七年级下期末复习三 2018
- 格式:docx
- 大小:18.96 KB
- 文档页数:3
2017-2018学年下学期期末考试七年级数学试卷一、选择题(在每小题给出的四个选项中,只有一项符合题目要求,.每个小题3分,共30分)1.下列运算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a5D.(a3)2=a5【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则计算,判断即可.【解答】解:a3和a2不是同类项,不能合并,A错误;a3和a2不是同类项,不能合并,B错误;a3•a2=a5,C正确;(a3)2=a6,D错误,故选:C.【点评】本题考查的是合并同类项、同底数幂的乘法、积的乘方,掌握相关的运算法则是解题的关键.2.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°【分析】等腰三角形一内角为100°,没说明是顶角还是底角,所以要分两种情况讨论求解.【解答】解:(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故选:D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.3.如图,计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是()A.两点之间线段最短B.垂线段最短C.过一点只能作一条直线D.平面内,过一点有且只有一条直线与已知直线垂直【专题】线段、角、相交线与平行线.【分析】根据垂线段最短,可得答案.【解答】解:计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是垂线段最短,故选:B.【点评】本题考查了垂线段的性质,利用了垂线段的性质.4.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6 B.p=1,q=﹣6 C.p=1,q=6 D.p=5,q=﹣6【专题】计算题.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出p与q的值即可.【解答】解:∵(x-2)(x+3)=x2+x-6=x2+px+q,∴p=1,q=-6,故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.5.下列四个图形中,不能推出∠2与∠1相等的是()A. B.C.D.【分析】根据平行线的性质以及对顶角相等的性质进行判断.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.6.下列多项式乘法中可以用平方差公式计算的是()A.(﹣a+b)(a﹣b)B.(x+2)(2+x) C.(+y)(y﹣)D.(x﹣2)(x+1)【专题】常规题型.【分析】根据平方差公式即可求出答案.【解答】解:(A)原式=-(a-b)(a-b)=-(a-b)2,故A不能用平方差公式;(B)原式=(x+2)2,故B不能用平方差公式;(D)原式=x2-x+1,故D不能用平方差公式;故选:C.【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.7.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.【分析】根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.【解答】解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选:B.【点评】本题考查了函数图象,根据距离的变化描述函数是解题关键.8.如图,已知∠ABC=∠BAD.下列条件中,不能作为判定△ABC≌△BAD的条件的是()A.∠C=∠D B.∠BAC=∠ABD C.B C=AD D.A C=BD【专题】几何图形.【分析】已有条件∠ABC=∠BAD再有公共边AB=AB,然后结合所给选项分别进行分析即可.【解答】解:A、添加∠C=∠D时,可利用AAS判定△ABC≌△BAD,故此选项不符合题意;B、添加∠BAC=∠ABD,根据ASA判定△ABC≌△BAD,故此选项不符合题意;C、添加AB=DC,根据SAS能判定△ABC≌△BAD,故此选项不符合题意;D、添加AC=DB,不能判定△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.计算(x﹣2)x=1,则x的值是()A.3 B.1 C.0 D.3或0【专题】常规题型.【分析】直接利用零指数幂的性质以及有理数的乘方运算法则化简得出答案.【解答】解:∵(x-2)x=1,当x-2=1时,得x=3,原式可以化简为:13=1,当次数x=0时,原式可化简为(-2)0=1,当底数为-1时,次数为1,得幂为-1,故舍去.故选:D.【点评】此题主要考查了零指数幂的性质和有理数的乘方运算,正确掌握运算法则是解题关键.10.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.二、填空题(每题3分,共15分)11.如图,要使AD∥BF,则需要添加的条件是(写一个即可)【专题】线段、角、相交线与平行线.【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【解答】解:当∠A=∠EBC(或∠D=∠DCF或∠A+∠ABC=180°或∠D+∠BCD=180°)时,AD∥BF,故答案为:∠A=∠EBC(答案不唯一).【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.12.某水库的水位在5小时内持续上涨,初始的水位高度为4米,水位以每小时0.2米的速度匀速上涨,则水库的水位y(米)与上涨时间x(小时)(0≤x≤5)之间的函数表达式为.【专题】函数及其图象.【分析】根据高度等于速度乘以时间列出关系式解答即可.【解答】解:根据题意可得:y=4+0.2x(0≤x≤5),故答案为:y=4+0.2x.【点评】此题考查函数关系式,关键是根据题中水位以每小时0.2米的速度匀速上升列出关系式.13.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有个.【专题】三角形.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,∴AC⊥DB,故②③正确.故答案是:3.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.14.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为.【分析】根据白球个数除以小球总数进而得出得到白球的概率,进而得出答案.【解答】解:∵在一个不透明的盒子中装有8个白球,设黄球有x个,根据题意得出:解得:x=4.故答案为:4.【点评】此题主要考查了概率公式的应用,熟练利用概率公式是解题关键.15.如图,△ABC中,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,若∠DAE=28°,则∠BAC=°.【专题】三角形.