2008年湖北黄冈中考数学试卷
- 格式:doc
- 大小:149.00 KB
- 文档页数:7
湖北黄冈市中考数学试卷附参考标准答案及评分标准作者: 日期:2008年湖北省黄冈市中考数学试题(考试时间120分钟 满分120分)2•分解因式:a 2 a ____________ ;化简:5、X 2、&计算:(2a)g 爲3 4 3•若点P (2, k 1)在第一象限,则k 的取值范围是 ______________ ;直线y 2x b 经过点(1,3),则b __________ ;抛物线y 2(x 2)23的对称轴为直线 _____________则它的侧面积为 ______________ cm 2.5•如图,△ ABC 和△ DCE 都是边长为2的等边三角形, 在同一条直线上,连接 BD ,则BD 的长为 ____________ .二、精心选一选,相信你选得准! (A , B , C , D 四个答案中有且只有一个是正确的,请将题中唯一正确的答案序号填入题后的括号内,不填、填错或多填均不得分,本题满分 12分)6•要了解一批电视机的使用寿命,从中任意抽取 30台电视机进行试验,在这个问题中,30是( )A. 个体B.总体 c.样本容量D.总体的一个样本7. 计算a b a b 的结果为( )b aaa ba ba ba bA.B.C.D.-bbaa& 已知反比例函数 y2,下列结论不正确.的是()A.图象必经过点(1,) B . y 随x 的增大而减少C.图象在第一、三象限内D.若x 1,则y 29 .如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是 同一种几何图形,则另一个几何体是( )A.长方体B.圆柱体C.球体D.三棱柱一、细心填一填,相信你填得对!1 •计算: 3________ ;(每空3分,共33分)__________ ; cos45。
4.已知圆锥的底面直径为4cm,其母线长为3cm,三、多项选择题,相信你选得全!(共3个小题,每小题3分,共9分,每小题至少有两个答案是正确的,全部选对得3分,对而不全的酌情给分,有对有错或不选均得0分)10.下列说法中正确的是(下列命题是真命题的是(一组数据2, 1,1 ,2的方差是3 要了解一批新型导弹的性能,采用抽样调查的方式购买一张福利彩票,A. ■, 4是一个无理数B. 函数y—1的自变量J x 1x的取值范围是x 1C. 8的立方根是2D. 若点P(2, a)和点Q(b,3)关于x轴对称,则a b的值为511.A.B.C. 中奖.这是一个随机事件D. 分别写有三个数字1, 2,4的三张卡片,从中任意抽取两张,则卡片上的两数之积为正数的概率为12.如图,已知梯形ABCD 中,AD // BC ,AB CD AD ,则下列说法正确的是()A.梯形ABCD是轴对称图形C.梯形ABCD是中心对称图形B. BCD. AC平分2ADDCBBCD 60°,四、耐心做一做,试试我能行! (共8道题,满分66分)13.(本题满分6分)解不等式组2x 5 x,5x 4 > 3x 2.14. (本题满分7分)已知:如图,的延长线于点F •求证:DE点E是正方形DF .ABCD的边AB上任意一点,过点D作DF DE交BC15. (本题满分7分)2008年5月31日奥运会圣火传递活动在湖北武汉市内举行. 我市红城中学校团委在学校七年级8个班中,开展了一次“迎奥运,为奥运加油”的有关知识比赛活动,得分最多的班级为优胜班级,比赛结果如下表:(1)请直接写出各班代表队得分数的平均数、众数和中位数;(2)学校决定:在本次比赛获得优胜的班级中,随意选取5名学生,免费送到武汉观看奥运圣火,小颖是七(7)班的学生,则她获得免费送到武汉观看奥运圣火的概率是多少?16.(本题满分8分)已知:如图,在△ ABC中,AB AC,以AB为直径的e O交BC于点D,过点D作DE AC于点E .求证:DE是eO的切线.17. (本题满分8分)如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB CD 20cm,BD 200cm,且AB, CD与水平地面都是垂直的. 根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?18. (本题满分8分)某市有一块土地共100亩,某房地产商以每亩80万元的价格购得此地,准备修建“和谐花园”住宅区•计划在该住宅区内建造八个小区(A区,B 区,C区L H区),其中A区,B区各修建一栋24层的楼房;C区,D区,E区各修建一栋18层的楼房;F区,G区,H区各修建一栋16层的楼房•为了满足市民不同的购房需求,开发商准备将A区,B区两个小区都修建成高档,每层800 m2,初步核算成本为800元/ m2;将C区,D区,E区三个小区都修建成中档住宅,每层800 m2,初步核算成本为700元/ m2;将F区,G区,H区三个小区都修建成经济适用房,每层750 m2,初步核算成本为600 元/ m2.整个小区内其他空余部分土地用于修建小区公路通道,植树造林,建花园,运动场和居民生活商店等,这些所需费用加上物业管理费,设置安装楼层电梯等费用共计需要9900万元.开发商打算在修建完工后,将高档,中档和经济适用房以平均价格分别为3000元/ m2,2600元/ m2和2100元/ m2的价格销售.若房屋全部出售完,请你帮忙计算出房地产开发商的赢利预计是多少元?19. (本题满分8分)四川汶川大地震发生后,我市某工厂A车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷数达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为x天,每天生产的帐篷为y顶.(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围.(2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该车间捐款给灾区多少钱?20. (本题满分14分)已知:如图,在直角梯形COAB中,OC // AB ,以O为原点建立平面直角坐标系,A, B, C三点的坐标分别为A(8,0) B(8J0), C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;2(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的-?7(3)动点P从点O出发,沿折线OABD的路线移动过程中,设厶OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?请求出此时动点P的坐标;若不能,请说明理由.湖北黄冈2008参考答案:填空、选择三.多选题四、解答题14.(本题满分7分)已知:如图,点E是正方形ABCD的边AB上任意一点,过点D作DF ±DE交BC的延长线于点F.求证:DE=DF .解:•••四边形ABCD是正方形,••• AD=CD , / A=Z DCF=90又••• DF 丄DE,•••/ 1+Z 3=Z 2+Z 3•••/ 仁/ 2在Rt△ DAE 和Rt △ DCE 中,/仁/2AD=CD2 .a (a-1) ;3 . X ; 3. K>1; 1; X=2 4. 6 5.2「36. C7.A8.B9.C10.B、D 11.B C、D 12.A、B、13. 13 .(本题满分6分)解不等式组h 2x 5 x,(1)解:5x4>3x 2.(2)由不等式(1)得:x <5由不等式(2)得:x > 3所以:5 > x> 32x5xx,4>3x 2./A=Z DCF••• Rt △DAE Rt △DCE••• DE=DF .15解:(1)平均分:87.5分;众数:90分;中位数:90分(2)七(7)的分数为100分,所以七(7)班为优胜班级。
2008年湖北省武汉市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2008•武汉)小怡家的冰箱冷藏室温度是5℃,冷冻室的温度是﹣2℃,则她家冰箱冷藏室温度比冷冻室温度高()A.3℃ B.﹣3℃C.7℃ D.﹣7℃2.(3分)(2008•武汉)不等式x<3的解集在数轴上表示为()A.B.C.D.3.(3分)(2008•武汉)已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2 B.﹣2 C.D.﹣4.(3分)(2008•武汉)计算的结果是()A.2 B.±2C.﹣2 D.45.(3分)函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5D.x≤56.(3分)(2008•武汉)如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是()A.150°B.300°C.210°D.330°7.(3分)(2008•武汉)如图是一个五环图案,它由五个圆组成,下排的两个圆的位置关系是()A.内含B.外切C.相交D.外离8.(3分)(2008•武汉)如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是()A.250m B.250m C.m D.250m9.(3分)(2008•武汉)一个无盖的正方体盒子的平面展开图可以是下列图形中的()A.只有图①B.图①、图② C.图②、图③ D.图①、图③10.(3分)(2008•武汉)“祝福北京”、“祝福奥运”是每个中国人良好的心愿.亮亮、兵兵和军军三个同学都有一套外形完全相同,背面写着“祝福”、“北京”、“奥运”字样的三张卡片.他们分别从自己的一套卡片中随机抽取一张,抽取得三张卡片中含有“祝福”、“北京”、“奥运”的概率是()A.B.C.D.11.(3分)(2008•武汉)2009年某市应届初中毕业生人数约10.8万.比去年减少约0.2万,其中报名参加高级中等学校招生考试(简称中考)的人数约10.5万,比去年增加0.3万,下列结论:①与2008年相比,2009年该市应届初中毕业生人数下降了×100%;②与2008年相比,2009年该市应届初中毕业生报名参加中考人数增加了×100%;③与2008年相比,2009年该市应届初中毕业生报名参加中考人数占应届初中毕业生人数的百分比提高了(﹣)×100%.其中正确的个数是()A.0 B.1 C.2 D.312.(3分)(2008•武汉)下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③ B.只有①③④ C.只有①④D.只有②③④二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2008•武汉)在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积.进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵树:依此估计这种幼树成活的概率是.(结果用小数表示,精确到0.1)移栽棵数100 1000 10000成活棵数89 910 900814.