【精品】高中数学必修一_函数应用(Ⅱ) 讲义_知识讲解+巩固练习(含答案)_基础
- 格式:doc
- 大小:342.50 KB
- 文档页数:11
2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。
必修一:《函数应用》全章复习与巩固【学习目标】1.理解方程的根与函数零点的关系,会用二分法求函数零点。
2.进一步理解函数是刻画日常生活规律的重要模型,在用函数的过程中理解函数的概念、性质和函数思想方法。
3.在用数学解决问题的实践中,感受数学应用的层次,体验数学建模的过程和步骤,了解数学建模的意义,发展应用数学的意识。
【知识网络】【要点梳理】要点一:函数、方程的有关问题1.一般地,一元二次方程ax 2+bx+c=0(a≠0)的根与二次函数 y= ax2+bx+c (a≠0)的图像有如下关要点诠释:(1)方程的根与函数的零点:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.(2)方程的根与函数的零点:方程f (x )=0有实数根的个数⇔函数y =f (x )的图象与x 轴有交点的个数⇔函数y =f (x )的零点的个数.2.函数零点的判定(1)利用函数零点存在性的判定定理 如果函数()y f x =在一个区间[]a b ,上的图象不间断,并且在它的两个端点处的函数值异号,即()()0f a f b <,则这个函数在这个区间上,至少有一个零点,即存在一点()0x a b ∈,,使()00f x =,这个0x 也就是方程()0f x =的根.要点诠释:①满足上述条件,我们只能判定区间内有零点,但不能确定有几个.若函数在区间内单调,则只有一个;若不单调,则个数不确定.②若函数()f x 在区间[],a b 上有()()0f a f b ⋅>,()f x 在(,)a b 内也可能有零点,例如2()f x x=在[]1,1-上,2()23f x x x =--在区间[]2,4-上就是这样的.故()f x 在(),a b 内有零点,不一定有()()0f a f b ⋅<.③若函数()f x 在区间[],a b 上的图象不是连续不断的曲线,()f x 在(),a b 内也可能是有零点,例如函数1()1f x x=+在[]2,2-上就是这样的. (2)利用方程求解法求函数的零点时,先考虑解方程()0f x =,方程()0f x =无实根则函数无零点,方程()0f x =有实根则函数有零点. (3)利用数形结合法函数()()()F x f x g x =-的零点就是方程()()f x g x =的实数根,也就是函数()y f x =的图象与()y g x =的图象交点的横坐标.3.用二分法求函数零点的一般步骤:已知函数()y f x =定义在区间D 上,求它在D 上的一个零点x 0的近似值x ,使它满足给定的精确度.第一步:在D 内取一个闭区间[]00,a b D ⊆,使()0f a 与()0f b 异号,即()()000f a f b ⋅<,零点位于区间[]00,a b 中.第二步:取区间[]00,a b 的中点,则此中点对应的坐标为()()0000001122x a b a a b =+-=+. 计算()0f x 和()0f a ,并判断:①如果()00f x =,则0x 就是()f x 的零点,计算终止;②如果()()000f a f x ⋅<,则零点位于区间[]00,a x 中,令1010,a a b x ==; ③如果()()000f a f x ⋅>,则零点位于区间[]00,x b 中,令1010,a x b b == 第三步:取区间[]11,a b 的中点,则此中点对应的坐标为()()1111111122x a b a a b =+-=+. 计算()1f x 和()1f a ,并判断:①如果()10f x =,则1x 就是()f x 的零点,计算终止;②如果()()110f a f x ⋅<,则零点位于区间[]11,a x 中,令2121,a a b x ==; ③如果()()110f a f x ⋅>,则零点位于区间[]11,x b 中,令2121,a x b b ==; ……继续实施上述步骤,直到区间[],n n a b ,函数的零点总位于区间[],n n a b 上,当n a 和n b 按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数()y f x =的近似零点,计算终止.这时函数()y f x =的近似零点满足给定的精确度.要点诠释:(1)第一步中要使:①区间长度尽量小;②()f a 、()f b 的值比较容易计算且()() <0f a f b . (2)根据函数的零点与相应方程的根的关系,求函数的零点和求相应方程的根式等价的.对于求方程()()f x g x =的根,可以构造函数()()()F x f x g x =-,函数()F x 的零点即为方程()()f x g x =的根.要点二:函数的实际应用求解函数应用题时一般按以下几步进行: 第一步:审题弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 第二步:建模在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求. 第三步:求模运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果. 第四步:还原把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景.上述四步可概括为以下流程:实际问题(文字语言)⇒数学问题(数量关系与函数模型)⇒建模(数学语言)⇒求模(求解数学问题)⇒反馈(还原成实际问题的解答). 【典型例题】类型一:关于函数的零点与方程根的关系问题 例1.求函数2()3(0)f x x x x=+->的零点。
函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。
(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。
高中数学新人教版必修一知识讲解及练习附答案《函数》全章复习与巩固编稿:审稿:【学习目标】1.会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.2.能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;3.求简单分段函数的解析式;了解分段函数及其简单应用;4.理解函数的单调性、最大(小)值及其几何意义;结合具体函数了解奇偶性的含义;5.理解函数零点的意义,能判断二次函数零点的存在性,会求简单函数的零点,了解函数的零点与方程根的关系;6.能运用函数的图象理解和研究函数的性质.【知识网络】【要点梳理】要点一:关于函数的概念1.两个函数相等的条件用集合与对应的语言刻画函数,与初中的“用变量的观点描述函数”实质上是一致的.函数有三要素——定义域、值域、对应关系,它们是不可分割的一个整体.当且仅当两个函数的三要素完全相同时,这两个函数相等.2.函数的常用表示方法函数的常用表示方法有:图象法、列表法、解析法.注意领会在实际情境中根据不同的需要选择恰当的方法表示函数.3.映射设A、B是两个非空集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x(原f x(象)与之对应,那么就称对应f:A→B为从集合A到集象),在集合B中都有唯一确定的元素()合B的一个映射.由映射定义知,函数是一种特殊的映射,即函数是两个非空的数集间的映射.4.函数的定义域函数的定义域是自变量x 的取值范围,但要注意,在实际问题中,定义域要受到实际意义的制约.其题型主要有以下几种类型:(1)已知()f x 得函数表达式,求定义域; (2)已知()f x 的定义域,求[]()f x ϕ的定义域,其实质是由()x ϕ的取值范围,求出x 的取值范围;(3)已知[]()fx ϕ的定义域,求()f x 的定义域,其实质是由x 的取值范围,求()x ϕ的取值范围.5.函数的值域由函数的定义知,自变量x 在对应法则f 下取值的集合叫做函数的值域. 函数值域的求法:(1)与二次函数有关的函数,可用配方法(注意定义域);(2)形如y ax b =+t =,转化成二次函数再求值域(注意0t ≥);(3)形如(0)ax by c cx d+=≠+的函数可借助反比例函数求其值域,若用变量分离法求值域,这种函数的值域为|a y y c ⎧⎫≠⎨⎬⎩⎭; (4)形如22ax bx cy mx nx p++=++(,a m 中至少有一个不为零)的函数求值域,可用判别式求值域. 6.函数的解析式函数的解析式是函数的一种表示方法,求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是求出函数的定义域.求函数解析式的主要方法:已知函数解析式的类型时,可用待定系数法;已知复合函数[]()f g x 的表达式时,可用换元法,此时要注意“元”的取值范围;若已知抽象函数表达式,则常用解方程组、消参的方法求出()f x .要点二:函数的单调性(1)如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数.(2)如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数.