【分析】想办法求出∠B+∠C的度数即可解决问题;【解答】解:∵AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EACM∵∠B+∠C+∠BAC=180°,∠DAE=28°,∴2∠B+2∠C+∠DAE=180°,∴∠B+∠C=76°,∴∠BAC=180°-76°=104°.故答案为104.【点评】本题考查线段的垂直平分线的性质、三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共75分)16.(16分)(1)计算:﹣20+4﹣1×()﹣2(2)2016×2018﹣20172(3)(a+3)(a﹣1)﹣a(a﹣2)(4)[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b【专题】常规题型.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用平方差公式计算得出答案;(3)直接利用多项式乘以多项式运算法则计算得出答案;(4)直接利用乘法公式计算,再利用整式的除法运算法则计算得出答案.16.解:(1)﹣20+4﹣1×()﹣2=﹣1+×4=﹣1+1=0;(2)2016×2018﹣20172=(2017﹣1)×(2017+1)﹣20172=20172﹣1﹣20172=﹣1;(3)(a+3)(a﹣1)﹣a(a﹣2)=a2+2a﹣3﹣a2+2a=4a﹣3;(4)[(a+2b)2﹣(a+2b)(a﹣2b)]÷4b=(a2+4ab+4b2﹣a2+4b2)÷4b=(4ab+8b2)÷4b=a+2b.【点评】此题主要考查了实数运算以及整式的混合运算,正确应用乘法公式是解题关键.17.(7分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣【专题】计算题;整式.【分析】先利用单项式乘多项式法则和完全平方公式去括号,再合并同类项即可化简原式,把a、b的值代入计算可得.【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣时,原式=12+(﹣)2=1+=.【点评】此题考查了整式的混合运算-化简求值,涉及的知识有:单项式乘多项式,完全平方公式以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.(8分)如图,已知E是AB上的点,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.【专题】线段、角、相交线与平行线.【分析】由AD∥BC,可得∠EAD=∠B,∠DAC=∠C,根据角平分线的定义,证得∠EAD=∠DAC,等量代换可得∠B与∠C的大小关系.【解答】解:∠B=∠C.理由如下:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵AD平分∠EAC,∴∠EAD=∠DAC,∴∠B=∠C.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A、B、C对应点A1、B1、C1的位置,然后顺次连接即可;(2)过BC中点D作DP⊥BC交直线l于点P,使得PB=PC;(3)S四边形PABC=S△ABC+S△APC,代入数据求解即可.解:(1)所作图形如图所示:(2)如图所示,过BC中点D作DP⊥BC交直线l于点P,此时PB=PC;(3)S四边形PABC=S△ABC+S△APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点,然后顺次连接.20.(6分)某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得10元的购物券.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?【分析】(1)找到红色、黄色或绿色区域的份数之和占总份数的多少即为获得购物券的概率.(2)应计算出转转盘所获得的购物券与直接获得10元的购物券相比较便可解答.【解答】解:(1)整个圆周被分成了20份,转动一次转盘获得购物券的有9种情况,所以转动一次转盘获得购物券的概率=;(2)根据题意得:转转盘所获得的购物券为:50×+30×+20×=12(元),∵12元>10元,∴选择转盘对顾客更合算.【点评】本题考查了概率公式的运用,易错点在于准确无误的找到红色、黄色或绿色区域的份数之和,关键是理解获胜的概率即为可能获胜的份数之和与总份数的比.21.(11分)小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校.我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:(1)小明骑车行驶了千米时,自行车“爆胎”修车用了分钟.(2)修车后小明骑车的速度为每小时千米.(3)小明离家分钟距家6千米.(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?【专题】函数及其图象.【分析】(1)通过图象上的点的坐标和与x轴之间的关系可知他在图中停留了5分钟;(2)利用图象得出速度即可;(3)实质是求当s=6时,t=24;解:(1)小明骑车行驶了3千米时,自行车“爆胎”修车用了5分钟.故答案为:3;5;(2)修车后小明骑车的速度为每小时千米.故答案为:20;(3)当s=6时,t=24,所以小明离家后24分钟距家6千米.故答案为:24;(4)当s=8时,先前速度需要分钟,30﹣=,即早到分钟;【点评】主要考查利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.22.(8分)如图,△ABC中,∠ACB=90°,AC=BC,AE⊥CD于E,BD⊥CD于D,AE=5cm,BD=2cm,(1)求证:△AEC≌△CDB;(2)求DE的长.【分析】(1)利用等腰直角三角形的性质和已知条件易证△AEC≌△CDB;(2)根据全等三角形的性质可得AE=CD,CE=BD,所以DE可求出.【解答】解:(1)∵∠ACB=90°,∴∠ACE+∠DCB=90°,∵AE⊥CD于E,∴∠ACE+∠CAE=90°,∴∠CAE=∠DCB,∵BD⊥CD于D,∴∠D=90°,在△AEC和△CDB中,,∴△AEC≌△CDB(AAS);(2)∵∴△AEC≌△CDB,∴AE=CD=5cm,CE=BD=2cm,∴DE=CD﹣CE=3cm.【点评】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,解答本题的关键是根据已知条件判定三角形的全等.23.(11分)探索题:图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的影部分的正方形的边长等于.(2)请用两种不同的方法求图b中阴影部分的面积.方法1:;方法2:(3)观察图b,请你写出下列三个代数式之间的等量关系.代数式:(m+n)2,(m﹣n)2,mn,(4)根据(3)题中的等量关系,解决如下问题:若2a+2b=14,ab=5,则(a﹣b)2=.分析】(1)根据线段的和差定义即可解决问题;(2)①直接根据正方形的面积等于边长的平方计算;②利用分割法计算即可解决问题;(3)利用(2)中结论即可解决问题;(4)利用(3)中公式计算即可;【解答】解:(1)图b中的影部分的正方形的边长等于m-n.(2)方法1:(m-n)2;方法2:(m+n)2-4mn,(3)观察图b,(m+n)2,(m-n)2=(m-n)2+4mn,(4)∵2a+2b=14,ab=5,∴a+b=7,∴(a-b)2=(a+b)2-4ab=49-20=29.故答案为:m-n,(m-n)2,(m+n)2-4mn,29.【点评】本题考查完全平方公式的几何背景、正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。