(3分)(2008•武汉)如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式组x<kx+b<0的解集为.15.(3分)(2008•武汉)如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10),函数y=(x<0)的图象过点P,则k= .16.(3分)(2008•武汉)下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒根.三、解答题(共9小题,满分72分)17.(6分)(2008•武汉)解方程:x2﹣x﹣5=0.18.(6分)(2008•武汉)先化简,再求值:,其中x=2.19.(6分)(2008•武汉)如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.20.(7分)(2008•武汉)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a= ,b= ;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.21.(7分)(2008•武汉)(1)点(0,1)向下平移2个单位后的坐标是,直线y=2x+1向下平移2个单位后的解析式是;(2)直线y=2x+1向右平移2个单位后的解析式是;(3)如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC方向平移个单位,求平移后的直线的解析式.22.(8分)(2008•武汉)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.(1)求证:DE是⊙O的切线;(2)若=,求的值.23.(10分)(2008•武汉)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?24.(10分)正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF=CF.(1)如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD 于点E.①求证:DF=EF;②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;(2)若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E.请完成图3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论.(所写结论均不必证明)25.(12分)(2008•武汉)如图1,抛物线y=ax2﹣3ax+b经过A(﹣1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx﹣1(k≠0)将四边形ABCD面积二等分,求k的值;(3)如图2,过点E(1,﹣1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.2008年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)【考点】有理数的减法.菁优网版权所有【分析】本题是有理数运算的实际应用,认真阅读列出正确的算式,用冷藏室温度减去冷冻室的温度,就是冰箱冷藏室温度与冷冻室温度的温差.【解答】解:依题意得:5﹣(﹣2)=5+2=7℃.故选C.【点评】有理数运算的实际应用题是中考的常见题,其解答关键是依据题意正确地列出算式.2.(3分)【考点】在数轴上表示不等式的解集.菁优网版权所有【分析】不等式x<3表示所有<3的数组成的集合,即数轴上3左边的点的集合.【解答】解:由于x<3,所以表示3的点应该是空心点,折线的方向应该是向左.故选B.【点评】本题考查不等式解集的表示方法,将不等式的解集在数轴上表示出来,体现了数形结合的思想,是我们必须要掌握的知识,也是中考的常考点.不等式x<3的解集用数轴表示时,3应为空心点,且解集向左,本题考查用数轴表示不等式的解集.3.(3分)【考点】一元一次方程的解.菁优网版权所有【分析】此题用m替换x,解关于m的一元一次方程即可.【解答】解:由题意得:x=m,∴4x﹣3m=2可化为:4m﹣3m=2,可解得:m=2.故选:A.【点评】本题考查代入消元法解一次方程组,可将4x﹣3m=2和x=m组成方程组求解.4.(3分)【考点】算术平方根.菁优网版权所有【分析】由于表示4的算术平方根,所以根据算术平方根定义即可求出结果.【解答】解:=2.故选:A.【点评】此题主要考查了算术平方根的定义,比较简单.5.(3分)【考点】函数自变量的取值范围;二次根式有意义的条件.菁优网版权所有【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)【考点】轴对称的性质.菁优网版权所有【分析】认真读题、观察图形,由CF所在的直线是它的对称轴,得角相等,结合已知,答案可得.【解答】解:轴对称图形按对称轴折叠后两边可以完全重合,∠AFC+∠BCF=150°,则∠EFC+∠DCF=150°,所以∠AFE+∠BCD=300°.故选B.【点评】本题考查了轴对称的性质;掌握好轴对称的基本性质,找出相等角度是正确解答本题的关键.7.(3分)【考点】圆与圆的位置关系.菁优网版权所有【分析】根据两圆交点的个数来确定圆与圆的位置关系.【解答】解:∵下排两圆没有交点,∴它们的位置关系是外离.故选D.【点评】本题主要考查了圆与圆之间的位置关系,要掌握住特点依据图形直观的判断.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交.8.(3分)【考点】解直角三角形的应用-方向角问题.菁优网版权所有【分析】由已知可得,∠AOB=30°,OA=500m,根据三角函数定义即可求得AB的长.【解答】解:由已知得,∠AOB=30°,OA=500m.则AB=OA=250m.故选A.【点评】本题主要考查了方向角含义,正确记忆三角函数的定义是解决本题的关键.9.(3分)【考点】几何体的展开图.菁优网版权所有【分析】利用正方体及其表面展开图的特点解题.【解答】解:图②,经过折叠后,没有上下底面,侧面是由5个正方形组成,与正方体的侧面是4个正方形围成不相符,所以不是无盖的正方体盒子的平面展开图,故选D.【点评】正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.10.(3分)【考点】概率公式.菁优网版权所有【分析】他们分别从自己的一套卡片中随机抽取一张的组合有3×3×3=27种,抽取得三张卡片中含有“祝福”、“北京”、“奥运”的有6种,所以概率=6÷27=.【解答】解:P(含有“祝福”、“北京”、“奥运”)=.故本题答案为:.故选C.【点评】本题考查可能条件下的概率,用到的知识点为:概率等于所求情况数与总情况数之比.11.(3分)【考点】有理数的混合运算.菁优网版权所有【分析】分别列出代数式表示出各年的人数变化的量,即可判定出正确结论的个数.【解答】解:根据题意可知,①与2008年相比,2009年该市应届初中毕业生人数下降了×100%,错误;②与2008年相比,2009年该市应届初中毕业生报名参加中考人数增加了×100%,错误;③与2008年相比,2009年该市应届初中毕业生报名参加中考人数占应届初中毕业生人数的百分比提高了(﹣)×100%,正确.故选B.【点评】本题考查有理数运算在实际生活中的应用,利用所学知识解答实际问题是我们应具备的能力.认真审题,准确地列出式子是解题的关键.12.(3分)【考点】抛物线与x轴的交点.菁优网版权所有【分析】①②③小题利用移项与变形b2﹣4ac与0的大小关系解决;处理第④小题时不要疏忽二次函数y=ax2+bx+c与y轴的交点情况.【解答】解:①b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2﹣4ac=4a2+9c2+12ac﹣4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2﹣4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x 轴的交点重合,故正确.故选B.【点评】考查二次函数y=ax2+bx+c的图象与x轴交点的个数.二、填空题(共4小题,每小题3分,满分12分)13.(3分)【考点】利用频率估计概率.菁优网版权所有【分析】成活的总棵树除以移栽的总棵树即为所求的概率.【解答】解:根据抽样的意义可得幼树成活的概率为(++)÷3≈0.9.故本题答案为:0.9.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)【考点】一次函数与一元一次不等式.菁优网版权所有【分析】由图象得到直线y=kx+b与坐标轴的两个交点坐标,利用待定系数法求得一次函数的解析式,即可得到不等式组,解不等式组即可求解.【解答】解:直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,根据题意得:,解得:,则不等式组x<kx+b<0是:x<﹣x﹣3<0,解得:﹣3<x<﹣2.故本题答案为:﹣3<x<﹣2.【点评】本题考查了待定系数法求函数解析式,以及一元一次不等式组的解法,正确求得不等式组是关键.15.(3分)【考点】垂径定理;待定系数法求反比例函数解析式.菁优网版权所有【分析】先设y=再根据k的几何意义求出k值即可.【解答】解:连接PM,作PQ⊥MN,根据勾股定理可求出PQ=4,根据圆中的垂径定理可知点OQ=|﹣4﹣3|=7,所以点P的坐标为(﹣4,﹣7),则k=28.【点评】主要考查了圆中有关性质和反比例函数系数k的几何意义.反比例函数系数k的几何意义为:反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积.本题综合性强,考查知识面广,能较全面考查学生综合应用知识的能力.16.(3分)【考点】规律型:图形的变化类.菁优网版权所有【分析】分析题意,找到规律,并进行推导得出答案.【解答】解:分析可得:第1个图形中,有4根火柴;第2个图形中,有4+6=10根火柴;第3个图形中,有10+8=18根火柴;…第8个图形中,共用火柴的根数是4+6+8+10+12+14+16+18=88根.【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力.三、解答题(共9小题,满分72分)17.(6分)【考点】解一元二次方程-公式法.菁优网版权所有【分析】此题考查了公式法解一元二次方程,解题时要注意将方程化为一般形式,确定a、b、c的值,代入公式即可求解.【解答】解:∵a=1,b=﹣1,c=﹣5∴△=b2﹣4ac=21>0∴∴x1=,x2=.【点评】解此题的关键是熟练应用求根公式,要注意将方程化为一般形式,确定a、b、c的值.18.(6分)【考点】分式的化简求值.菁优网版权所有【分析】先把分式化简,再将x的值代入求解.【解答】解:原式==;当x=2时,原式=.