(3)若函数()f x 在某个区间上总是递增(或递减)的,则该区间是函数的一个单调增(或减)区间.若函数()f x 在整个定义域上总是递增(或递减)的,则称该函数为单调增(或减)函数. 与函数单调性有关的问题主要有:由函数单调性定义判断或证明某一个函数在一个区间的单调性;通过图象或运用复合函数的单调性原理求函数的单调区间;应用函数的单调性证明不等式、比较数的大小、判断某些超越方程根的个数等.要点三:函数的奇偶性(1)若一个函数具有奇偶性,则它的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,那么它就失去了是奇函数或是偶函数的条件,即这个函数既不是奇函数也不是偶函数.(2)若奇函数()y f x =的定义域内有零,则由奇函数定义知(0)(0)f f -=-,即(0)(0)f f =-,所以(0)0f =.(3)奇、偶性图象的特点如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.如果一个函数是偶函数,则它的图象是以y 轴为对称轴的对称图形;反之,如果一个函数的图象是y 轴为对称轴的轴对称图形,则这个函数是偶函数.要点四:图象的作法与平移(1)根据函数表达式列表、描点、连光滑曲线; (2)利用熟知函数图象的平移、翻转、伸缩变换; (3)利用函数的奇偶性,图象的对称性描绘函数图象. 要点五:一次函数和二次函数 1.一次函数(0)y kx b k =+≠,其中y k x∆=∆. 2.二次函数二次函数2(0)y ax bx c a =++≠,通过配方可以得到2(),y a x h k a =-+决定了二次函数图象的开口大小及方向.顶点坐标为(),h k ,对称轴方程为x h =.对于二次函数2224()()24b ac b f x ax bx c a x a a-=++=++. 当0a >时,()f x 的图象开口向上;顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭;对称轴为2bx a =-;()f x 在,2b a ⎛⎤-∞- ⎥⎝⎦上是单调递减的,在,2b a ⎡⎫-+∞⎪⎢⎣⎭上是单调递增的;当2b x a =-时,函数取得最小值244ac b a-. 当0a <时,()f x 的图象开口向下;顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭;对称轴为2bx a =-;()f x 在,2b a ⎛⎤-∞- ⎥⎝⎦上是单调递增的,在,2b a ⎡⎫-+∞⎪⎢⎣⎭上是单调递减的;当2b x a =-时,函数取得最大值244ac b a-. 要点六:函数的应用举例(实际问题的解法)(1)审题:弄清题意、分清条件和结论、理顺数量关系;(2)建模:将文字语言转化成数学语言,利用相应的数学知识模型; (3)求模:求解数学模型,得到数学结论;(4)还原:将用数学方法得到的结论,还原为实际问题的意义. 求解函数应用问题的思路和方法,我们可以用示意图表示为:要点七:函数与方程(1)对于函数()()y f x x D =∈,我们把使()0f x =得实数x 叫做函数()()y f x x D =∈的零点. (2)确定函数()y f x =的零点,就是求方程()0f x =的实数根.(3)一般地,如果函数()y f x =在区间[],a b 上的图象是连续不间断的一条曲线,并且()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内有零点,即存在()0,x a b ∈,使得0()0f x =,这个0x 也就是方程()0f x =的根.(4)一般地,对于不能用公式法求根的方法()0f x =来说,我们可以将它与函数()y f x =联系起来,并利用函数的性质找出零点或零点所在的区间,从而求出方程的根,或者用二分法求出方程的近似解.判断函数在某区间有零点的依据:对于一些比较简单的方程,我们可以通过公式等方法进行解决,对于不能用公式解决的方程,我们可以把这些方程()0f x =与函数()y f x =联系起来,并利用函数的图象和性质找零点,从而求出方程的根.对于如何判断函数在某区间内是否是零点的问题,最关键的是要把握两条:其一,函数的图象在某区间是否是连续不间断的一条曲线;其二,该函数是否满足在上述区间的两个端点处,函数值之积小于0.(5)在实数范围内,二次函数2(0)y ax bx c a =++≠的零点与二次方程20(0)ax bx c a ++=≠的根之间有密切关系.①0∆>,方程20(0)ax bx c a ++=≠有两个实根,其对应二次函数有两个零点; ②0∆=,方程20(0)ax bx c a ++=≠有一个二重根,其对应二次函数有一个二重零点; ③0∆<,方程20(0)ax bx c a ++=≠无根,其对应二次函数无零点. 【典型例题】类型一:映射例1.设集合{(,)|,}A B x y x y ==∈∈R R ,f 是A 到B 的映射,并满足:(,)(,)f x y xy x y →--. (1)求B 中元素(3,-4)在A 中的原象; (2)试探索B 中有哪些元素在A 中存在原象;(3)求B 中元素(a ,b )在A 中有且只有一个原象时,a ,b 所满足的关系式.【思路点拨】本例是一道与方程综合的题目,关键是将题目转化为我们所熟悉的映射的知识. 【解析】(1)设(x ,y )是(3,-4)在A 中的原象, 于是34xy x y -=⎧⎨-=-⎩,解得13x y =-⎧⎨=⎩或31x y =-⎧⎨=⎩,∴(―3,4)在A 中的原象是(―1,3)或(―3,1). (2)设任意(a ,b )∈B 在A 中有原象(x ,y ), 应满足 xy a x y b -=⎧⎨-=⎩①②由②可得y=x ―b ,代入①得x 2―bx+a=0. ③ 当且仅当Δ=b 2―4a ≥0时,方程③有实根.∴只有当B 中元素满足b 2-4a ≥0时,才在A 中有原象.(3)由以上(2)的解题过程知,只有当B 中元素满足b 2=4a 时,它在A 中有且只有一个原象. 【总结升华】高考对映射考查较少,考查时只涉及映射的概念,因此我们必须准确地把握映射的概念,并灵活地运用它解决有关问题.举一反三:【变式1】 已知a ,b 为两个不相等的实数,集合2{4,1}M a a =--,2{41,2}N b b =-+-,:f x x →表示把M 中的元素x 映射到集合N 中仍为x ,则a+b 等于( )A .1B .2C .3D .4 【答案】 D【解析】 由已知可得M=N ,故222242420411420a a a a b b b b ⎧⎧-=--+=⎪⎪⇒⎨⎨-+=--+=⎪⎪⎩⎩,a 、b 是方程x 2-4x+2=0的两根,故a+b=4.类型二:函数的概念及性质【高清课堂:集合与函数性质综合377492 例2】例2.设定义在R 上的函数y = f (x )是偶函数,且f (x )在(-∞,0)为增函数.若对于120x x <<,且120x x +>,则有 ( )A .12(||)(||)f x f x <B .21()()f x f x ->-C .12()()f x f x <-D .12()()f x f x -> 【答案】D【解析】因为120x x <<,且120x x +>,所以21||||x x >,画出y = f (x )的图象,数形结合知,只有选项D 正确.【总结升华】对函数性质的综合考查是高考命题热点问题.这类问题往往涉及函数单调性、奇偶性、函数图象的对称性,以及题目中给出的函数性质.解决这类问题的关键在于“各个击破”,也就是涉及哪个性质,就利用该性质来分析解决问题.举一反三:【变式1】下列函数中,既是奇函数又是增函数的为( ) A .1y x =+ B .2y x =-C .1y x=D .||y x x =【答案】D【解析】奇函数有1y x=和||y x x =,又是增函数的只有选项D 正确. 【变式2】 定义在R 上的偶函数f (x),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有2121()()0f x f x x x -<-,则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<- 【答案】A【解析】由题知,()f x 为偶函数,故(2)(2)f f =-,又知x ∈[0,+∞)时,()f x 为减函数,且3>2>1,∴(3)(2)(1)f f f <<,即(3)(2)(1)f f f <-<.故选A .例3.设偶函数()f x 满足3()8(0)f x x x =-≥,则{|(2)0}x f x ->=( ) A .{x|x <-2或x >4} B .{x|x <0或x >4} C .{x|x <0或x >6} D .{x|x <-2或x >2} 【答案】 B【解析】 当x <0时,-x >0,∴33()()88f x x x -=--=--, 又()f x 是偶函数,∴3()()8f x f x x =-=--,∴338, 0()8, 0x x f x x x ⎧-≥⎪=⎨--<⎪⎩,∴33(2)8, 0(2)(2)8, 0x x f x x x ⎧--≥⎪-=⎨---<⎪⎩,30(2)80x x ≥⎧⎨-->⎩或30(2)80x x <⎧⎨--->⎩. 解得x >4或x <0,故选B .例4.设函数()0)f x a =<的定义域为D ,若所有点(,())s f t (,)s t D ∈构成一个正方形区域,则a 的值为( )A .