1.材料一:最近,一段中学生演唱《稻香》和《青花瓷》的视频异常火爆,视频中的孩子们自信阳光、充满活力。
据报道,这些孩子均来自厦门六中初中合唱团,都是初一学生。
2018年3月10日晚上,他们亮相央视热播节目《经典咏流传》和歌手霍尊共同清新演绎了经典诗歌传唱曲《山居秋暝》。
现场导播称赞她们是“舞台上的精灵”。
材料二:同样是在《经典咏流传》的舞台上,来自贵州威宁县的支教老师梁俊带领大山深处的孩子们共同演绎了《苔》这首平凡的小诗,让亿万观众为之动容。
“白日不到处,青春恰自来。
苔花如米小,也学牡丹开。
”朴素的诗句加上孩子们的天籁之音,让观众感动落泪的同时,也增加了对成长的思考。
某校七年级(1)班以此为背景,召开了一次以“青春的活力,青春的成长”为主题的班会。
请你完成以下任务(描绘青春)“青春是一缕阳光,照耀着我们的心灵;青春是一条小船,载着你我驶向未来……”班会上,小宏同学热情地朗诵了他对青春的描绘。
(1)请用一句话描绘你对青春的理解?(解读青春)青春是美好的,可是青春期生理和心理的变化也会带来一些麻烦,要正确对待青春期的这些变化(2)你是如何调节青春期的心理矛盾的?(两方面即可)(祝福青春)青春的号角已经吹响,让我们带着青春的祝福起航吧。
面对青春,写下你的青春寄语。
(两方面即可)2.下面是初中生乐乐生活中遇到的几个情境,请你运用道德与法治课知识帮她探究回答。
(1)对待学习,乐乐体现出的素质是:(2)对于老师的错误,乐乐的这一做法给我们的启示是:(1)乐乐应有的心理状态是:(2)理由:(1)乐乐应该:(2)乐乐这样做的理由:3.冯刚是七(2)班的一名学生,在新的学习环境中,他勤奋学习,在德育、体育、美育、劳动等方面都取得了较人的进步,得到了老师和同学们的普遍赞扬。
然而,冯刚在生活中既有欢乐,也有苦恼。
结合下列情景,回答问题。
情景一冯刚发现近段时间自己的个子长得很快,在班里显得特别突出。
由于个子高,在跳高方面又有优势,他被选为校体育队运动员,为班级和学校争得了许多荣誉,他感到非常高兴。
七年级数学下册二元一次方程组知识清单+经典例题+专题复习试卷1.二元一次方程的定义:含有未知数,并且未知数的项的次数都是,像这样的方程叫做二元一次方程。
2.二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组,方程组中含有未知数,含有每个未知数的都是,并且一共有方程。
3.二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有个解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的,叫做二元一次方程组的解。
5.代入消元法解二元一次方程组:(1)基本思路:未知数由多变少。
(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的一般步骤:①,从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式。
②,将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,解出这个一元一次方程,求出x的值。
③,把求得的x值代入y=ax+b中求出y的值。
④,把x、y的值用“{”联立起来。
6.加减消元法解二元一次方程组(1)两个二元一次方程中同一个未知数的系数或时,把这两个方程的两边分别或,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2)用加减消元法解二元一次方程组的解①方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等。
②把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程。
③解这个一元一次方程,求得一个未煮熟的值。
初一下期末总复习资料(2013)Unit 1 Can you play the guitar ?(P111)1、can+动词原形,它不随主语和数而变化。
(1)含有can的肯定句:主语+can+谓语动词的原形+其他。
(2)变一般疑问句时,把can提前:Can+主语+动词原形+其他?肯定回答:Yes,主语+can。
否定回答:No,主语+can't.(3)含有can的否定句:主语+can't+动词的原形+其他。
(4)含有can的特殊疑问句:特殊疑问词+can+主语+动词原形+其他?2、may+动词的原形。
(may为情态动词)一般疑问句是把may提前,肯定回答是:Yes,主语 +may。
否定回答是:No,主语+mustn't。
或please don't。
join+某个组织,俱乐部,party,参军,党派等“加入”Join sb. “参加到某人中” join in (doing)sth “加入做......,参加某个活动” Join in=take part in +活动,比赛3、说某种语言:speak+语言4、play+球、棋、牌;play+the+乐器。
5、擅长于(做)什么:be good at +名词/动ing6、帮助某人做某事:help sb. (to ) do sth. help sb. with sth.7、我能知道你名字吗?May I know your name?8、想要做什么:want to do sth 例如:I want to learn about art.Unit 2 What time do you go to school?1、what time和when引导的特殊疑问句。
(1)对时间提问用what time,也可以用when。
询问钟点时用what time,询问日期、月份、年份时用when。
(2)询问做某事的时间时,两者可以互换。
(3)其他询问时间的句子:What's the time? =What time is it? 现在几点了?时刻表达法:顺读法和逆读法。