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.分式先化简再求值的问题,难度不大.19.(6分)【考点】相似三角形的判定.菁优网版权所有【分析】由FD∥AB,FE∥AC,可知∠B=∠FDE,∠C=∠FED,根据三角形相似的判定定理可知:△ABC∽△FDE.【解答】证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.【点评】本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.20.(7分)【考点】扇形统计图;用样本估计总体;条形统计图.菁优网版权所有【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b的值,最后求出a;(2)利用总数和百分比求出频数再补全条形图;(3)用样本估计总体即可.【解答】解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,a=×100%=20%,b=×100%=12%;故答案为:20%;12%;(2);(3)在扇形图中,0~14岁的居民占20%,有3500人,则年龄在15~59岁的居民占(1﹣20%﹣12%)=68%,人数为3500×=11900.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.21.(7分)【考点】一次函数图象与几何变换;坐标与图形变化-平移.菁优网版权所有【分析】(1),(2)直接利用平移中点的变化规律求解即可.(3)将直线AB沿射线OC方向平移个单位,其实是先向右平移3个单位长度,再向上平移3个单位长度.【解答】解:(1)(0,﹣1),y=2x+1﹣2=2x﹣1;(2)y=2(x﹣2)+1=2x﹣3;(3)∵点C为直线y=x上在第一象限内一点,则直线上所有点的坐标横纵坐标相等,∴将直线AB沿射线OC方向平移个单位,其实是先向右平移3个单位长度,再向上平移3个单位长度.∴y=2(x﹣3)+1+3,即y=2x﹣2.【点评】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移减,右移加;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.22.(8分)【考点】切线的判定.菁优网版权所有【分析】(1)连接OD,只需证明OD⊥DE即可;(2)连接BC,设AC=3k,AB=5k,BC=4k,可证OD垂直平分BC,利用勾股定理可得到OG,得到DG,于是AE=4k,然后通过OD∥AE,利用相似比即可求出的值.【解答】(1)证明:连接OD,∵OD=OA,∴∠OAD=∠ADO,∵∠EAD=∠BAD,∴∠EAD=∠ADO,∴OD∥AE,∴∠AED+∠ODE=180°,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∵OD是圆的半径,∴DE是⊙O的切线;(2)解:连接OD,BC交OD于G,如图,∵AB为直径,∴∠ACB=90°,又∵OD∥AE,∴∠OGB=∠ACB=90°,∴OD⊥BC,∴G为BC的中点,即BG=CG,又∵=,∴设AC=3k,AB=5k,根据勾股定理得:BC==4k,∴OB=AB=,BG=BC=2k,∴OG==,∴DG=OD﹣OG=﹣=k,又∵四边形CEDG为矩形,∴CE=DG=k,∴AE=AC+CE=3k+k=4k,而OD∥AE,∴===.【点评】考查了切线的判定定理,能够综合运用角平分线的性质、全等三角形的判定和性质以及平行线分线段成比例定理.23.(10分)【考点】二次函数的应用;一次函数的应用.菁优网版权所有【分析】根据题意可得到函数关系式,并得到x的取值范围.再得到总利润的函数式,两个式子结合起来,可得到定价.【解答】解:(1)由题意,y=150﹣10x,0≤x≤5且x为正整数;(2)设每星期的利润为w元,则w=(40+x﹣30)y=(x+10)(150﹣10x)=﹣10(x﹣2.5)2+1562.5∵x为非负整数,∴当x=2或3时,利润最大为1560元,又∵销量较大,∴x=2,即当售价为42元时,每周的利润最大且销量较大,最大利润为1560元.答:当售价为42元时,每星期的利润最大且每星期销量较大,每星期的最大利润为1560元.【点评】利用了二次函数的性质,以及总利润=售价×销量.24.(10分)【考点】正方形的性质;线段垂直平分线的性质.菁优网版权所有【分析】(1)由正方形的性质证得△BQP≌△PFE,从而得到DF=EF,由于△PCF 和△PAG均为等腰直角三角形,故有PA=PG,PC=CF,易得PA=EF,进而得到PC、PA、CE满足关系为:PC=CE+PA;(2)同(1)证得DF=EF,三条线段的数量关系是PA﹣PC=CE.【解答】解:(1)如图2,延长FP交AB于点Q,①∵AC是正方形ABCD对角线,∴∠QAP=∠APQ=45°,∴AQ=PQ,∵AB=QF,∴BQ=PF,∵PE⊥PB,∴∠QPB+∠FPE=90°,∵∠QBP+∠QPB=90°,∴∠QBP=∠FPE,∵∠BQP=∠PFE=90°,∴△BQP≌△PFE,∴QP=EF,∵AQ=DF,∴DF=EF;②如图2,过点P作PG⊥AD.∵PF⊥CD,∠PCF=∠PAG=45°,∴△PCF和△PAG均为等腰直角三角形,∵四边形DFPG为矩形,∴PA=PG,PC=CF,∵PG=DF,DF=EF,∴PA=EF,∴PC=CF=(CE+EF)=CE+EF=CE+PA,即PC、PA、CE满足关系为:PC=CE+PA;(2)结论①仍成立;结论②不成立,此时②中三条线段的数量关系是PA﹣PC=CE.如图3:①∵PB⊥PE,BC⊥CE,∴B、P、C、E四点共圆,∴∠PEC=∠PBC,在△PBC和△PDC中有:BC=DC(已知),∠PCB=∠PCD=45°(已证),PC边公共边,∴△PBC≌△PDC(SAS),∴∠PBC=∠PDC,∴∠PEC=∠PDC,∵PF⊥DE,∴DF=EF;②同理:PA=PG=DF=EF,PC=CF,∴PA=EF=(CE+CF)=CE+CF=CE+PC即PC、PA、CE满足关系为:PA﹣PC=CE.【点评】本题是一个动态几何题,考查用正方形性质、线段垂直平分线的性质、三角形相似的条件和性质进行有条理的思考和表达能力,还考查按要求画图能力.25.(12分)(【考点】二次函数综合题.菁优网版权所有【分析】首先把已知坐标代入解析式求出抛物线解析式.然后作辅助线过点C 作CH⊥AB于点H,得出四边形ABCD是等腰梯形,由矩形的中心对称性得出过P点且与CD相交的任一直线将梯形ABCD的面积平分.设M(m,n),N (m﹣2,n+1)利用等式关系求出m,n的值后即可.【解答】解:(1)∵抛物线y=ax2﹣3ax+b过A(﹣1,0)、C(3,2),∴0=a+3a+b,2=9a﹣9a+b.解得a=﹣,b=2,∴抛物线解析式y=﹣x2+x+2.(2)如图1,过点C作CH⊥AB于点H,由y=﹣x2+x+2得B(4,0)、D(0,2).又∵A(﹣1,0),C(3,2),∴CD∥AB.由抛物线的对称性得四边形ABCD是等腰梯形,∴S△AOD=S△BHC.设矩形ODCH的对称中心为P,则P(,1).由矩形的中心对称性知:过P点任一直线将它的面积平分.∴过P点且与CD相交的任一直线将梯形ABCD的面积平分.当直线y=kx﹣1经过点P时,得1=k﹣1∴k=.∴当k=时,直线y=x﹣1将四边形ABCD面积二等分.(3)如图2,由题意知,∵△AEF绕平面内某点旋转180°后得△MNQ,∴设绕点I旋转,联结AI,NI,MI,EI,∵AI=MI,NI=EI,∴四边形AEMN为平行四边形,∴AN∥EM且AN=EM.∵E(1,﹣1)、A(﹣1,0),∴设M(m,n),则N(m﹣2,n+1)∵M、N在抛物线上,∴n=﹣m2+m+2,n+1=﹣(m﹣2)2+(m﹣2)+2,解得m=3,n=2.∴M(3,2),N(1,3).【点评】本题的综合性强,是不可多得的一道答题.重点考查了二次函数的有关知识以及平行四边形,梯形的性质,难度较大.。
黄冈中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列哪个数是无理数?A. -2B. 根号3C. 0.33333D. 1/3答案:B2. 如果一个角的余角是20°,那么这个角的度数是多少?A. 70°B. 90°C. 110°D. 100°答案:A3. 已知线段AB=10cm,点C在AB上,且AC=6cm,求BC的长度。
A. 2cmB. 4cmC. 6cmD. 10cm答案:B4. 下列哪个代数式是二次根式?A. √xB. x²C. 3xD. 1/x答案:A5. 一个正数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A6. 一个数的立方是-8,这个数是多少?A. -2B. 2C. -8D. 8答案:A7. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 都不是答案:C8. 下列哪个方程是一元一次方程?A. x² + 3 = 0B. 2x + 1 = 3x - 2C. x/2 + 3 = 5D. 3x - 5y = 0答案:C9. 一个三角形的内角和是多少度?A. 90°B. 180°C. 270°D. 360°答案:B10. 一个圆的周长是2πr,那么它的面积是多少?A. πr²B. 2πrC. πrD. r²答案:A二、填空题(本题共5小题,每小题2分,共10分。
)11. 一个数的相反数是-5,这个数是________。
答案:512. 如果一个数的平方等于25,那么这个数可能是________或________。
答案:5,-513. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是________。
答案:514. 一个数的立方根是3,那么这个数是________。
2008年黄冈市初中毕业生升学考试语文试卷(考试时间:120分钟满分:120分)一、诗词名句填写(8分)1.山重水复疑无路,。
(陆游《游山西村》)2.,落花时节又逢君。
(杜甫《江南逢李龟年》)3.?为有源头活水来。
(朱熹《观书有感》)4.李白在《渡荆门送别中》描绘夜间、黄昏时江面上美丽的景色的诗句是:______ ,_____________ 。
5.今天是2008年北京奥运会倒记时第49天,请你借用一句古诗表达对中国奥运健儿的激励之情:,。
二:综合性学习(共7分)6.联合国教科文组织把每年的4月23日确定为“世界读书日”。
为庆祝这一文化节日,某校决定以“书香满校园,共享读书乐”为主题开展一次读书活动。
请你随我们到下列站点参加活动。
【留言栏】(1)在读书心得栏里小华写下了“书籍是人类进步的阶梯”的留言。
请你也摘录一则关于读书的名言作为自己的座右铭。
(1分)___________________________________________________________________________ 【故事会】(2)小芳组织了“讲孔子、孟子故事”的活动。
请你各写一则与孔子和孟子有关的成语或故事参加这一活动。
(2分)孔子:。