-2B .-4C .-8D .不能确定 【答案】 B【解析】 依题意,设关于x 的不等式ax 2+bx+c ≥0(a <0)的解集是[x 1,x 2](x 1<x 2),且12()()0f x f x ==,22140)x x b ac a-=->-,()f x =的最大值是=s ∈[x 1,x 2]的取值一定时,()f t 取遍⎡⎢⎢⎣中的每一个组,相应的图形是一条线段;当s 取遍[x 1,x 2]中的每一个值时,所形成的图形是一个正方形区域(即相当于将前面所得到的线段在坐标平面内平移所得),因此有0a =>-,a -=a <0,因此a=-4,选B 项.举一反三:【变式1】若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4] D .(0,1) 【答案】 B【解析】 要使()g x 有意义,则02210x x ≤≤⎧⎨-≠⎩,解得0≤x <1,故定义域为[0,1),选B .例5.已知函数y =M ,最小值为m ,则mM的值为( )A .14 B .12C .22D .32【答案】 C【解析】 函数的定义域为[-3,1].又22242(1)(3)4223424(1)y x x x x x =+-+=+--+=+-+. 而204(1)2x ≤-+≤,∴4≤y 2≤8.又y >0,∴222y ≤≤.∴22M =,m=2.∴22m M =.故选C 项. 举一反三:【变式1】函数221x y x =+(x ∈R )的值域是________.【答案】[0,1) 【解析】(1)注意到x 2≥0,故可以先解出x 2,再利用函数的有界性求出函数值域.由221x y x =+,得21y x y=-,∴01y y ≥-,解之得0≤y <1.故填[0,1).例6.设函数()|24|1f x x =-+. (1)画出函数()y f x =的图象;(2)若不等式()f x ax ≤的解集非空,求a 的取值范围.【解析】 (1)由于25, 2()23, 3x x f x x x -+<⎧=⎨-≥⎩,则函数()y f x =的图象如图所示.(2)由函数()y f x =与函数y=ax 的图象可知,当且仅当12a ≥或a <―2时,函数()y f x =与函数y=ax 的图象有交点.故不等式()f x ax ≤的解集非空时,a 的取值范围为1(,2)[,)2-∞-+∞.举一反三:【变式1】 直线y=1与曲线y=x 2-|x|+a 有四个交点,则a 的取值范围是________. 【答案】 514a <<【解析】 如图,作出y=x 2-|x|+a 的图象,若要使y=1与其有四个交点,则需满足114a a -<<,解得514a <<.类型三:函数的零点问题例7.若函数()y f x =在区间(-2,2)上的图象是连续的,且方程()0f x =在(-2,2)上仅有一个实根0,则(1)(1)f f -⋅的值( )A .大于0B .小于0C .等于0D .无法确定 【答案】D【解析】根据连续函数零点的性质,若(1)(1)0f f -⋅<,则()f x 在(-1,1)内必有零点,即方程()0f x =在(-1,1)内有根;反之,若方程()0f x =在(-2,2)内有实根,不一定有(1)(1)0f f -⋅<,也有可能(1)(1)0f f -⋅>.【总结升华】若(1)(1)0f f -⋅<,则()f x 在(-1,1)内必有零点,但当()f x 在(-1,1)内有零点时,却不一定总有(1)(1)0f f -⋅<.举一反三:【变式1】若函数2()f x x ax b =++的零点是2和4-,则a = ,b = . 【答案】2,8a b ==-【变式2】若函数()0f x ax b =+=有一个零点是2,那么函数2()g x bx ax =-的零点是 . 【答案】10,2-类型四:函数性质的综合应用 例8. 已知函数2()af x x x=+(x ≠0,常数a ∈R ). (1)讨论函数()f x 的奇偶性,并说明理由;(2)若函数()f x 在x ∈[2,+∞)上为增函数,求a 的取值范围.【思路点拨】(1)对a 进行分类讨论,然后利用奇函数的定义去证明即可.(2)由题意知,任取2≤x 1<x 2,则有12()()0f x f x -<恒成立,即可得a 的取值范围.【解析】 (1)当a=0时,2()f x x =,对任意x ∈(-∞,0)∪(0,+∞),22()()()f x x x f x -=-==,∴()f x 为偶函数.当a ≠0时,2()af x x x=+(a ≠0,x ≠0), 取x=±1,得(1)(1)20f f -+=≠, ∴(1)(1)f f -≠-,(1)(1)f f -≠,∴函数(1)(1)f f -≠既不是奇函数,也不是偶函数. (2)解法一:设2≤x 1<x 2,2212121212121212()()[()]x x a a f x f x x x x x x x a x x x x --=+--=⋅+-,要使函数()f x 在x ∈[2,+∞)上为增函数,必须12()()0f x f x -<恒成立.∵x 1-x 2<0,x 1 x 2>4,即a <x 1 x 2 (x 1+ x 2)恒成立.又∵x 1+ x 2>4,∴x 1x2(x 1+ x 2)>16. ∴a 的取值范围是(-∞,16].解法二:当a=0时,2()f x x =,显然在[2,+∞)上为增函数. 当a <0时,反比例函数ax在[2,+∞)上为增函数, ∴2()af x x x=+在[2,+∞)上为增函数. 当a >0时,同解法一.【总结升华】 函数的奇偶性与单调性是函数的重要性质,因而也是高考命题的热点.应运用研究函数的奇偶性与单调性的基本方法,来分析解决问题.举一反三:【高清课堂:集合与函数性质综合377492 例5】 【变式1】已知函数1()f x kx x=-,且f (1)=1. (1)求实数k 的值及函数的定义域;(2)判断函数在(0,+∞)上的单调性,并用定义加以证明. 【解析】(1)(1)1,11,2f k k =∴-=∴=,1()2f x x x∴=-,定义域为:()(),00,-∞+∞.(2)在(0,+∞)上任取1212,,x x x x <且,则12121211()()22f x f x x x x x -=--+=12121()(2)x x x x -+1212121,0,20x x x x x x <∴-<+> 12()()f x f x ∴<所以函数1(2)2f x x=-在()0,+∞上单调递增. 类型五:函数的实际应用例9.某桶装水经营部每天的房租、人员工资等固定资本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表:请根据以上数据作出分析,这个经营部怎样定价能获得最大利润? 【答案】11.5 1490【思路点拨】 由题目可获取以下主要信息:(1)已知固定成本200元/天,水进价5元/桶;(2)用表格体现出了售价与日销售量的关系;(3)解决利润最大问题.解决本题可先分析表格,从中找到单价每增加1元,则日销售量就减少40桶,然后设出有关未知量,建立函数模型,进而解决问题. 【解析】 设每桶水在原来的基础上上涨x 元,利润为y 元,由表格中的数据可以得到:价格每上涨1元,日销售量就减少40桶,所以涨价x 元后,日销售的桶数为:480-40(x -1)=520-40x >0,所以0<x <13,则利润:213(52040)2004014902y x x x ⎛⎫=--=--+ ⎪⎝⎭.(0<x <13)故当x =6.5时,利润最大,即当水的价格为11.5元时,利润最大值为1490元.【总结升华】列表法是给出函数关系的一个重要形式,通过“利润=收入-支出”这一实际意义建立变量之间的关系.运用二次函数模型,常解决一些最大(小)值问题,对生产生活等问题进行优化.举一反三:【变式1】某公司每年需购买某种元件8000个用于组装生产,每年分n 次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?【思路点拨】本题的关键是根据题意列出函数关系式,然后利用配方法求函数的最大值. 【答案】4【解析】设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入,设为c 元,则 8000150022y n c n =+⨯⨯+ 800016500500()n c n c n n=++=++ 24000c =++,=,即n=4时,y取得最小值且y min=4000+c.所以分4次进货可使得每年购买和贮存元件总费用最低.【总结升华】题中用了配方法求最值,技巧性高,另外本题还可利用函数16y xx=+在(0,+∞)上的单调性求最值.。