浙江七年级数学下第三章《整式的乘除》常考题一、单选题(共30分)1.(本题3分)(2018·浙江嘉兴·七年级期末)计算a 2•a 3,结果正确的是( ) A .a 5 B .a 6 C .a 8 D .a 9【答案】A 【解析】 【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答. .【详解】同底数幂相乘,底数不变,指数相加. m n m n a a a +⋅=所以23235.a a a a +⋅== 故选A. 【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键. 2.(本题3分)(2021·浙江浙江·七年级期末)若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为( ) A .5 B .2.5C .25D .10【答案】A 【解析】 【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘计算;再根据单项式除以单项式的法则计算,然后将x 2a =5代入即可求出原代数式的值. 【详解】(2x 3a )2÷4x 4a =4644a a x x ÷=2a x , ∵x 2a =5,∵原式= x 2a =5. 故选A. 【点睛】3.(本题3分)(2021·浙江浙江·七年级期中)已知3,5a b x x ==,则32a b x -=( ) A .2725B .910 C .35D .52【答案】A 【解析】 【分析】直接利用同底数幂的除法和幂的乘方运算法则将原式变形得出答案. 【详解】 ∵x a =3,x b =5,∵x 3a-2b =(x a )3÷(x b )2 =33÷52 =2725. 故选A. 【点睛】考查了同底数幂的乘除运算和幂的乘方运算,正确将原式变形是解题关键. 4.(本题3分)(2020·浙江杭州·七年级期末)下列各式不能用平方差公式计算的是( ) A .(52)(52)x ab x ab -+ B .()()ax y ax y --- C .)()(ab c ab c --- D .()()m n m n +--【答案】D 【解析】 【分析】根据平方差公式对各选项进行逐一分析即可. 【详解】解:A 、(52)(52)x ab x ab -+=222254x a b -,故能用平方差公式计算,不合题意; B 、()()ax y ax y ---=222a x y -+,故能用平方差公式计算,不合题意; C 、)()(ab c ab c ---=222c a b -,故能用平方差公式计算,不合题意; D 、()()m n m n +--=2()m n -+,故不能用平方差公式计算,符合题意; 故选D . 【点睛】5.(本题3分)(2021·浙江浙江·七年级期末)若(x﹣2)(x+3)=x2+ax+b,则a,b的值分别为()A.a=5,b=﹣6B.a=5,b=6C.a=1,b=6D.a=1,b=﹣6【答案】D【解析】【分析】等式左边利用多项式乘多项式法则计算,再利用多项式相等的条件求出a与b的值即可.【详解】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∵a=1,b=﹣6,故选:D.【点睛】此题考查了多项式乘多项式以及多项式相等的条件,熟练掌握运算法则是解本题的关键.6.(本题3分)(2021·浙江浙江·七年级期中)如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2cm2B.2acm2 C.4acm2D.(a2﹣1)cm2【答案】C【解析】【详解】根据题意得出矩形的面积是(a+1)2﹣(a﹣1)2,求出即可:矩形的面积是(a+1)2﹣(a﹣1)2=a2+2a+1﹣(a2﹣2a+1)=4a(cm2).故选C.7.(本题3分)(2018·浙江·七年级阶段练习)已知x2+mx+25是完全平方式,则m的值为()【解析】 【分析】根据完全平方式的特点求解:a 2±2ab +b 2. 【详解】∵x 2+mx +25是完全平方式, ∵m =±10, 故选B . 【点睛】本题考查了完全平方公式:a 2±2ab +b 2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x 和1的乘积的2倍.8.(本题3分)(2021·浙江吴兴·七年级期末)如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式( )A .2221(1)x x x -+=-B .21(1)(1)x x x -=+-C .2221(1)x x x ++=+D .2(1)x x x x -=-【答案】B 【解析】 【分析】利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相等列出等式即可. 【详解】第一个图形空白部分的面积是x 2-1, 第二个图形的面积是(x+1)(x-1). 则x 2-1=(x+1)(x-1).本题考查了平方差公式的几何背景,正确用两种方法表示空白部分的面积是解决问题的关键.9.(本题3分)(2021·浙江浙江·七年级期末)已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题的图形是()A.B.C.D.【答案】B【解析】【详解】∵222x y x y xy+=++,(2)44>), 则这个图∵若用边长分别为x和y的两种正方形组成一个图形来解决(其中x y形应选A,其中图形A中,中间的正方形的边长是x,四个角上的小正方形边长是y,四周带虚线的每个矩形的面积是xy.故选B.10.(本题3分)(2019·浙江瑞安·七年级期中)已知18n++是一个有理数的平方,则221n不能为()-B.10C.34D.36A.20【答案】D【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案即可.【详解】2n是乘积二倍项时,2n+218+1=218+2•29+1=(29+1)2,此时n=9+1=10,218是乘积二倍项时,2n+218+1=2n+2•217+1=(217+1)2,此时n=2×17=34,1是乘积二倍项时,2n+218+1=(29)2+2•29•2-10+(2-10)2=(29+2-10)2,综上所述,n可以取到的数是10、34、-20,不能取到的数是36.故选D.【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(共21分)11.(本题3分)(2020·浙江杭州·七年级期末)若2y=+,则用含x的代数式表=mx,34m示y=______.【答案】3+x2【解析】【分析】直接利用幂的乘方运算法则表示出y与x之间的关系即可.【详解】解:∵x=2m,∵y=3+4m=3+22m=3+(2m)2=3+x2.故答案为:3+x2.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.(本题3分)(2021·浙江浙江·七年级期中)计算:(3)2-⋅=_______.a ab【答案】-6a2b【解析】【分析】根据单项式乘单项式法则计算求解即可.【详解】解:-3a•2ab=(-3×2)•(a•a)•b故答案为:-6a 2b . 【点睛】此题考查了单项式乘单项式,熟记单项式乘单项式法则是解题的关键.13.(本题3分)(2018·浙江义乌·七年级期末)某班墙上布置的“学习园地”是一个长方形区域,它的面积为3a 2+9ab ﹣6a ,已知这个长方形“学习园地”的长为3a ,则宽为__ 【答案】a +3b ﹣2. 【解析】 【分析】根据题意列出算式,在利用多项式除以单项式的法则计算可得. 【详解】根据题意,长方形的宽为(3a 2+9ab ﹣6a )÷3a =a +3b ﹣2, 故答案为a +3b ﹣2. 【点睛】本题主要考查整式的除法,解题的关键是掌握多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.14.(本题3分)(2018·浙江仙居·七年级期末)如果代数式8a b +的值为5-,那么代数式()()3252a b a b --+的值为________.【答案】10 【解析】 【分析】原式去括号合并整理后,将a+8b 的值代入计算即可求值. 