孟子:【辩论台】(3)小刚主持了一场“网上阅读辩论会”,正方、反方辩词如下,请你改正辩词中的语病。
(2分)正方:“网上阅读”利大于弊。
中学生网上阅读可以学到书本阅读中学不到的知识,可以根据自己的情况自由地选择阅读内容,满足我们对知识的需求,还可以拓展我们的阅读能力和写作水平。
与书本阅读相比,网上阅读必将成为我们中学生的最佳阅读方式。
反方:“网上阅读” 弊大于利。
①网上阅读的信息良莠不齐、鱼龙混杂,我们中学生容易受到有害信息的影响。
②当前中学生热衷于网上阅读值得肯定。
③网上阅读如果缺乏自律。
不能正确对待是容易染上网瘾的。
因此,我们中学生还是要坚守“书本阅读”。
正方辩词中有一个词语使用不当,应把“ ”改为“”。
往年年湖北省黄冈市中考数学真题及答案一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°3.(3分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠06.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.407.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π8.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|= .10.(3分)分解因式:(2a+1)2﹣a2= .11.(3分)计算:﹣= .12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 度.13.(3分)当x=﹣1时,代数式÷+x的值是.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= .15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(, ),B(, ),D(, ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= (用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O 出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.往年年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(往年•黄冈)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:A.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(往年•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°【分析】根据互为余角的定义,可以得到答案.【解答】解:如果α与β互为余角,则α+β=900.故选:D.【点评】此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)(往年•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5【分析】根据同底数幂的乘法和除法法则可以解答本题.【解答】解:A.x2•x3=x5,故A错误;B.x6÷x5=x,故B正确;C.(﹣x2)4=x8,故C错误;D.x2+x3不能合并,故D错误.故选:B.【点评】主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)(往年•黄冈)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,象一个大梯形减去一个小梯形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)(往年•黄冈)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(往年•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40【分析】根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.【解答】解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(往年•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:C.【点评】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)(往年•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC 边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(往年•黄冈)计算:|﹣|= .【分析】根据负数的绝对值等于它的相反数,可得答案案.【解答】解:|﹣|=,故答案为:.【点评】本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)(往年•黄冈)分解因式:(2a+1)2﹣a2= (3a+1)(a+1).【分析】直接利用平方差公式进行分解即可.【解答】解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(往年•黄冈)计算:﹣= .【分析】先进行二次根式的化简,然后合并同类二次根式求解.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(往年•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 60 度.【分析】延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.【解答】解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)(往年•黄冈)当x=﹣1时,代数式÷+x的值是3﹣2.【分析】将除法转化为乘法,因式分解后约分,然后通分相加即可.【解答】解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为:3﹣2.【点评】本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)(往年•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= 4.【分析】连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB 得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.【解答】解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4故答案为:4.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)(往年•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为或5或10 cm2.【分析】因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.【解答】解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF=AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.【点评】本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(往年•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(往年•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?【分析】设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.【解答】解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.【点评】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(往年•黄冈)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.【解答】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)(往年•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(往年•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.【分析】(1)连接OD,由BC是⊙O的切线得出∠BCA=90°,由DE是⊙O的切线,得出ED=EC,∠ODE=90°,故可得出∠EDB=∠EBD,由此可得出结论.(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.【解答】(1)证明:连接OD,∵AC是直径,∠ACB=90°,∴BC是⊙O的切线,∠BCA=90°.又∵DE是⊙O的切线,∴ED=EC,∠ODE=90°,∴∠ODA+∠EDB=90°,∵OA=OD,∴∠OAD=∠ODA,又∵∠OAD+∠DBE=90°,∴∠EDB=∠EBD,∴ED=EB,∴EB=EC.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵ED=EB,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接OD得垂直,构造出等腰三角形,利用“等角的余角相等解答.21.(7分)(往年•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.【点评】本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)(往年•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2 , ),B( 2 , ﹣),D ( 1 , ﹣1 ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.【分析】(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值.【解答】解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,k1=,k2=4,又∵k≠,∴k=4,则当k=4时,▱ADBC是矩形.