI2 = 0.00599A= 5.99 mAI 3 = 0.00792A= 7.92mA U F A =510⨯0.00193=0.98 V U A B =-1000⨯0.00599 =-5.99V U AD =510⨯0.00792=4.04V U DE =510⨯0.00193=0.98 VU CD =-330 ⨯0.00599 =-1.97V(2)实验中,若用指针式万用表直流毫安档测各支路电流,在什么情况下可能出现指针反偏,应如何处理?在记录数据时应注意什么?若用直流数字毫安表进行测量时,则会有什么显示呢?答:指针式万用表万用表作为电流表使用,应串接在被测电路中。
并注意电流的方向。
即将红表笔接电流流入的一端(“+”端),黑表笔接电流流出的一端(“-”端)。
如果不知被测电流的方向,可以在电路的一端先接好一支表笔,另一支表笔在电路的另—端轻轻地碰一下,如果指针向右摆动,说明接线正确;如果指针向左摆动(低于零点,反偏),说明接线不正确,应把万用表的两支表笔位置调换。
记录数据时应注意电流的参考方向。
若电流的实际方向与参考方向一致,则电流取正号 ,若电流的实际方向与参考方向相反,则电流取负号。
若用直流数字毫安表进行测量时,则可直接读出电流值。
但应注意:所读得电流值的正、负号应根据设定的电流参考方向来判断。
(3)实验电路中,若有一个电阻器改为二极管,试问叠加原理的叠加性与齐次性还成立吗?为什么?答: 电阻改为二极管后,叠加原理不成立。
因为二极管是非线性元件,含有二极管的非线性电路,不符合叠加性和齐次性。
六、实验报告1. 根据实验数据,选定实验电路图2.1中的结点A ,验证KCL 的正确性。
答:依据表2-1中实验测量数据,选定结点A ,取流出结点的电流为正。
通过计算验证KCL 的正确性。
I 1 = 2. 08 mA I 2 = 6. 38 mA I 3 = 8. 43mA 即 8.43 2.08 6.380.030--=-≈结论: I 3-I 1 -I 2 = 0 , 证明基尔霍夫电流定律是正确的。
2. 根据实验数据,选定实验电路图2.1中任一闭合回路,验证KVL 的正确性。
答:依据表2-1中实验测量数据,选定闭合回路ADEFA ,取逆时针方向为回路的绕行方向电压降为正。
通过计算验证KVL 的正确性。
U AD = 4.02 V U DE = 0. 97 V U FA = 0. 93 V U 1= 6. 05V6.050.97 4.020.930.030---=≈结论:1DE AD AF 0U U U U ---= , 证明基尔霍夫电压定律是正确的。
同理,其它结点和闭合回路的电流和电压,也可类似计算验证。
电压表和电流表的测量数据有一定的误差,都在可允许的误差范围内。