【详解】原式=3a-6b-5a-10b=-2a-16b=-2(a+8b ), 当a+8b=-5时,原式=10. 故答案为10 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.15.(本题3分)(2021·浙江杭州·七年级期中)多项式(8)(23)mx x +-展开后不含x 一次项,则m =________. 【答案】12【分析】乘积含x 项包括两部分,∵mx×2,∵8×(-3x ),再由展开后不含x 的一次项可得出关于m 的方程,解出即可. 【详解】解:(mx+8)(2-3x ) =2mx-3mx 2+16-24x =-3mx 2+(2m-24)x+16,∵多项式(mx+8)(2-3x )展开后不含x 项, ∵2m-24=0, 解得:m=12, 故答案为:12. 【点睛】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.16.(本题3分)(2018·浙江·余姚市兰江中学七年级期中)已知130x x+-=,则221x x +=________. 【答案】7 【解析】 【分析】利用完全平方和公式()2222a b a ab b +=++解答; 【详解】 解:130x x+-= ∵13,x x+= ∵22211()2927x x x x ,+=+-=-= 即2217.x x += 故答案为7. 【点睛】考查完全平方公式,熟记公式是解题的关键,属于易错题.22(2016)(2019)n n -+-=________.【答案】7 【解析】 【分析】先设2016n a ,2019n b ,则(2016)(2019)1n n --=可化为1ab =,22(2016)(2019)n n 22a b =+22abab ,再将2016n a ,2019n b 代入,然后求出结果【详解】解:设:2016n a ,2019n b , 则(2016)(2019)1n n --=可化为:1ab = ∵22(2016)(2019)n n22(2016)(2019)n n22a b =+()22a b ab =--将2016n a ,2019n b ,1ab =代入上式, 则22(2016)(2019)n n22016201921nn2327=【点睛】本题考查了对完全平方公式的应用,能熟记公式,并能设2016n a ,2019n b ,然后将原代数式化简再求值是解此题的关键,注意:完全平方公式为∵ 222()2a b a ab b +=++,∵222()2a b a ab b -=-+.三、解答题(共49分)18.(本题9分)(2020·浙江义乌·七年级期末)计算:(1)()23210-⨯;(2)()232()2⋅-+-a a a ;(3)()2321(23)(5)x x x x x ++-+-【答案】(1)6410⨯;(2)43a ;(3)32341015x x x +++ 【解析】 【分析】(2)先算乘方,再算乘法,最后算加法; (3)先算乘法,再算加减法. 【详解】解:(1)()23210-⨯,=()()223210-⨯,=6410⨯;(2)()232()2⋅-+-a a a , =34()4a a a ⋅-+, =444a a -+, =43a ;(3)()2321(23)(5)x x x x x ++-+- =()3223632715x x x x x ++---,=3223632715x x x x x ++-++, =32341015x x x +++ 【点睛】本题考查了整式的混合运算,整式混合运算的顺序是先乘方,后乘除,再加减.如果有括号,先算括号内.19.(本题6分)(2021·浙江浙江·七年级期末)(1)已知m +n =4,mn =2,求m 2+n 2的值;(2)已知am =3,an =5,求a 3m ﹣2n 的值. 【答案】(1)12;(2)2725【解析】 【分析】(1)先根据完全平方公式得出m 2+n 2=(m +n )2﹣2mn ,再求出答案即可;(2)先根据同底数幂的除法进行变形,再根据幂的乘方进行变形,最后求出答案即可. 【详解】解:(1)∵m +n =4,mn =2, ∵m 2+n 2=42﹣2×2=12;(2)∵am =3,an =5,∵a 3m ﹣2n=a 3m ÷a 2n=(am )3÷(an )2=33÷52 =2725. 【点睛】本题考查了同底数幂的除法,幂的乘方,完全平方公式等知识点,能灵活运用知识点进行计算是解此题的关键,注意:(a +b )2=a 2+2ab +b 2.20.(本题8分)(2021·浙江·七年级专题练习)若关于x 的多项式()2(3)x x m mx +-⋅-的展开式中不含2x 项,求4(1)(2)(25)(3)m m m m +--+-的值.【答案】16【解析】【分析】将多项式展开,合并同类项,根据不含2x 项得到m 值,再代入计算.【详解】解:原式()2(3)x x m mx =+-⋅-3222333mx x mx x m x m =-+--+()322(3)33mx m x m x m =+--++由题意得30m -=,∵3m =,∵原式4(31)(32)(235)(33)16=⨯+⨯--⨯+⨯-=.【点睛】本题考查了整式的混合运算和求值,多项式的应用,解此题的关键是能根据整式的运算法则进行化简,难度不是很大.21.(本题8分)(2019·浙江桐乡·七年级期中)王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x 元,木地板的价格为每平方米3x 元,那么王老师需要花多少钱?【答案】(1)木地板需要4ab m 2,地砖需要11ab m 2;(2)王老师需要花23abx 元.【解析】【详解】试题分析:(1)根据长方形面积公式计算出卧室面积即为木地板的面积,客厅的面积+卫生间的面积+厨房的面积就是需要铺的地砖面积;(2)利用总面积×单价=总钱数求解即可.试题解析:(1)卧室的面积是2b (4a -2a )=4ab (平方米),厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),即木地板需要4ab 平方米,地砖需要11ab 平方米;(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.22.(本题8分)(2021·浙江浙江·七年级期末)从边长为 a 的正方形剪掉一个边长为b 的正方形(如图 1),然后将剩余部分拼成一个长方形(如图 2).(1)上述操作能验证的等式是 (请选择正确的一个)A .a 2﹣2ab +b 2=(a ﹣b )2B .a 2﹣b 2=(a +b )(a ﹣b )C .a 2+ab =a (a +b )(2)若 x 2﹣9y 2=12,x +3y =4,求 x ﹣3y 的值;(3)计算:2222211111(1)(1)(1)(1)(1)23420192020-----.【答案】(1)B (2)3 (3)20214040【解析】【分析】 (1)分别根据图1和图2表示阴影部分的面积,即可得解;(2)利用(1)的结论求解即可;(3)利用(1)的结论进行化简计算即可.