函数应用(Ⅱ)【学习目标】1.能够找出简单实际问题中的函数关系式,应用指数函数、对数函数模型解决实际问题,并初步掌握数学建模的一般步骤和方法.2.通过具体实例,感受运用函数建立模型的过程和方法,体会指数函数、对数函数模型在数学和其他学科中的应用.3.通过函数应用的学习,体会数学应用的广泛性,树立事物间相互联系的辩证观,培养分析问题、解决问题的能力,增强数学的应用意识.【要点梳理】【高清课堂:函数模型的应用实例392115 知识要点】要点一:解答应用问题的基本思想和步骤1.解应用题的基本思想2.解答函数应用题的基本步骤求解函数应用题时一般按以下几步进行:第一步:审题弄清题意,分清条件和结论,理顺数量关系,初步选择模型.第二步:建模在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求.第三步:求模运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果.第四步:还原把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景.上述四步可概括为以下流程:实际问题(文字语言)⇒数学问题(数量关系与函数模型)⇒建模(数学语言)⇒求模(求解数学问题)⇒反馈(还原成实际问题的解答).要点二:解答函数应用题应注意的问题首先,要认真阅读理解材料.应用题所用的数学语言多为“文字语言、符号语言、图形语言”并用,往往篇幅较长,立意有创新脱俗之感.阅读理解材料要达到的目标是读懂题目所叙述的实际问题的意义,领悟其中的数学本质,接受题目所约定的临时性定义,理解题目中的量与量的位置关系、数量关系,确立解体思路和下一步的努力方向,对于有些数量关系较复杂、较模糊的问题,可以借助画图和列表来理清它.其次,建立函数关系.根据前面审题及分析,把实际问题“用字母符号、关系符号”表达出来,建立函数关系.其中,认真阅读理解材料是建立函数模型的关键.在阅读这一过程中应像解答语文和外语中的阅读问题一样,有“泛读”与“精读”之分.这是因为一般的应用问题,一方面为了描述的问题与客观实际尽可能地相吻合,就必须用一定的篇幅描述其中的情境;另一方面有时为了思想教育方面的需要,也要用一些非数量关系的语言来叙述,而我们解决问题所关心的东西是数量关系,因此对那些叙述的部分只需要“泛读”即可.反过来,对那些刻画数量关系、位置关系、对应关系等与数学有关的问题的部分,则应“精读”,一遍不行再来一遍,直到透彻地理解为止,此时切忌草率.【典型例题】类型一、已建立函数模型的应用题例1.人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T. R. Malthus,1766~1834)就提出了自然状态下的人口增长模型:0rty y e=,其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年的人口数据资料:(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.000 1),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符.(2)如果按上表的增长趋势,大约在哪一年我国的人口可达到13亿?【解析】 (1)设1951~1959年的人口增长率分别为1r ,2r ,…,9r .由55196(1+r 1)=56300,可得1951年的人口增长率r 1≈0.0200.同理可得r 2≈0.0210,r 3≈0.0229,r 4≈0.0250,r 5≈0.0197,r 6≈0.0223,r 7≈0.0276,r 8≈0.0222,r 9≈0.0184.于是,1951~1959年期间,我国人口的年平均增长率为 r =(r 1+r 2+…+r 9)÷9≈0.0221.令0y =55196,则我国在195l ~1959年期间的人口增长模型为0022155196t y =.,t ∈N .根据表中的数据作出散点图,并作出函数y =55196 e 0.022 1t (t ∈N )的图象(如图所示).由上图可以看出,所得模型与1950~1959年的实际人口数据基本吻合. (2)将y =130000代入y =55196 e 0.022 1t ,由计算器可得t ≈38.76.所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看出,如果不实行计划生育,而是让人口自然增长,今天我国会面临难以承受的人口压力.【总结升华】明确解题的基本步骤:阅读理解,审清题意—→引进数学符号,建立数学模—→解答函数(或方程)问题—→回归应用情境,回答具体问题.举一反三:【变式1】 设在海拔x m 处的大气压强是y Pa ,y 与x 之间的函数关系式是y=ce kx ,其中c ,k 为常量,已知某地某天海平面上的大气压为1.01×105 Pa ,1000 m 高空的大气压为0.90×105 Pa ,求600 m 高空的大气压强(结果保留3位有效数字)。
高中数学新人教版必修一知识讲解及练习附答案函数应用(Ⅱ)编稿:审稿:【学习目标】1.能够找出简单实际问题中的函数关系式,应用指数函数、对数函数模型解决实际问题,并初步掌握数学建模的一般步骤和方法.2.通过具体实例,感受运用函数建立模型的过程和方法,体会指数函数、对数函数模型在数学和其他学科中的应用.3.通过函数应用的学习,体会数学应用的广泛性,树立事物间相互联系的辩证观,培养分析问题、解决问题的能力,增强数学的应用意识.【要点梳理】【高清课堂:函数模型的应用实例392115 知识要点】要点一:解答应用问题的基本思想和步骤1.解应用题的基本思想2.解答函数应用题的基本步骤求解函数应用题时一般按以下几步进行:第一步:审题弄清题意,分清条件和结论,理顺数量关系,初步选择模型.第二步:建模在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求.第三步:求模运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果.第四步:还原把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景.上述四步可概括为以下流程:实际问题(文字语言)⇒数学问题(数量关系与函数模型)⇒建模(数学语言)⇒求模(求解数学问题)⇒反馈(还原成实际问题的解答).要点二:解答函数应用题应注意的问题首先,要认真阅读理解材料.应用题所用的数学语言多为“文字语言、符号语言、图形语言”并用,往往篇幅较长,立意有创新脱俗之感.阅读理解材料要达到的目标是读懂题目所叙述的实际问题的意义,领悟其中的数学本质,接受题目所约定的临时性定义,理解题目中的量与量的位置关系、数量关系,确立解体思路和下一步的努力方向,对于有些数量关系较复杂、较模糊的问题,可以借助画图和列表来理清它.其次,建立函数关系.根据前面审题及分析,把实际问题“用字母符号、关系符号”表达出来,建立函数关系.其中,认真阅读理解材料是建立函数模型的关键.在阅读这一过程中应像解答语文和外语中的阅读问题一样,有“泛读”与“精读”之分.这是因为一般的应用问题,一方面为了描述的问题与客观实际尽可能地相吻合,就必须用一定的篇幅描述其中的情境;另一方面有时为了思想教育方面的需要,也要用一些非数量关系的语言来叙述,而我们解决问题所关心的东西是数量关系,因此对那些叙述的部分只需要“泛读”即可.反过来,对那些刻画数量关系、位置关系、对应关系等与数学有关的问题的部分,则应“精读”,一遍不行再来一遍,直到透彻地理解为止,此时切忌草率.【典型例题】类型一、已建立函数模型的应用题例1.人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T . R . Malthus ,1766~1834)就提出了自然状态下的人口增长模型:0rty y e =,其中t 表示经过的时间,y 0表示t =0时的人口数,r 表示人口的年平均增长率.年份 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 人数/万人55196563005748258796602666145662828645636599467207(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.000 1),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符.(2)如果按上表的增长趋势,大约在哪一年我国的人口可达到13亿? 【解析】 (1)设1951~1959年的人口增长率分别为1r ,2r ,…,9r .由55196(1+r 1)=56300,可得1951年的人口增长率r 1≈0.0200.同理可得r 2≈0.0210,r 3≈0.0229,r 4≈0.0250,r 5≈0.0197,r 6≈0.0223,r 7≈0.0276,r 8≈0.0222,r 9≈0.0184.于是,1951~1959年期间,我国人口的年平均增长率为 r =(r 1+r 2+…+r 9)÷9≈0.0221.令0y =55196,则我国在195l ~1959年期间的人口增长模型为0022155196ty =.,t ∈N .根据表中的数据作出散点图,并作出函数y =55196 e 0.022 1t (t ∈N )的图象(如图所示).由上图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.(2)将y =130000代入y =55196 e 0.022 1t ,由计算器可得t ≈38.76. 所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看出,如果不实行计划生育,而是让人口自然增长,今天我国会面临难以承受的人口压力. 【总结升华】明确解题的基本步骤:阅读理解,审清题意—→引进数学符号,建立数学模—→解答函数(或方程)问题—→回归应用情境,回答具体问题.举一反三:【变式1】 设在海拔x m 处的大气压强是y Pa ,y 与x 之间的函数关系式是y=ce kx ,其中c ,k 为常量,已知某地某天海平面上的大气压为1.01×105 Pa ,1000 m 高空的大气压为0.90×105 Pa ,求600 m 高空的大气压强(结果保留3位有效数字)。