【点评】此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)(往年•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN 上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)【分析】(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x 的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.【解答】解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈126.3海里,∵126.3>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(往年•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= 0.01k(x﹣n)+70(n<x≤6000)(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?【分析】(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.【解答】解:(1)由题意得当0≤x≤n时,y=70;当n<x≤6000时,y=0.01k(x﹣n)+70(n<x≤6000);(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.【点评】本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)(往年•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.【分析】(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ 是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.【解答】解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=(t=0舍去),∴t=时,点O(1,﹣1)在抛物线y=x2﹣x上,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1(t=0舍去),∴t=1时,点Q(3,﹣1)在抛物线y=x2﹣x上.(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=S△OPQ=×(2t)×=t2,②1<t≤1.5时,S=S△OP′Q′﹣S△AEQ′=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=S梯形OABC﹣S△BGF=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+=﹣2t2+8t﹣;所以,S与t的关系式为S=.。
知识点7:二次函数和抛物线有关概念,描点法画出二次函数的图象,抛物线顶点和对称轴一、选择题1.(2008年浙江省衢州市)把抛物线向右平移2个单位得到的抛物线是( )A、 B、 C、 D、答案:D2.(08浙江温州)抛物线的对称轴是()A.直线B.直线C.直线D.直线答案:A3.(2008年沈阳市)二次函数的图象的顶点坐标是()A.B.C.D.答案:A4.(2008年陕西省)已知二次函数(其中),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与轴的交点至少有一个在轴的右侧.以上说法正确的个数为()A.0 B.1 C.2 D.3答案:C5.(2008年吉林省长春市)抛物线的顶点坐标是【】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)答案:A6.(2008 湖北荆门)把抛物线y=x+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x-3x+5,则( )(A) b=3,c=7.(B) b=6,c=3.(C) b=-9,c=-5.(D) b=-9,c=21.答案:A7.(2008 河北)如图,正方形的边长为10,四个全等的小正方形的对称中心分别在正方形的顶点上,且它们的各边与正方形各边平行或垂直.若小正方形的边长为,且,阴影部分的面积为,则能反映与之间函数关系的大致图象是()答案:D8.(2008江西)函数化成的形式是()A.B.C.D.答案:A9.(2008佳木斯市)对于抛物线,下列说法正确的是()A.开口向下,顶点坐标B.开口向上,顶点坐标C.开口向下,顶点坐标D.开口向上,顶点坐标答案:A10..(2008贵州贵阳)二次函数的最小值是()A.B.C.D.答案:B11..(2008资阳市)在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 2答案:B12.(2008泰州市)二次函数的图像可以由二次函数的图像平移而得到,下列平移正确的是A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位答案:B13.(2008山西省)抛物线经过平移得到,平移方法是()A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位答案:D14..将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.B.C.D.答案:A15.(2008湖北武汉)函数的自变量的取值范围().A.B.C.D..答案:C16.(2008湖北孝感)把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A. B. C. D.答案:D17.(2008 台湾)如图坐标平面上有一透明片,透明片上有一拋物线及一点P,且拋物线为二次函数y=x2的图形,P的坐标(2,4)。
2008年湖北省各地中考数学试题精选几 何 选 择 题(1) 2008年湖北省鄂州市中考数学几何选择题(08湖北鄂州)5.图1是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( A )A .B .C .D .(08湖北鄂州)6.如图2,已知ABC △中,45ABC ∠=,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( B ) AB .4 C.D .5(08湖北鄂州)8.如图3,利用标杆BE 测量建筑物DC 的高度,如果标杆BE 长为1.2米,测得 1.6AB = 米,8.4BC =米.则楼高CD 是( B ) A .6.3米B .7.5米C .8米D .6.5米(08湖北鄂州)9.因为1sin 302=,1sin 2102=- ,所以sin 210sin(18030)sin30=+=-;因为sin 45=sin 225= ,所以sin 225sin(18045)sin 45=+=-, 由此猜想、推理知:一般地当α为锐角时有sin(180)sin αα+=- ,由此可知:sin 240=( C )A .12-B.C.D.(08湖北鄂州)12.ABC △A2A 与边BC 相切于D 点,则AB AC 的值为(D )2 13图1D CBAE H 图2E ABC图3AB .4 C.2D.(08湖北鄂州)14.如图6,Rt ABC △中,90ACB ∠= ,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为( C ) A.7π3 B.4π3+ C .πD.4π3+(2) 2008年湖北省武汉市中考数学几何选择题(08湖北武汉)6.如图,六边形ABCDEF 是轴对称图形.CF 所在的直线是它的对称轴,若∠AFC+ ∠BCF =150°,则∠AFE+∠BCD 的大小是( )(A )150°.(B )300°.(C )210°.(D )330°. 答案 B(08湖北武汉)7.如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是( )(A )内含. (B )外切. (C )相交. (D )外离.答案D(08湖北武汉)8.如图,小雅家(图中点O处)门前有一条东西走向的公路, 经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位 置到公路的距离AB 是( ). (A )250m (B ) (C (D ) 答案A(08湖北武汉)9.一个无盖的正方体盒子的平面展开图可以是下列图形中的( )(A )只有图①. (B )图①、图②. (C )图②、图③. (D )图①、图③. 答案D图6 AH B OC 1O1H1A1CAO B东北 ③ ② ①FEDCBA(3) 2008年湖北省黄冈市中考数学几何选择题(08湖北黄冈)9.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( C ) A .长方体B .圆柱体C .球体D .三棱柱(08湖北黄冈)12(多项选择).如图,已知梯形ABCD 中,AD BC ∥,AB CD AD ==,AC BD ,相交于O 点,60BCD ∠=,则下列说法正确的是( ) A .梯形ABCD 是轴对称图形B .2BC AD =C .梯形ABCD 是中心对称图形 D .AC 平分DCB ∠ 答案:ABD(4) 2008年湖北省黄石市中考数学几何选择题(08湖北黄石)3.如图,AB CD ∥,AD 和BC 相交于点O ,35A ∠=,75AOB ∠=,则C ∠等于( C ) A .35B .75C .70D .80(08湖北黄石)4.下列图形中既是轴对称图形,又是中心对称图形的是( B )A .B .C .D . (08湖北黄石)7.下面左图所示的几何体的俯视图是( D )A .B .C .D .ADOCB(08湖北黄石)8.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △ 相似的是( B )(08湖北黄石)12.如图,在等腰三角形ABC 中,120ABC ∠=,点P 是底边AC 上一个动点,M N ,分别是AB BC ,的中点,若PM PN +的最小值为2,则ABC △的周长是( D ) A .2B.2C .4D.4+(5) 2008年湖北省恩施州中考数学几何选择题(08湖北恩施)10. 为了让州城居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能..进行平面镶嵌的是( C )A. 正三角形B. 正方形C. 正五边形D. 正六边形 (08湖北恩施)12. 在Rt △ABC 中,∠C =90°,若AC =2BC ,则tan A 的值是( A )A.21 B. 2 C. 55 D. 25(08湖北恩施)13. 