【详解】(1)根据阴影部分的面积可得()()22a b a b a b -=+-故上述操作能验证的等式是B ;(2)∵22912x y -=∵()()3312x y x y +-=∵34x y +=∵()4312x y -=∵33x y -=;(3)2222211111(1)(1)(1)(1)(1)23420192020-⨯-⨯-⨯⨯-⨯- 111111111111111111112233442019201920202020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯-⨯+⨯-⨯+⨯-⨯+⨯-⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭31425320202018202120192233442019201920202020=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】本题考查了平方差公式的证明以及应用,掌握平方差公式的证明以及应用是解题的关键.23.(本题10分)(2021·浙江浙江·七年级期末)若x 满足(7)(4)2x x --=,求22(7)(4)x x -+-的值:解:设7,4x a x b -=-=,则(7)(4)2(7)(4)3x x ab a b x x --==+=-+-=,所以22222222(7)(4)(7)(4)()23225x x x x a b a b ab -+-=-+-=+=+-=-⨯=请仿照上面的方法求解下面的问题(1)若x 满足(8)(3)3x x --=,求22(8)(3)x x -+-的值;(2)已知正方形ABCD 的边长为x E F ,,分别是AD DC ,上的点,且25AE CF ==,,长方形EMFD 的面积是28,分别以MF DF 、为边作正方形,求阴影部分的面积.【答案】(1)19;(2)33.【解析】【分析】(1)设8,3x a x b -=-=,从而可得3,5ab a b =+=,再利用完全平方公式进行变形运算即可得;(2)先根据线段的和差、长方形的面积公式可得(2)(5)28x x --=,再利用正方形MFRN 的面积减去正方形DFGH 的面积可得阴影部分的面积,然后仿照(1)的方法思路、结合平方差公式进行变形求解即可得.【详解】(1)设8,3x a x b -=-=,则3,5ab a b =+=,所以2222(8)(3)x x a b -+-+=,2()2a b ab =+-,2523=-⨯,19=;(2)由题意得:2,5MF DE x DF x ==-=-,(2)(5)28DE DF x x ⋅=--=, 因为阴影部分的面积等于正方形MFRN 的面积减去正方形DFGH 的面积, 所以阴影部分的面积为2222(2)(5)MF DF x x -=---,设2,5x m x n -=-=,则28,3mn m n =-=,所以222()()43428121m n m n mn +=-+=+⨯=,由平方根的性质得:11+=m n 或110m n +=-<(不符题意,舍去),所以2222(2)(5)x x m n ---=-,=+-,m n m n()()=⨯,113=,33故阴影部分的面积为33.【点睛】本题考查了乘法公式与图形面积,熟练掌握并灵活运用乘法公式是解题关键.。
2017-2018学年七年级(下)期末语文试卷(带答案) (15)2017-2018学年度下学期期末学业水平考试七年级语文试题一、积累与运用(20分)1.请找出下面句子中的两个错别字,然后用正楷字将整个句子正确抄写一遍。
(2分)正确抄写:“细雨梨花满地开,腾蛟瀑布缓缓流。
”2.读下面一段文字,为加点的汉字写出准确的读音。
(2分)正确答案:“黄色的树林里分出两条路,可惜我不能同时去涉足(shè),我在那路口久久伫(zhù)立,我向着一条路极目望去,直到它消失在丛林深处。
”3.下列句子中加点词语使用不恰当的一项是()(2分)正确答案:C.他们怏怏不乐地在XXX的胜利旗帜旁边插上英国国旗。
4.下列各句中没有语病的一项是()(2分)正确答案:C.XXX先生的品德是值得我们每个人去研究的。
二、阅读理解(30分)一)阅读下面一则短文,回答问题。
(5分)正确答案:1.他们的工作是保持城市环境整洁;2.他们的工作时间很长,每天都要工作12个小时以上。
二)阅读下面一则短文,回答问题。
(5分)正确答案:1.她的父亲是一名钢琴家;2.她在8岁时开始弹钢琴;3.她的老师是一位非常严格的人,但她也很有耐心。
三)阅读下面一则短文,回答问题。
(5分)正确答案:1.他是一位画家;2.他的画风是写实主义;3.他的画作主要描绘了人物和风景。
四)阅读下面一则短文,回答问题。
(5分)正确答案:1.这个人物是一个古代皇帝;2.他的名字是XXX;3.他统一了中国。
五)阅读下面一则短文,回答问题。
(5分)正确答案:1.他们是一些志愿者;2.他们在进行环保活动;3.他们的活动包括清理垃圾和种树等。
三、写作表达(20分)请你根据下面的图片,写一篇不少于80字的短文,描述图片中的情景,并谈谈你的感想。
正确答案:这幅图片展现了一位老人和一位小孩在公园里散步的情景。
老人手里拄着拐杖,小孩则是牵着他的手,两人一同欣赏公园里的风景。
我很欣赏这样的画面,因为它表现了两个不同年龄段的人之间的深厚情感。
2018-2019七年级下学期期末考试真题汇编一.代数选填【武昌T16】已知关于x 的不等式x ﹣a <0的最大整数解为3a +5,则a = .【江汉T9】某同学为了估算瓶子中有多少颗豆子,首先从瓶中取出60颗并做上记号,接着将所有做好记号的豆子放回瓶中充分摇匀.当再从瓶中取出100颗豆子时,发现其中有12颗豆子标有记号,根据实验估计该瓶装有豆子大约( )A. 800颗B. 500颗C. 300颗D. 150颗【江汉T14】若234x y z ==,则x -2y +z =______. 【江汉T15】某种葡萄的进价是2.7元/千克,销售过程中估计有10%的正常损耗,商家为了避免亏本,至少应将售价定为_______元/千克【江汉T24】已知关于x 的不等式组114()324x m x x +>⎧⎪⎨-≤+⎪⎩有2019个整数解,则m 的取值范围是_______.【江汉T25】已知一个两位数,将其个位上的数和十位上的数对调后组成一个新的两位数.若原两位数与8的和不大于新两位数的一半,则满足条件的两位数有______个.【青山T9】数学活动课上,张老师为更好促进学生开展小组合作学习,将全班40名学生分成4人或6人学习小组,则分组方案有( )A. 1种B. 2种C. 3种D. 4种【青山T10】关于x 的不等式组20230x a x a -≤⎧⎨+>⎩的解集中至少有7个整数解,则整数a 的最小值是( )A. 4B. 3C. 2D. 1【青山T14】在实数范围内定义一种新运算“⊕”,其运算规则为:23a b a b ⊕=+.如:15213517⊕=⨯+⨯=,则不等式42x ⊕<的解集为__________.【东湖高新T10】若关于x 的不等式有且只有四个整数解,则实数a 的取值范围是( )A.6<a≤7B.18<a≤21C.18≤a <21D.18≤a≤21【东湖高新T15】在关于x,y的方程组:①:②中,若方程组①的解是,则方程组②的解是______.【东湖高新T16】已知:a、b、c是三个非负数,并且满足3a+2b+c=5,2a+b-3c=1,设m=3a+b-7c,设s为m的最大值,则s的值为______.【汉阳T9】若不等式组A.m>2B.m<2C.m≥2D.m≤2【汉阳T10】关于x、y的二元一次方程组的解满足x+y>2,则a的取值范围为()A.a<-2B.a>-2C.a<2D.a>2【汉阳T11】若关于x的不等式mx+1>0的解集是x<,则关于x的不等式(m-1)x>-1-m 的解集是()A.xB.xC.xD.x【汉阳T12】为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.7,6,1,4B.6,4,1,7C.4,6,1,7D.1,6,4,7【汉阳T16】若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是______.