高中数学新人教版必修一知识讲解及练习附答案一次函数和二次函数 撰稿: 审稿:【学习目标】1.掌握一次函数的图象和性质,二次函数的图象和性质,会判断函数的单调性; 2.会求函数的最大值、最小值,能利用配方法解决二次函数的问题; 3.了解待定系数法的概念,会用待定系数法求函数的解析式。
【要点梳理】要点一、一次函数的性质与图象 1.一次函数的概念(1)深刻理解斜率这个概念.①定义:一次函数y =kx+b (k ≠0)的图象是一条直线,以后简写为直线y =kx+b ,其中k 叫做该直线的斜率.②用运动的观点理解斜率k .函数的改变量21()y y -与自变量的改变量21()x x -的比值等于常数k .③从对图象的单调性的影响上理解斜率k .当k >0时,一次函数是增函数;当k <0时,一次函数是减函数. (2)深刻理解截距b 的含义.①定义:一次函数y =kx+b (k ≠0)的图象是一条直线,以后简写为直线y =kx+b ,其中b 叫做该直线在y 轴上的截距.②b 的取值范围:b ∈R .③b 的几何意义:直线y =kx+b 与y 轴的交点的纵坐标.④点(0,b )是直线y =kx+b 与y 轴的交点.当b >0时,此交点在y 轴的正半轴上;当b <0时,此交点在y 轴的负半轴上;当b =0时,此交点在原点,此时的一次函数就是正比例函数.一次函数(0)y kx b k =+≠图象性质单调性奇偶性k >0b =0增函数 奇函数b ≠0增函数 非奇非偶函数k <0 b =0减函数 奇函数b ≠0减函数 非奇非偶函数.(2)图象的画出:因为两点确定一条直线,所以画一次函数的图象时,只要先描出两个点,再连成直线即可.(3)图象的特点:①正比例函数y =kx 的图象是经过原点(0,0)的一条直线.②一次函数y =kx+b 的图象是经过y 轴上点(0,b )的一条直线. (4)画法技巧:①画正比例函数y =kx 的图象,通常取(0,0)、(1,k )两点连线.②画一次函数y =kx+b 的图象,通常取它与坐标轴的交点(0,b )、,0b k ⎛⎫-⎪⎝⎭两点连线,原因是上述两点在坐标轴上,描点较准确.但由于b k -多数情况下是分数,故在描点时,我们也可以取x 和y 都是整数的情形.3.一次函数性质的应用(1)函数的改变量21()y y -与自变量的改变量21()x x -的比值等于常数k .(2)当k >0时,一次函数是增函数;当k <0时,一次函数是减函数.(3)当b =0时,一次函数变为正比例函数,是奇函数;当b ≠0时,它既不是奇函数,也不是偶函数. (4)直线y =kx+b 与x 轴的交点为,0b k ⎛⎫-⎪⎝⎭,与y 轴的交点为(0,b ). 要点诠释:一次函数y =kx+b (k ≠0)的性质可从两方面来理解: ①图象与坐标轴的交点,大家知道x 轴、y 轴上的点的纵坐标、横坐标都分别为0,所以在解析式y =kx+b 中分别令x =0,y =0,得y =b ,b x k =-,从而得出直线y =kx+b 与x 轴、y 轴的交点分别是,0b A k ⎛⎫- ⎪⎝⎭、B (0,b ),这是要熟记的,另外还要知道y =kx+b 与正比例函数y =kx 的图象的平行关系.②函数的增减性,也就是:当k >0时,y 随x 增大而增大;当k <0时,y 随x 的增大而减小.其含义是:当k >0时,如果x 越来越大,那么y 的值也越来越大;当k <0时,如果x 越来越大,那么y 的值越来越小. 对于直线y =kx+b (k ≠0)而言:当k >0,b >0时,直线经过一、二、三象限;当k >0,b <0时,直线经过一、三、四象限;当k <0,b >0时,直线经过一、二、四象限;当k <0,b <0时,直线经过二、三、四象限.4.一次函数的最值问题求一次函数y =kx+b (k ≠0)在某一区间[a ,c ]上的值域的方法是:由于一次函数在某一区间[a ,c ]上是单调的,所以它在区间的两个端点上取得最值,当k >0时,它的值域为[f (a ),f (c )],当k <0时,它的值域为[f (c ),f (a )].5.一次函数的保号性及应用性质1:已知函数()f x kx b =+,如果有()0(0)f α><,()0(0)f β><,则对任意(,)x αβ∈都有()0(()0)f x f x ><.这个性质称为函数()f x kx b =+在区间(,)αβ上的保号性.同样,()f x kx b =+在区间[,]αβ,[,)αβ,(,]αβ上也具有保号性.性质2:若一次函数()f x kx b =+在区间(,)αβ上有()()0f f αβ<,则在(,)αβ内必存在一点x 0使0()0f x =.要点二:二次函数的性质与图象 1.函数2(0)y ax a =≠的图象和性质关于二次函数2(0)y ax a =≠的性质,主要从抛物线的开口方向、顶点坐标、对称轴、函数值的增减性以及函数的最大值或最小值几个方面来研究,下面结合图象将其性质列表归纳如下:函数图象开口方向顶点坐标对称轴单调性最大(小)值y =ax 2(a >0)向上 (0,0) y 轴在区间(,0]-∞上是减函数,在区间[0,)+∞上是增函数当x =0时,min 0y =y =ax 2(a <0)向下 (0,0) y 轴在区间(,0]-∞上是增函数,在区间[0,)+∞上是减函数当x =0时,max 0y =要点诠释:函数2(0)y ax a =≠中的系数a 对函数图象的影响:(1)当a >0时,开口向上,a 越小,开口越大,在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)当a <0时,开口向下,a 的绝对值越小,开口越大,在(-∞,0)上单调递增,在(0,+∞)单调递减.2.二次函数2(0)y ax bx c a =++≠的图象和性质 (1)二次函数2(0)y ax bx c a =++≠的图象和性质如下表: 函数 二次函数2(0)y ax bx c a =++≠图象a >0a <0性质抛物线开口向上,并向上无限延伸 抛物线开口向上,并向下无限延伸 对称轴是直线2b x a =-, 顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭对称轴是直线2b x a=-, 顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭在区间,2b a ⎛⎤-∞-⎥⎝⎦上是减函数, 在区间,2b a ⎡⎫-+∞⎪⎢⎣⎭上是增函数 在区间,2b a ⎛⎤-∞-⎥⎝⎦上是增函数, 在区间,2b a ⎡⎫-+∞⎪⎢⎣⎭上是减函数 抛物线有最低点,当2bx a=-时, y 有最小值,2min44ac b y a-=抛物线有最高点,当2bx a=-时, y 有最大值,2max44ac b y a-=(2)配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数幂和的形式.通过配方解决数学问题的方法叫配方法.其中,用的最多的是配成完全平方式.配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明不等式和等式、求函数最值和解析式等方面都经常用到它.对任何二次函数2()(0)y f x ax bx c a ==++≠都可通过配方化为:2224()24b ac b y a x a x h k a a -⎛⎫=++=-+ ⎪⎝⎭.其中2bh a=-,244ac b k a -=.(3)关于配方法要注意两点:①要把二次项系数化为1,方法是提取二次项的系数; ②找准一次项的系数,加上它的一半的平方(目的是配成完全平方式),再减去这个平方数(目的是保持恒等).3.二次函数的解析式(1)一般式:2()(0)f x ax bx c a =++≠.(2)顶点式:2()()(0)f x a x h k a =-+≠,顶点(h ,k ). (3)交点式:12()()()(0)f x a x x x x a =--≠,x 1,x 2为二次函数的图象与x 轴两个交点的横坐标.求二次函数解析式的方法,应根据已知条件的特点,灵活地运用解析式的形式,选取最佳方案,利用待定系数法求之.要点诠释:①若已知条件是图象上的三个点,则设所求二次函数为一般式2y ax bx c =++,a 、b 、c 为常数,a ≠0的形式.②若已知二次函数图象的顶点坐标或对称轴方程与最大(小)值,则设所求二次函数为顶点式2()y a x h k =-+,其中顶点为(h ,k ),a 为常数,且a ≠0.③若已知二次函数的图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),则设所求二次函数为交点式12()()y a x x x x =--,a 为常数,且a ≠0.4.二次函数的图象画法与平移(1)二次函数2y ax bx c =++的图象的画法:因为二次函数的图象是一条抛物线,它的基本特征:①有顶点;②有对称轴;③有开口方向.所以,画二次函数的图象通常采用简化了的描点法——五点法,其步骤如下:(i )先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点时,并用虚线画出对称轴; (ii )求抛物线2y ax bx c =++与坐标轴的交点.当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 的对称点D .