将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A. 7 B. 6 C. 5 D. 4(08湖北恩施)16. 如图6,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( B ) A.21 B. 22 C.2 D. 22A .B .C .D .ABAB CPM N(6) 2008年湖北省荆门市中考数学几何选择题(08湖北荆门)6.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则弧 AmB 等于(C ) (A) 60°. (B) 90°. (C)120°. (D)150°.(08湖北荆门)7.左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( B )(08湖北荆门)10.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x ,y 表示矩形的长和 宽(x >y ),则下列关系式中不正确的是 ( D ) (A) x +y =12 . (B) x -y =2. (C) xy =35. (D) x 2+y 2=144.(7) 2008年湖北省荆州市中考数学几何选择题(08湖北荆州)3.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数 是( D ) A.1 B.2 C.3 D.4(08湖北荆州)5.如图,五边形ABCDE 与五边形A′B′C′D′E′是位似图形,O 为位似中心,OD=12OD′,则A′B′:AB 为( D )A.2:3B.3:2C.1:2D.2:1从左面看第7题图(A)(D)(C)(第3题图)′′第10题图(08湖北荆州)8.如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( C )A.5:3B.3:5C.4:3D.3:4(8) 2008年湖北省十堰市中考数学几何选择题(08湖北十堰)2.下列长度的三条线段,能组成三角形的是(C )A .1cm ,2 cm ,3cmB .2cm ,3 cm ,6 cmC .4cm ,6 cm ,8cmD .5cm ,6 cm ,12cm (08湖北十堰)3.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB=7cm ,且D 是AC 的中点,则AC的长等于(B )A .3cmB .6cmC .11cmD .14cm(08湖北十堰)4.如图,在ΔABC 中,AC=DC=DB ,∠ACD=100°,则∠B 等于(D )A .50°B .40°C .25°D .20°(08湖北十堰)7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是(D )(08湖北十堰)8.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是CA .∠3=∠4B .∠A+∠ADC=180°C .∠1=∠2D .∠A =∠5(第8题图)CB第4题图DA 第3题图D C BA AC第8题图EE54321DBBCA(9) 2008年湖北省天门市中考数学几何选择题(08湖北天门)02.一个几何体的三视图如图所示,则这个几何体是( C ).(08湖北天门)06.如图,a ∥b ,∠1=105°,∠2=140°,则∠3的度数是( B ). A 、75° B 、65° C 、55° D 、50° (08湖北天门)07.下列命题中,真命题是( D).A 、一组对边平行且有一组邻边相等的四边形是平行四边形;B 、顺次连结四边形各边中点所得到的四边形是矩形;C 、等边三角形既是轴对称图形又是中心对称图形;D 、对角线互相垂直平分的四边形是菱形(08湖北天门)08.如图,为了测量河两案A、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么AB 等于( B ). A 、a·sinα B 、a·tanα C 、a·cosαD 、tan a(08湖北天门)10.设计一个商标图案如图中阴影部分,矩形ABCD 中,AB =2BC ,且AB =8cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积等于( A ). A 、(4π+8)cm 2 B 、(4π+16)cm 2 C 、(3π+8)cm 2 D 、(3π+16)cm 2(10) 2008年湖北省仙桃、潜江、江汉油田中考数学几何选择题(08湖北仙桃等)3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是 ( B )ABCD主视图左视图俯视图(第2题A123 (第6题abAB Ca α(第08题(第10题正方体 长方体圆柱 圆锥 ABCDABCDEO(第5题图) (第8题图)(08湖北仙桃等)5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立...的是( B ) A. DE DA = B. CE BD = C. 90=∠EAC ° D. E ABC ∠=∠2(08湖北仙桃等)8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的一个扇形,然后利用剪 下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠), 那么这个圆锥的高为( C )A.3cmB.4cmC.21cmD.62cm(11) 2008年湖北省咸宁市中考数学几何选择题(08湖北咸宁)4.在Rt △ABC 中, ∠C =90︒,AB =4,AC =1,则cos A 的值是 【 B 】AB .14CD .4(08湖北咸宁)7.下列说法:①对角线互相平分且相等的四边形是菱形;②计算2-的结果为1; ③正六边形的中心角为60︒;④函数y 的自变量x 的取值范围是x ≥3. 其中正确的个数有 【 C 】 A .1个 B .2个C .3个D .4个(08湖北咸宁)8.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE DC DE +=; ④222BE DC DE +=其中正确的是【 B 】 A .②④; B .①④; C .②③; D .①③.40%5=R(图1)(图2)60%(第8题图)ABCDEF(08湖北襄樊)3.如图1,已知AD 与BC 相交于点O ,AB CD ∥,如果40B ∠=,30D ∠=,则AO C ∠的大小为( B ) A .60B .70C .80D .120(08湖北襄樊)5.在正方形网格中,ABC △的位置如图2所示,则cos B ∠的值为( B )A .12B .2C .2D .3(08湖北襄樊)7.顺次连接等腰梯形四边中点所得四边形是( A )A .菱形B .正方形C .矩形D .等腰梯形(08湖北襄樊)9.如图4,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( C )A .7个B .8个C .9个D .10个(08湖北襄樊)10.如图5,扇形纸扇完全打开后,外侧两竹条AB AC ,夹角为120,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( D )A .2100cm π B .2400cm 3π C .2800cm πD .2800cm 3π(08湖北孝感)4.一几何体的三视图如右,这个几何体是( D )A .圆锥B .圆柱C .三棱锥D .三棱柱(08湖北孝感)7.如图a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( C )A .180B .270C .360D .540(08湖北孝感)9.下列图形中,既是轴对称图形又是中心对称图形的是( A )A .菱形B .梯形C .正三角形D .正五边形(08湖北孝感)11.Rt ABC △中,90C ∠=,8AC =,6BC =,两等圆A ,B 外切,那么图中两个扇形(即阴影部分)的面积之和为( A ) A .254π B .258π C .2516π D .2532π(14) 2008年湖北省宜昌市中考数学几何选择题(08湖北宜昌)1.下列物体的形状类似于球的是( C ).A .茶杯B .羽毛球C .乒乓球D .白炽灯泡(08湖北宜昌)3.如图是江峡中学实验室某器材的主视图和俯视图, 那么这个器材可能是( A ).A .条形磁铁B .天平砝码C .漏斗D .试管(08湖北宜昌)9.如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( A ). A .120° B .90° C .60° D .30°俯视图左 视 图主视图(第4题图)bM P N 123(第7题图)(第11题图)俯 视 图主 视 图(第3题)(08湖北宜昌)10.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色3个正方形组成,第27个正方形组成,那么组成第6( B ).A .22B .23C .24D .25(第10题)(第9题)1A 1A。
2008年湖北黄岗罗田县第一中学自主招生考试数学试题一、选择题(本大题共8小题,每小题4分,满分32分)1. 若M =3x 2-8xy+9y 2-4x+6y+13(x,,y 是实数),则M 的值一定是( ).(A) 零 (B) 负数 (C) 正数 (D)整数2.已知sin α<cos α,那么锐角α的取值范围是 ( )A .300 <α<450B. 00 <α<450 C. 450 <α<600 D. 00 <α<9003.已知实数a 满足2008a -+2009a -=a ,那么a -20082值是 ( )A .2009 B. 2008 C. 2007 D. 20064.如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式bc a -的值等于( ).A.43-B.6-C.43D.65.二次函数2y ax bx c =++的图象如图所示,)2,(n Q 是图象上的一点,且BQ AQ ⊥,则a 的值为( ).A.13-B.12-C.-1D.-26.矩形纸片ABCD 中,AB=3cm ,BC=4cm ,现将纸片折叠压平,使A 与C 重合,设折痕为EF ,则重叠部分△AEF 的面积等于( ).A. 73757375...881616B C D7.若a b ctb c c a a b ===+++,则一次函数2y tx t =+的图象必定经过的象限是()(A )第一、二象限(B )第一、二、三象限(C )第二、三、四象限(D )第三、四象限8.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC的长等于( )(A) 12 (B) 16 (C) 43 (D) 82二、填空题(本大题共7小题,每小题4分,共28分)9.