【汉阳T17】已知,则a=______.【汉阳T18】运行程序如图所示,规定:从“输入一个值x”到“结果是否≥19”为一次程序如果程序操作进行了三次才停止,那么x的取值范围是______.【汉阳T19】记R(x)表示正数x四舍五入后的结果,例如R(2.7)=3,R(7.11)=7,R (9)=9,(1)R(π)=______,R()=______;(2)若R(x-1)=3,则x的取值范围是______.(3)R()=4,则x的取值范围是______.【洪山T9】关于x的不等式组的解集为4<x<9,则a、b的值是()A. B.C. D.【洪山T15】方程组的解满足x>1,y<1,k的取值范围是______.【洪山T16】已知,x、y、z为非负数,且N=5x+4y+z,则N的取值范围是______.【江夏T8】由美国单方面挑起的贸易战严重影响了市经济.某种国外品牌洗衣机按原价降价a元后,再次降价20%,现售价为b元,则原售价为()A.(a+b)元B.(a+b)元C.(b+a)元D.(b+a)元【江夏T9】若实数3是不等式2x-a-2<0的一个解,则a可取的最小正整数为()A.2 B.3 C.4 D.5【江夏T16】若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围是______.二.几何选填【武昌T9】.如图,图①是一个四边形纸条ABCD,其中AB∥CD,E,F分别为边AB,CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM=26°,则∠EFC的度数为()A.52°B.64°C.102°D.128°【武昌T10】.在平面直角坐标系中,A(m,4),B(2,n),C(2,4﹣m),其中m+n =2,并且2≤2m+n≤5,则△ABC面积的最大值为()A.1B.2C.3D.6【武昌T14】.如图,点B在点C北偏东39°方向,点B在点A北偏西23°方向,则∠ABC 的度数为.【武昌T15】.若一个长方形的长减少7cm,宽增加4cm成为一个正方形,并且得到的正方形与原长方形面积相等,则原长方形的长为cm.【江汉T10】如图,射线OA是第三象限角平分线,若点B(k-3,1-2k)在第三象限内且在射线OA的下方,则k的取值范围是()A.12 k<B.132k<<C.1423k<<D.433k<<【江汉T16】.如图,长方形ABCD中,AD=5,AB=3.已知点M是BC边上一点,且AM =4,则点D到AM的距离为______.【江汉T22】4条直线相交于一点时,共有_______对邻补角.【江汉T23】如图,AB∥CD,BE∥DF,∠DBE和∠CDF的角平分线交于点G.当∠BGD =65°时,∠BDC=________度.【青山T15】.如图,用8块相同的长方形地砖拼成一个大长方形,则每个长方形地砖的面积为__________2cm.【青山T16】.如图,三角形ABC中,A,B,C三点的坐标分别为()4,3,()3,1,()1,2,点(),0P m是x轴上一动点,若ABP ABCS S>△△,则m的取值范围是__________.【洪山T8】如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=36°,那么∠BED的度数为()A.108°B.120°C.126°D.144°【洪山T10】如图,已知直线AB分别交坐标轴于A(2,0)、B(0,-6)两点直线上任意一点P(x,y),设点P到x轴和y轴的距离分别是m和n,则m+n的最小值为()A.2B.3C.5D.6【洪山T14】三角形A′B′C′是由三角形ABC平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C的坐标为______.【江夏T7】如图所示,在平面直角坐标系中,A(2,0),B(0,1),将线段AB平移至A1B1的位置,则a+b的值为()A.5B.4C.3D.2【江夏T10】如图,在四边形ABCD中,AD∥BC,∠B=∠D,延长BA至E,连接CE交AD 于F,∠EAD和∠ECD的角平分线相交于点P.若∠E=60°,∠APC=70°,则∠D的度数是()A.80°B.75°C.70°D.60°【江夏T14】直线AB∥CD∥EF,∠B=30°,∠C=135°,则∠CGB=______.【江夏T15】如图所示,在平面直角坐标系中,射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,则点A的坐标为______.三.应用题【武昌T22】.如图,长青农产品加工厂与A,B两地有公路、铁路相连,这家工厂从A地购买一批原料甲运回工厂,经过加工后制成产品乙运B地,其中原料甲和产品乙的重量都是正整数.运价为2元/(吨•千米),公路运价为8元/(吨•千米).(1)若由A到B的两次运输中,原料甲比产品乙多9吨,工厂计划支出铁路运费超过5700元,公路运费不超过9680元,问购买原料甲有哪几种方案,分别是多少吨?(2)在(1)中的基础上,由于国家出台惠农政策,对运输农产品的车辆免收高速通行费,并给予一定的财政补贴,综合惠农政策后公路运输价格下降m(0<m<4且m为整数)元,若由A到B的两次运输中,铁路运费为5760元,公路运费为5100元,求m的值.【江汉T26】.某风景区票价如下表所示:人数/人1~40 41~80 80以上价格/元/人150 130 120有甲、乙两个旅行团队共计100人,计划到该景点游玩.已知乙队多于甲队人数的14,但不超过甲队人数的23,且甲、乙两队分别购票共需13600元(1) 试通过计算判断,甲、乙两队购票的单价分别是多少?(2) 求甲、乙两队分别有多少人?(3) 暑期将至,该风景区计划对门票价格做如下调整:人数不超过40人时,门票价格不变;人数超过40人但不超过80人时,每张门票降价a元;人数超过80人时,每张门票降价2a 元,其中a>0.若甲、乙两队联合购票比分别购票最多可节约2250元,直接写出a的取值范围【青山T22】为响应党中央“下好一盘棋,共护一江水”的号召,某治污公司决定购买甲、乙两种型号的污水处理设备共10台.经调查发现:购买一台甲型设备比购买一台乙型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元,且一台甲型设备每月可处理污水240吨,一台乙型设备每月可处理污水200吨.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少万元?(2)若治污公司购买污水处理设备的资金不超过109万元,月处理污水量不低于2080吨.①求该治污公司有几种购买方案;②如果为了节约资金,请为该公司设计一种最省钱的购买方案.【东湖高新T21】某木板加工厂将购进的A型、B型两种木板加工成C型,D型两种木板出售,已知一块A型木板的进价比一块B型木板的进价多10元,且购买2块A型木板和3块B型木板共花费220元.(1)A型木板与B型木板的进价各是多少元?(2)根据市场需求,该木板加工厂决定用不超过8780元购进A型木板、B型木板共200块,若一块A型木板可制成2块C型木板、1块D型木板;一块B型木板可制成1块C型木板、2块D型木板,且生产出来的C型木板数量不少于D型木板的数量的.