将这五个点按从左到右的顺序连起来,并向上或向下延伸,就得到二次函数的图象.当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D .由C 、M 、D 三点可粗略地画出二次函数的草图.如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后连线,画出二次函数的图象.(2)二次函数的平移规律.任意抛物线2y ax bx c =++都可转化为2()y a x h k =-+的形式,都可由2y ax =的图象经过适当的平移得到,具体平移方法,如图所示.即上述平移规律“h 值正、负,右、左移”,亦即“加时左移,减时右移”;“k 值正、负,上、下移”,即“加时上移,减时下移”. 5.二次函数的最值求解二次函数的最大值与最小值,可以从函数解析式的变形和函数的图象两方面去理解.(1)从函数的解析式来研究,对于2y ax bx c =++,通过配方可化为2()y a x h k =-+的形式,再对2()y a x h k =-+进行研究.一般地,对于二次函数2y ax bx c =++,当a >0时,y 有最小值2442ac b b x a a -⎛⎫=- ⎪⎝⎭;当a <0时,y 有最大值2442ac b b x a a -⎛⎫=- ⎪⎝⎭.(2)从函数的图象来研究,二次函数的图象是抛物线,又称抛物线2y ax bx c =++,一般描出五个点可画出图象.二次函数2y ax bx c =++的图象如图所示.当a >0时,抛物线开口向上,它的顶点恰是抛物线的最低点,显然纵坐标y 有最小值,最小值是244ac b a -;当a <0时,抛物线开口向下,它的顶点恰是抛物线的最高点,显然纵坐标y 有最大值,最大值是244ac b a-.6.二次函数的对称轴及其应用根据教材中例题知道对称轴为x =-4,由此推导出(4)(4)f h f h --=-+.反过来,如果已知(4)(4)f h f h -+=--,则可得该函数的对称轴为x =-4.现总结如下:(1)若某函数(不一定是二次函数)满足()()f a x f a x +=-(a 为常数),则该函数的对称轴为x =a . (2)若某函数(不一定是二次函数)满足()(2)f x f a x =-(a 为常数),则该函数的对称轴为x =a . (3)若某函数(不一定是二次函数)满足()()f a x f b x -=+(a b ≠且a ,b 为常数),则该函数的对称轴为2a bx +=. 实际上(2)与(1)是等价的,在(1)中令a+x =t ,则x =t -a ,∴ ()[()]f t f a t a =--,∴ ()(2)f t f a t =-,即()(2)f x f a x =-.要点三、待定系数法 1.待定系数法的定义(1)一般地,在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写为一般形式,其中系数待定,然后再根据题设条件求出这些待定系数.这种通过求待定系数来确定变量之间关系的方法叫做待定系数法.(2)根据题设求待定系数的方法——列方程组 ①用特殊值法列方程组;②根据多项式恒等定理列方程组; ③利用定义本身的属性列方程(组); ④利用几何条件列方程(组)。
高中数学新人教版必修一知识讲解及练习附答案《函数》全章复习与巩固【巩固练习】1.已知函数()f x 在R 上是增函数,若0a b +>,则有( )。
A. ()()()()f a f b f a f b +>-+-B. ()()()()f a f b f a f b +>---C. ()()()()f a f a f b f b +->+-D. ()()()()f a f a f b f b +->--2.若函数2()2f x x x a =++没有零点,则实数a 的取值范围是( )。
A.1a < B. 1a > C. 1a ≤ D. 1a ≥3.函数2()23f x x ax =--在区间[]1,2上是单调函数的条件是( )。
A.(],1a ∈-∞B.[)2,a ∈+∞C.[]1,2a ∈D. (][),12,a ∈-∞+∞4.函数y = )A.(][),01,-∞+∞ B .[]0,1 C. (]0,1 D. ()[),01,-∞+∞5.函数|35|y x =-的单调递减区间是( ) A.()0,+∞ B. (),0-∞ C. 5,3⎛⎫-∞ ⎪⎝⎭D. 5,3⎛⎫+∞ ⎪⎝⎭6.设()f x 是R 上的任意函数,则下列叙述正确的是( ) A. ()()f x f x ⋅-是奇函数 B. ()|()|f x f x ⋅-是奇函数 C. ()()f x f x --是偶函数 D. ()()f x f x +-是偶函数7. 已知函数1, 0()1, 0x x f x x x -+<⎧=⎨-≥⎩,则不等式(1)(1)1x x f x +++≤的解集是( )A.{|11}x x -≤≤ B .{x|x ≤1}C.{|1}x x ≤D.{|11}x x ≤≤8.实数,x y 满足224x y +=,则283x y ++的最大值是( ) A .23 B .21 C .19 D . 17.9.设[]2,3x ∈-,则函数2241y x x =--的值域是 .10. 设()f x 是定义在R 上的函数且(2)()f x f x +=,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 .11.已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是______________.12.关于函数22()21,f x x ax a x R =-++∈,有下列四个结论: ①当0a >时,函数()f x 在区间[)0,+∞上单调递增; ②当0a >时,函数()f x 在区间(],0-∞上单调递减; ③对于任意x R ∈,必有()1f x ≥成立;④对于任意x R ∈,必有()(2)f x f a x =-成立. 其中正确的论断序号是 .(将全部正确结论的序号都填上)13. 已知函数f(x)=-x 2+2ax-a 2+1(1)若函数f(x)在区间[0,2]上是单调的,求实数a 取值范围;(2)当x ∈[-1,1]时,求函数f(x)的最大值g(a),并画出最大值函数y=g(a)的图象.14. 已知实数1[,1]3a ∈,将函数f(x)=ax 2-2x+1在区间[1,3]上的最大值和最小值分别表示为a 的函数M(a),N(a),令g(a)=M(a)-N(a). (1)求g(a)的表达式;(2)判断函数g(a)在区间1[,1]3上的单调性,并求出g(a)的最小值.15.已知函数()f x 的定义域是),0(+∞,且满足()()()f xy f x f y =+,1()12f =,如果对于0x y <<,都有()()f x f y >.(1)求(1)f ; (2)解不等式2)3()(-≥-+-x f x f .【答案与解析】1. 【答案】A【解析】因为a b >-、b a >-,所以()()f a f b >-、()()f b f a >-,即()()()()f a f b f a f b +>-+-。
专题十二函数的应用知识精讲一知识结构图二.学法指导1.常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.2. 由图象判断指数函数、一次函数的方法根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.3.函数零点的求法(1)代数法:求方程f(x)=0的实数根.(2)几何法:对于不能用求根公式的方程f(x)=0,可以将它与函数y=f(x)的图象联系起来.图象与x轴的交点的横坐标即为函数的零点.4.判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.5.已知函数模型解决实际问题,往往给出的函数解析式含有参数,需要将题中的数据代入函数模型,求得函数模型中的参数,再将问题转化为已知函数解析式求函数值或自变量的值.三.知识点贯通知识点1 三种函数模型的性质例1.(1)下面对函数f (x )=log 12x ,g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=-2x 在区间(0,+∞)上的递减情况说法正确的是( )A .f (x )递减速度越来越慢,g (x )递减速度越来越快,h (x )递减速度越来越慢B .f (x )递减速度越来越快,g (x )递减速度越来越慢,h (x )递减速度越来越快C .f (x )递减速度越来越慢,g (x )递减速度越来越慢,h (x )递减速度不变D .f (x )递减速度越来越快,g (x )递减速度越来越快,h (x )递减速度越来越快 【答案】C【解析】观察函数f (x )=log 12x ,g (x )=⎝ ⎛⎭⎪⎫12x 与h (x )=-2x 在区间(0,+∞)上的图象(如图)可知:函数f (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g (x )的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h (x )的图象递减速度不变.(2)函数f (x )=2x 和g (x )=2x 的图象如图所示,设两函数的图象交于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图象,判断f ⎝ ⎛⎭⎪⎫32与g ⎝ ⎛⎭⎪⎫32,f (2 019)与g (2 019)的大小.