已知012=--x x ,那么代数式123+-x x 的值是 . 10.已知z y x ,,为实数,且3,5=++=++zx yz xy z y x ,则z 的取值范围为 .11.已知点A (1,3),B (5,-2),在x 轴上找一点P ,使│AP-BP │最大,则满足条件的点P 的坐标是 _______.12.设,,,321x x x …,2007x 为实数,且满足 321x x x …2007x =321x x x -…2007x =321x x x -…2007x =…=321x x x …20072006x x -=1, 则2000x 的值是 .13.对于正数x ,规定f (x )= x1x +,计算f (1001)+ f (991)+ f (981)+ …+ f (13)+ f (12)+ f (1)+ f (2)+ f (3)+ … + f (98)+ f (99)+ f (100)= .14.如果关于x 的方程()012122=++++a x a x 有一个小于1的正数根,那么实数a 的 取值范围是 .15.在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是____________ .三、解答题:16. (本小题10分) 某超市去年12月份的销售额为100万元,今年2月份的销售额比今年1月份的销售额多24万元,若去年12月份到今年2月份每个月销售额增长的百分数相同.求:(1)这个相同的百分数;(2)2月份的销售额.17.(本小题13分)如图,AB ∥CD 、AD ∥CE ,F 、G 分别是AC和FD 的中点,过G 的直线依次交AB 、AD 、CD 、CE 于点M 、N 、P 、Q ,求证:MN +PQ =2PN .18.(本小题13分)如图,已知点P 是抛物线2114y x =+上的任意一点,记点P 到x 轴距离为1d ,点P 与点(0,2F )的距离为2d (1)证明1d =2d;(2)若直线PF 交此抛物线于另一点Q(异于P 点),试判断以PQ 为直径的圆与x 轴的位置关系,并说明理由.19.(本小题14分)如图,已知∆ABC 中,AB=a ,点D 在AB 边上移动(点D 不与A 、B 重合),DE//BC ,交AC 于E ,连结CD .设S S S S ABC DEC ∆∆==,1.(1)当D 为AB 中点时,求S S 1:的值;(2)若AD x S S y ==,1,求y 关于x 的函数关系式及自变量x 的取值范围; (3)是否存在点D ,使得S S 114>成立?若存在,求出D 点位置;若不存在,请说明理由.20.(本小题10分)已知42++=m m y ,若m 为整数,在使得y 为完全平方数的所有m 的值中,设m 的最大值为a ,最小值为b ,次小值为c .(注:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数.)(1)求c b a 、、的值;(2)对c b a 、、另一个数不变,这样就仍得到三个数.再对所得三个数进行如上操作,问能否经过若干次上述操作,所得三个数的平方和等于2008?证明你的结论.答案一、选择题:CBAABDAB二、填空题:9.2;103131≤≤-z ;11 (13,0)12. 1,或253±-;13. 9921;14.211-<<-a 15. _3<r ≤4或r =2.4三、解答题:16.(1)100(x+1)2=100(x+1)+24 . x=0.2 =20%.(2) 2月份的销售额:100×1.22=144万元. .17、延长BA 、EC ,设交点为O ,则四边形OADC 为平行四边形.∵ F 是AC 的中点,∴ DF 的延长线必过O 点,且31=OG DG . ∵ AB ∥CD ,∴ DN AN PNMN =.∵ AD ∥CE , ∴ DN CQ PNPQ =.∴ +PN MN =PN PQ DN AN DN CQ +=DN CQ AN +. 又=OQ DN 31=OG DG ,∴ OQ =3DN . ∴ CQ =OQ -OC =3DN -OC =3DN -AD ,AN =AD -DN ,于是,AN +CQ =2DN ,∴+PN MN =PN PQ DN CQ AN +=2,即 MN +PQ =2PN . 18.(1)证明:设点),(00y x P 是2114y x =+上的任意一点,则200104x y =+>,∴10d y =. 由勾股定理得2d=PF =,而20044x y =-,∴201d y d ===.(2)解:①以PQ 为直径的圆与x 轴相切.取PQ 的中点M ,过点P 、M 、Q 作x 轴的垂线,垂足分别为'P 、C 、'Q , 由(1)知,','PP PF QQ QF ==,∴''PP QQ PF QF PQ +=+=. 而MC 是梯形''PQQ P 的中位线,∴MC=21(PP ’+QQ ’)=21(PF+QF)=21PQ.∴以PQ 为直径的圆与x 轴相切.19、解:(1) DE BC D AB //,为的中点,21==∆∆∴AC AE AB AD ABC ADE ,∽.∴==S S AD AB ADE ∆()214 S S AE EC ADE ∆11==, ∴411=S S . (2) ∵ AD =x ,y S S =1,∴ x x a AD DB AE EC S S A DE -===△1.又∵222a x AB AD S S AD E ==△⎪⎭⎫ ⎝⎛, ∴ S △ADE =22a x S ∴ S 1=⎪⎭⎫ ⎝⎛-x x a 22a x S ∴ 221a ax x S S +-=,即y =-x a 21+x a 1 自变量x 的取值范围是:0<x <a .(3)不存在点D ,使得S S 114>成立. 理由:假设存在点D ,使得S S 114>成立,那么S S y 11414>>,即.∴-21a x 2+a 1x >41,∴(a 1x -21)2<0 ∵(a 1x -21)2≥ ∴x 不存在,即不存在点D ,使得S S 114>成立. 20.(1)设224k m m =++(k 为非负整数),则有0422=-++k m m ,由m 为整数知其△为完全平方数(也可以由△的公式直接推出), 即22)4(41p k =--(p 为非负整数),得,15)2)(2(=-+p k p k 显然:p k p k ->+22,所以21521k p k p +=-=⎧⎨⎩或2523k p k p +=-=⎧⎨⎩,解得7=p 或1=p , 所以12pm -±=,得:1,0,4,34321-==-==m m m m , 所以1,4,3-=-==c b a .(2)因为222222a b a b c a b c ++=+++-,即操作前后,这三个数的平方和不变,而2223(4)(1)2008+-+-≠. 所以,对c b a 、、进行若干次操作后,不能得到2008.。
黄石市2008年初中毕业生学业考试数学试卷(闭卷 考试时间:120分钟 满分120分)一、单项选择题(本大题共12个小题,每小题3分,满分36分) 1.3-的相反数是( ) A .13- B .13C .3D .3--2.在实数23-,0,π) A .1个B .2个C .3个D .4个3.如图,AB CD ∥,AD 和BC 相交于点O ,35A ∠=,75AOB ∠=, 则C ∠等于( ) A .35B .75C .70D .804.下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .5.若不等式组5300x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .53m ≤B .53m <C .53m >D .53m ≥6.在反比例函数a y x=中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =-的图象大致是下图中的( )7.下面左图所示的几何体的俯视图是( )A .B .C .8.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是( )9.若一组数据2,4,x ,6,8的平均数是6,则这组数据的方差是( ) A.B .8C.D .4010.若23132a b a b +->+,则a b ,的大小关系为( ) A .a b < B .a b > C .a b = D .不能确定 11.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --12.如图,在等腰三角形ABC 中,120ABC ∠=,点P 是底 边AC 上一个动点,M N ,分别是AB BC ,的中点,若 PM PN +的最小值为2,则ABC △的周长是( ) A .2B.2C .4D.4+二、填空题(本大题共6个小题,每小题3分,满分18分) 13.分解因式:216ax a -= .14.已知y 是x 的一次函数,右表列出了部分对应值, 则m = .15.如图,在Rt ABC △中,90BAC ∠=,6BC =,点D 为BC 中点,将ABD △绕点A 按逆时针方向旋转120得到AB D ''△,则点D 在旋转过程中所经过的路程为 .(结果保留π)A .B .C .D .ABA .B .C .D .AB CPM NB A CD D ' B 'B16.如图,AB 为O 的直径,点C D ,在O 上,50BAC ∠=,则ADC ∠= .17.下图是根据某初中为地震灾区捐款的情况而制作的统计图,已知该校在校学生有2000人,请根据统计图计算该校共捐款 元.18.若实数a b ,满足21a b +=,则2227a b +的最小值是 . 三、解答题(本大题共9个小题,满分66分) 19.(本小题满分6分)9327(1)2cos 60(2)2--++.20.(本小题满分6分)如图,D 是AB 上一点,DF 交AC 于点E ,AE EC =,CF AB ∥. 求证:AD CF =.21.(本小题满分6分)先化简后求值.222212ab a b ab b a ab ab ⎛⎫+⎛⎫-÷+ ⎪ ⎪--⎝⎭⎝⎭,其中1a =-+1b =-22.(本小题满分7分)如图,甲船在港口P 的北偏西60方向,距港口80海里的A 处,沿AP 方向以12海里/时的速度驶向港口P .乙船从港口P 出发,沿北偏东45方向匀速驶离港口P ,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(精确到0.1海里/时,参考数1.411.73)初三 初二 初一 32% 33%35%人数统计ABC D EF 北23.(本小题满分7分)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?24.(本小题满分7分)在一个口袋中有n个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是35.(1)求n的值;(2)把这n个球中的两个标号为1,其余分别标号为2,3,…,1n ,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率.25.