【解析】 (1)C 1对应的函数为g (x )=2x ,C 2对应的函数为f (x )=2x . (2)∵f (1)=g (1),f (2)=g (2)从图象上可以看出,当1<x <2时,f (x )<g (x ), ∴f ⎝ ⎛⎭⎪⎫32<g ⎝ ⎛⎭⎪⎫32; 当x >2时,f (x )>g (x ), ∴f (2 019)>g (2 019).知识点二 函数的零点对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. 例题2:求函数f (x )=⎩⎨⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点;【解析】当x ≤0时,令x 2+2x -3=0,解得x =-3; 当x >0时,令-2+ln x =0,解得x =e 2.所以函数f (x )=⎩⎨⎧x 2+2x -3,x ≤0-2+ln x ,x >0的零点为-3和e 2.知识点三 判断函数零点所在的区间函数零点存在定理如果函数y =f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,且有f (a )f (b )<0,那么,函数y =f (x )在区间(a ,b )内至少有一个零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的解.例题3 .若函数f (x )=x +a x(a ∈R )在区间(1,2)上有零点,则a 的值可能是( )A .-2B .0C .1D .3【答案】A【解析】f (x )=x +ax (a ∈R )的图象在(1,2)上是连续不断的,逐个选项代入验证,当a=-2时,f (1)=1-2=-1<0,f (2)=2-1=1>0.故f (x )在区间(1,2)上有零点,同理,其他选项不符合,选A.知识点四 二分法二分法的定义对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.例题4.已知函数f(x)的图象如图所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4D.4,3【答案】D[【解析】图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.知识点五函数的应用常用函数模型例0经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )×⎝ ⎛⎭⎪⎫12t h,其中T a 表示环境温度,h 称为半衰期,现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min ,那么降温到32 ℃时,需要多长时间?【解析】 先设定半衰期h ,由题意知40-24=(88-24)×⎝ ⎛⎭⎪⎫1220h,即14=⎝ ⎛⎭⎪⎫1220h ,解之,得h =10,故原式可化简为T -24=(88-24)×⎝ ⎛⎭⎪⎫12t 10,当T =32时,代入上式,得32-24=(88-24)×⎝ ⎛⎭⎪⎫12t 10,即⎝ ⎛⎭⎪⎫12t 10=864=18=⎝ ⎛⎭⎪⎫123,∴t =30.因此,需要30 min ,可降温到32 ℃.五 易错点分析易错一 零点个数例题6.已知0<a <1,则函数y =a |x |-|log a x |的零点的个数为( )A .1B .2C .3D .4 【答案】B【解析】函数y =a |x |-|log a x |(0<a <1)的零点的个数即方程a |x |=|log a x |(0<a <1)的根的个数,也就是函数f (x )=a |x |(0<a <1)与g (x )=|log a x |(0<a <1)的图象的交点的个数.画出函数f(x)=a|x|(0<a<1)与g(x)=|log a x|(0<a<1)的图象,如图所示,观察可得函数f(x)=a|x|(0<a<1)与g(x)=|log a x|(0<a<1)的图象的交点的个数为2,从而函数y=a|x|-|log a x|的零点的个数为2.误区警示利用函数的图象判断零点的个数,应准确地画出函数的图象,一种是画一个函数的图象,看图象与x轴交点的个数,进而判断零点的个数;一种是画两个函数的图象,看两个函数的图象交点的个数,进而判断零点个数。
函数应用(Ⅱ)【学习目标】1.能够找出简单实际问题中的函数关系式,应用指数函数、对数函数模型解决实际问题,并初步掌握数学建模的一般步骤和方法.2.通过具体实例,感受运用函数建立模型的过程和方法,体会指数函数、对数函数模型在数学和其他学科中的应用.3.通过函数应用的学习,体会数学应用的广泛性,树立事物间相互联系的辩证观,培养分析问题、解决问题的能力,增强数学的应用意识.【要点梳理】【高清课堂:函数模型的应用实例392115 知识要点】要点一:解答应用问题的基本思想和步骤1.解应用题的基本思想2.解答函数应用题的基本步骤求解函数应用题时一般按以下几步进行:第一步:审题弄清题意,分清条件和结论,理顺数量关系,初步选择模型.第二步:建模在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求.第三步:求模运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果.第四步:还原把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景.上述四步可概括为以下流程:实际问题(文字语言)⇒数学问题(数量关系与函数模型)⇒建模(数学语言)⇒求模(求解数学问题)⇒反馈(还原成实际问题的解答).要点二:解答函数应用题应注意的问题首先,要认真阅读理解材料.应用题所用的数学语言多为“文字语言、符号语言、图形语言”并用,往往篇幅较长,立意有创新脱俗之感.阅读理解材料要达到的目标是读懂题目所叙述的实际问题的意义,领悟其中的数学本质,接受题目所约定的临时性定义,理解题目中的量与量的位置关系、数量关系,确立解体思路和下一步的努力方向,对于有些数量关系较复杂、较模糊的问题,可以借助画图和列表来理清它.其次,建立函数关系.根据前面审题及分析,把实际问题“用字母符号、关系符号”表达出来,建立函数关系.其中,认真阅读理解材料是建立函数模型的关键.在阅读这一过程中应像解答语文和外语中的阅读问题一样,有“泛读”与“精读”之分.这是因为一般的应用问题,一方面为了描述的问题与客观实际尽可能地相吻合,就必须用一定的篇幅描述其中的情境;另一方面有时为了思想教育方面的需要,也要用一些非数量关系的语言来叙述,而我们解决问题所关心的东西是数量关系,因此对那些叙述的部分只需要“泛读”即可.反过来,对那些刻画数量关系、位置关系、对应关系等与数学有关的问题的部分,则应“精读”,一遍不行再来一遍,直到透彻地理解为止,此时切忌草率.【典型例题】类型一、已建立函数模型的应用题例1.2011年3月11日,日本发生强烈地震,继而引发海啸.日本地震监测机构最初公布的报告称,这次地震的震级为里氏8.4级,但美国地质勘探局测定的震级为里氏8.9级,已知里氏震级R 与地震释放的能量E 的关系为2(lg 11.4)3R E =-,那么里氏8.9级的地震释放的能量大约是里氏8.4级的地震释放的能量的多少倍?(已知0.7510 5.62≈)【答案】5.62 【解析】依题意311.4210R E+=,于是里氏8.9级的地震释放的能量为38.911.424.7521010E ⨯+==里氏8.4级的地震释放的能量为2438.411.421010E⨯+==.故所求结果为24.750.75241010 5.6210=≈.【总结升华】当函数模型已给定后,只需对问题进行定量分析,套用了现成的公式即可把问题解决.举一反三:【变式一】 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中3<x <6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ)求a 的值。
【答案】2 【解析】因为210(6)3a y x x =+--,又因为5=x 时,11=y ,所以11102=+a,2=a 【总结升华】对于已经给出的函数模型问题,只需通过题目给出的数据信息,进行推理与计算,也就是准确地理解题意,再利用函数相关知识和数学方法把问题解决.类型二、自建函数模型的应用问题例2. 某公司每年需购买某种元件8000个用于组装生产,每年分n 次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?【思路点拨】本题的关键是根据题意列出函数关系式,然后利用配方法求函数的最大值。