(本小题满分8分)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30(1)设分配给甲店A型产品件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?26.(本小题满分9分)如图,ABM ∠为直角,点C 为线段BA 的中点,点D 是射线BM 上的一个动点(不与点B 重合),连结AD ,作BE AD ⊥,垂足为E ,连结CE ,过点E 作EF CE ⊥,交BD 于F . (1)求证:BF FD =;(2)A ∠在什么范围内变化时,四边形ACFE 是梯形,并说明理由; (3)A ∠在什么范围内变化时,线段DE 上存在点G ,满足条件14DG DA =,并说明理由. 27.(本小题满分10分)如图,已知抛物线与x 轴交于点(20)A -,,(40)B ,,与y 轴交于点(08)C ,.(1)求抛物线的解析式及其顶点D 的坐标;(2)设直线CD 交x 轴于点E .在线段OB 的垂直平分线上是否存在点P ,使得点P 到直线CD 的距离等于点P 到原点O 的距离?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?ABC D FEM黄石市2008年初中毕业生学业考试数学试卷答案及评分标准二、填空题(每小题3分,满分18分) 13.(4)(4)a x x +- 14.115.2π 16.4017.2518018.2三、解答题(本大题共9小题,满分66分) 19.解:原式672(1)122-=---++ ··························································· (4分)76122=··············································································· (5分) 2=. ·················································································· (6分) 20.证明:AB CF ∥,A ECF ∴∠=∠. ················································· (2分)又AED CEF ∠=∠,AE CE =,AED CEF ∴△≌△. ······························································· (5分) AD CF ∴=. ········································································· (6分) 21.解:原式222()()2a b ab a b b a b a a b ab ⎡⎤++=-÷⎢⎥--⎣⎦2222()()a b ab ab a b a b -=-+ ······························································ (2分)2()()2()()a b a b abab a b a b +-=-+ 2a b=+. ·············································································· (4分)当1a =-+1b =- 原式212==--. ······································································· (6分) 22.依题意,设乙船速度为x 海里/时,2小时后甲船在点B 处,乙船在点C 处,作PQ BC⊥于Q ,则8021256BP =-⨯=海里,2PC x =海里. 在Rt PQB △中,60BPQ ∠=,1cos6056282PQ BP ∴==⨯=.····························································· (2分) 在Rt PQC △中,45QPC ∠=,2cos 45222PQ PC x x ∴===. ························································ (4分) 28=, x =.19.7x ∴≈.答:乙船的航行速度约为19.7海里/时. ························································ (7分) 23.设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品. 依题意有220100100410x x -+=-. ······························································ (3分) 整理得2653000x x -+=.解得5x =或60x =. ··············································································· (5分)5x =时,1050x -=-<,5x ∴=舍去. 60x ∴=.答:改进操作方法后每天生产60件产品. ····················································· (7分) 24.(1)依题意2355n n n -==. ······························································· (3分) (2)当5n =时,这5个球两个标号为1,其余标号分别为2,3,4.两次取球的小球标号出现的所有可能的结果如下表:第2∴由上表知所求概率为920P =. ································································ (7分) 25.依题意,甲店B 型产品有(70)x -件,乙店A 型有(40)x -件,B 型有(10)x -件,则 (1)200170(70)160(40)150(10)W x x x x =+-+-+-2016800x =+. 由0700400100x x x x ⎧⎪-⎪⎨-⎪⎪-⎩≥≥≥≥,,,.解得1040x ≤≤. ······························································ (2分)(2)由201680017560W x =+≥, 38x ∴≥.3840x ∴≤≤,38x =,39,40. ∴有三种不同的分配方案.①38x =时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件. ②39x =时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件. ③40x =时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件. (3)依题意:(200)170(70)160(40)150(10)W a x x x x =-+-+-+- (20)16800a x =-+.①当020a <<时,40x =,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大.②当20a =时,1040x ≤≤,符合题意的各种方案,使总利润都一样.③当2030a <<时,10x =,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大. ·············································································· (8分) 26.(1)在Rt AEB △中,AC BC =,12CE AB ∴=,CB CE ∴=,CEB CBE ∴∠=∠. 90CEF CBF ∠=∠=,BEF EBF ∴∠=∠,EF BF ∴=.90BEF FED ∠+∠=,90EBD EDB ∠+∠=,FED EDF ∴∠=∠. EF FD =.BF FD ∴=. ························································································· (3分) (2)由(1)BF FD =,而BC CA =, CF AD ∴∥,即AE CF ∥.AB CD F EM GH若AC EF ∥,则AC EF =,BC BF ∴=.BA BD ∴=,45A ∠=.∴当045A <∠<或4590A <∠<时,四边形ACFE 为梯形. ····················· (6分)(3)作GH BD ⊥,垂足为H ,则GH AB ∥.14DG DA =,14DH DB ∴=. 又F 为BD 中点,H ∴为DF 的中点. GH ∴为DF 的中垂线. GDF GFD ∴∠=∠.点G 在ED h 上,EFD GFD ∴∠∠≥. 180EFD FDE DEF ∠+∠+∠=, 180GFD FDE DEF ∴∠+∠+∠≤.3180EDF ∴∠≤. 60EDF ∴∠≤.又90A EDF ∠+∠=,3090A ∴∠<≤.∴当3090A ∠<≤时,DE 上存在点G ,满足条件14DG DA =. ·················· (9分) 27.(1)设抛物线解析式为(2)(4)y a x x =+-,把(08)C ,代入得1a =-.228y x x ∴=-++2(1)9x =--+,顶点(19)D , ····························································································· (2分) (2)假设满足条件的点P 存在,依题意设(2)P t ,, 由(08)(19)C D ,,,求得直线CD 的解析式为8y x =+,它与x 轴的夹角为45,设OB 的中垂线交CD 于H ,则(210)H ,.则10PH t =-,点P 到CD 的距离为2d PH t ==-.又PO =. ···································································· (4分)t=-.平方并整理得:220920t t+-=10t=-±∴存在满足条件的点P,P的坐标为(210-±,.····································(6分)(3)由上求得(80)(412)E F-,,,.①若抛物线向上平移,可设解析式为228(0)y x x m m=-+++>.当8x=-时,72y m=-+.当4x=时,y m=.720m∴-+≤或12m≤.072m∴<≤.···················(8分)②若抛物线向下移,可设解析式为228(y x x m m=-++-由2288y x x my x⎧=-++-⎨=+⎩,有20x x m-+=.140m∴=-≥△,14m∴<≤.∴向上最多可平移72个单位长,向下最多可平移14个单位长.(10分。