【答案】4【解析】设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入,设为c 元,则 8000150022y n c n =+⨯⨯+ 800016500500()n c n c n n=++=++24000c=++,=,即n=4时,y 取得最小值且y min =4000+c . 所以分4次进货可使得每年购买和贮存元件总费用最低.【总结升华】题中用了配方法求最值,技巧性高,另外本题还可利用函数16y x x=+在(0,+∞)上的单调性求最值.举一反三:【变式1】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个时,零件的实际出厂单价为P 元,写出函数P=f (x)的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个时,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本) 【答案】(1)550(2)60 (0100,)()62 (100550,)5051 (550,)x x x P f x x x x x <≤∈⎧⎪⎪==-<<∈⎨⎪≥∈⎪⎩N N N(3)6000 11000【解析】(1)设零件的实际出厂单价恰好降为51元时,一次订购量为x 0个,则060511005500.02x -=+=. 因此,当一次订购量为550个时,零件的实际出厂单价恰好降为51元. (2)当0<x ≤100时,P=60.当100<x <550时,600.02(100)6250x P x =--=-. 当x ≥550时,P=51.∴60 (0100,)()62 (100550,)5051 (550,)x x x P f x x x x x <≤∈⎧⎪⎪==-<<∈⎨⎪≥∈⎪⎩N N N(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则220 (0100,)(40)22 (100550,)5011 (550,)x x x x L P x x x x x x <≤∈⎧⎪⎪=-=-<<∈⎨⎪≥∈⎪⎩N N N当x=500时,L=6000;当x=1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个时,利润是11000元.【高清课堂:函数模型的应用实例392115 例2】例3.某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;(2)新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内、外环线乘客的最长候车时间之差不超过1分钟,问:内、外环线应各投入几列列车运行?【思路点拨】(1)根据题意列出不等式求解(2)列出不等式求解,因为计算过程中,数字比较大,可以使用计算器。
【答案】(1)20(2)10 8【解析】(1)设内环线列车平均速度最小为/vkm h由题得:306010 9v⨯≤解得20/v km h≥。
答:内环线列车的最小平均速度为每小时20千米。
(2)设内、外环线分别投入列车数量为x、18x-列由题得:3030|6060|1 2530(18)x x⨯-⨯≤-即7260||118x x-≤-得72601118x x-≤-≤-,解得:15011422x--≤≤,由计算器得:10x=。
答:内、外环线应各投入10列、8列列车运行,才能使内、外环线乘客的最长候车时间之差不超过1分钟类型三、拟和函数模型的应用问题例4. 某汽车公司曾在2009年初公告:2009年销量目标定为39.3万辆;且该公司重事长极力表示有信心完成这个销量目标.2006年,某汽车年销量8万辆; 2007年,某汽车年销量18万辆; 2008年,某汽车年销量30万辆.如果我们分别将2006,2007,2008,2009年定义为第一,二,三,四年,现在有两个函数模型:二次函数型f (x)=ax2+bx+c (a ≠0),指数函数型g (x)=a ·b x +c (a ≠0,b ≠1,b >0),哪个模型能更好地反映该公司年销量y 与第x 年的关系?【解析】 建立年销量y (万辆)与第x 年的函数,可知函数图象必过点(1,8),(2,18),(3,30).(1)构造二次函数型f (x)=ax 2+bx+c (a ≠0),将点的坐标代入,可得842189330a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得170a b c =⎧⎪=⎨⎪=⎩.则f (x)=x 2+7x ,故f (4)=44,与计划误差为4.7. (2)构造指函数型g (x)=a ·b x +c ,将点的坐标代入,可得2381830ab c ab c ab c +=⎧⎪+=⎨⎪+=⎩,解得12536542a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩,则1256()()4235x g x =⋅-,故41256(4)()4244.435g =⨯-=,与计划误差为5.1. 由上可得f (x)=x 2+7x 模型能更好地反映该公司年销量y (万辆)与第x 年的关系. 【总结升华】某个函数模型能否更好地反映变量间的关系,必须与实际数据的误差相对较小.举一反三:【变式1】某地区不同身高的未成年男性的体重平均值如下表:若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高175cm ,体重为78kg 的在校男生的体重是否正常?【解析】 本例没有给出函数模型,所以我们要先画出草图,再根据图象与我们学习过的函数图象进行比较,猜测出函数模型.以身高为横坐标,体重为纵坐标,画出由离散点构成的草图,如图所示.根据点的分布情况,结合以前学过的指数函数图象特征,可猜测以x y ka =(a >0,a ≠1 )为男性的体重与身高关系的函数模型.把点(70,7.90)、(160,47.25)代入函数以x y ka =中,得701607.90,47.25.ka ka ⎧=⎪⎨=⎪⎩使用计算器可求得2,1.02.k a ≈⎧⎨≈⎩ 所以,函数模型为2 1.02x y =⨯.用计算器验证其它点与模拟函数的关系,发现拟和程度相符.再将x=175代入函数式2 1.02x y =⨯,即1752 1.02y =⨯,用计算器求得y ≈63.98. 因为7863.98≈1.22>1.2,所以,这个男生偏胖. 【总结升华】由于本题没有给出函数模型,因此需要根据题目中的有关数据描绘出基本草图,然后根据直观性,去和已学过的有关函数图象对照、比较,由此猜测函数模型.在解此类问题的过程中,首先需要在实际的情境中去理解、分析所给的一系列数据,舍弃与解题无关的因素,抽象转化为数学模型.【巩固练习】1.某学校开展研究性学习活动,一组同学获得了下面的一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A.22y x =-B.1()2x y =C.2log y x =D.21(1)2y x =-2.一辆汽车在某段路程中的行驶路程s 关于时间t 变化的图象如下图所示,那么图象所应对的函数模型是( )A .分段函数B .二次函数C .指数函数D .对数函数3.据调查,某地铁的自行车存车处在某星期日的存车量为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式是( )A .y=0.1x+800(0≤x ≤4000)B .y=0.1x+1200(0≤x ≤4000)C .y=-0.1x+800(0≤x ≤4000)D .y=-0.1x+1200(0≤x ≤4000)4.据报道,青海湖的湖水在最近50年内减少了10%,如果按此规律,设2000年的湖水量为m ,从2000年起,过x 年后湖水量y 与x 的函数关系式为( )A .500.9xy = B .50(10.1)x y m =- C .500.9x y m =⋅ D .50(10.1)x y m =- 5.以每秒a 米的速度从地面垂直向上发射子弹,t 秒后的高度x 米可由x=at -4.9t 2确定,已知5秒后子弹高245米,问子弹保持245米以上(含245米)高度共有( )A .4秒B .5秒C .6秒D .7秒6.一高为H 、满缸水量为V 的鱼缸截面如右图所示,其底部破了一个小洞,缸中水从洞中流出.若鱼缸水深为h 时的水的体积为v ,则函数v=f (h)的大致图象可能是下图中四个选项中的( )7.下表列出了一项试验的统计数据,表示将皮球从高h 米处落下,弹跳高度d 与下落高度h的关系:写出一个能表示这种关系的式子为________.8.某工厂生产某种产品的固定成本为2000万元,并且每生产一单位产品,成本增加10万元,又知总收入k (万元)是单位产品数Q 的函数,21()4020k Q Q Q =-,则总利润L (Q )的最大值是________.9.某种细菌经30分钟繁殖为原来的2倍,且知该细菌的繁殖规律为y=e kt ,其中k 为常数,t 表示时间(单位:小时),y 表示细菌个数,则k=________,经过5小时,1个细菌能繁殖为________个.10.已知某地今年年初拥有居民住房的总面积为a (单位:m 2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同事也拆除面积为b (单位:m 2)的旧住房.(Ⅰ)分别写出第一年末和第二年末的实际住房面积的表达式:(Ⅱ)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b 是多少?(计算时取1.15=1.6)11.电声器材厂在生产扬声器的过程中,有一道重要的工序:使用AB 胶粘合扬声器中的磁钢与夹板.长期以来,由于对AB 胶的用量没有一个确定的标准,经常出现用胶过多,胶水外溢或用胶过少,产生脱胶,影响了产品的质量.经过实验,已有一些恰当用胶量的具体数据如下表:现在请提出一个既科学又简便的方法来确定磁钢面积与用胶量的关系.【答案与解析】 1.【答案】D【解析】把x 的值分别代入四个函数式,结果最接近的就是。