①该木板加工厂有几种进货方案?②若C型木板每块售价30元,D型木板每块售价25元,且生产出来的C型木板、D型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少?【汉阳T24】某市中学生举行足球联赛,共赛了17轮(即每队均需参赛17场),记分办法是胜一场得3分,平一场得1分,负一场得0分.(1)在这次足球赛中,若小虎足球队踢平场数与踢负场数相同,共积16分,求该队胜了几场;(2)在这次足球赛中,若小虎足球队总积分仍为16分,且踢平场数是踢负场数的整数倍,试推算小虎足球队踢负场数的情况有几种,【汉阳T25】某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.(1)若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?(2)若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?(3)若该工厂新购得65张规格为3×3m的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共只.【洪山T22】某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种购买方案?怎样的方案使总费用最低?并求出最低费用.【江夏T22】2019年“519(我要走)全国徒步日(江夏站)”暨第六届“环江夏”徒步大会5月19日在美丽的花山脚下隆重举行.组公(活动主办方)为了奖励活动中取得了好成绩的参赛选手,计划购买共100件的甲、乙两纪念品发放其中甲种纪念品每件售价120元,乙种纪念品每件售价80元,(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?(2)设购买甲种纪念品m件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?四.几何压轴【武昌T23】如图AB∥CD,点E在AB上,点M在CD上,点F在直线AB,CD之间,连接EF,FM.EF⊥FM,∠CMF=140°.(1)直接写出∠AEF的度数为;(2)如图2,延长FM到G,点H在FG的下方,连接GH,CH,若∠FGH=∠H+90°,求∠MCH的度数;(3)如图3,作直线AC,延长EF交CD于点Q,P为直线AC上一动点,探究∠PEQ,∠PQC和∠EPQ的数量关系,请直接给出结论.(题中所有角都是大于0°小于180°的角)【江汉T27】在平面直角坐标中,A (0,5)、B (4,0)、C (2,5),四边形AOBC经过平移后得到四边形A′O′B′C′.(1) 如图1,若A′(-3,5),四边形AOBC内部一点M(a+b-2,6a-7)经过平移后得到点N(a+2b-7,4b-6),求M点坐标(2) 如图2,若四边形AOBC 向右平移m 个单位长度(m >0).当m 为何值时,重叠部分的面积比四边形BB ′C ′C 的面积大(3) 如图3,若四边形AOBC 向上平移2个单位长度,直接写出图中阴影部分的面积.【青山T23】已知,BAM ∠与ABN ∠两角的角平分线交于点P ,D 是射线BP 上一个动点,过点D 的直线分别交射线AM ,BN ,AP 于点E ,F ,C .(1)如图1,若140BAM ∠=︒,68ABN ∠=︒,AB EF P ,求BPC ∠的度数; (2)如图2,若AC BD ⊥,请探索AEF ∠与BFE ∠的数量关系,并证明你的结论; (3)在点D 运动的过程中,请直接写出AEF ∠,BFE ∠与BPC ∠这三个角之间满足的数量关系:_________________________________.【东湖高新T22】如图1,已知直线EF 分别与直线AB ,CD 相交于点E ,F ,AB ∥CD ,EM 平分∠BEF ,FM 平分∠EFD(1)求证:∠EMF=90°.(2)如图2,若FN 平分∠MFD 交EM 的延长线于点N ,且∠BEN 与∠EFN 的比为4:3,求∠N 的度数.(3)如图3,若点H 是射线EA 之间一动点,FG 平分∠HFE ,过点G 作GQ ⊥EM 于点Q ,请猜想∠EHF 与∠FGQ 的关系,并证明你的结论.【洪山T23】 如图1,已知a ∥b ,点A 、B 在直线a 上,点C 、D 在直线b 上,且AD ⊥BC 于E .(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是______.【江夏T23】已知△ABC中,点D是AC延长线上的一点,过点D作DE∥BC,DG平分∠ADE,BG平分∠ABC,DG与BG交于点G.(1)如图1,若∠ACB=90°,∠A=50°,直接求出∠G的度数;(2)如图2,若∠ACB≠90°,试判断∠G与∠A的数量关系,并证明你的结论;(3)如图3,若FE∥AD,求证:∠DFE=∠ABC+∠G.五.代几综合【武昌T24】在平面直角坐标系中,点A(a,6),B(4,b),(1)若a,b满足(a+b﹣5)2+|2a﹣b﹣1|=0,①求点A,B的坐标;②点D在第一象限,且点D在直线AB上,作DC⊥x轴于点C,延长DC到P使得PC=DC,若△PAB的面积为10,求P点的坐标;(2)如图,将线段AB平移到CD,且点C在x轴负半轴上,点D在y轴负半轴上,连接AC交y轴于点E,连接BD交x轴于点F,点M在DC延长线上,连EM,3∠MEC+∠CEO=180°,点N在AB延长线上,点G在OF延长线上,∠NFG=2∠NFB,请探究∠EMC 和∠BNF 的数量关系,给出结论并说明理由.【江汉T28】△ABC 在平面直角坐标系内如图1摆放,A 、C 两点的横坐标都是5,BC ∥x 轴.已知B 点坐标为(-3,m ),AB 交y 轴于点D ,且AC =BC.(1) 填空:BC =_____;△ABC 的面积为______;用m 表示点A 的坐标为______.(2) 射线BO 交直线AC 于点Q ,若△ABQ 的面积为16,试求m 的值(3) 如图2,点D 在y 轴负半轴上,∠BAC 的三等分线AP 与∠BOD 的角平分线OP 交于点P ,其中∠BAC =3∠BAP =45°.若∠P >2∠B ,试求∠BOD 的取值范围.【青山T24】已知,点A ,点D 分别y 轴正半轴和负半轴上,AB DE ∥. (1)如图1,若44m m =-+,BAD m OED ∠=∠,求CAD ∠的度数;(2)在BAO ∠和DEO ∠内作射线AM ,EN ,分别与过O 点的直线交于第一象限内的点M 和第三象限内的点N .①如图2,若AM ,EN 恰好分别平分BAO ∠和DEO ∠,求AMN ENM ∠-∠的值; ②若1MAO BAM n ∠=∠,1NEO NED n∠=∠,当4060AMN ENM ︒<∠-∠<︒,则n 的取值范围是__________.【东湖高新T23】在平面直角坐标系中,点A(0,a),B(2,b),C(4,0)且a>0.(1)若(a-2)2+=0,求点A,点B的坐标.(2)如图1,在(1)的条件下,过点B作BD平行y轴交AC于点D,求点D的坐标.(3)若S△ABC=5,且a+b-4=0,求b的值.【洪山T24】如图,已知A(0,a),B(b,0),且满足|a-4|+=0(1)求A、B两点的坐标;(2)点C(m,n)在线段AB上,m、n满足n-m=5,点D在y轴负半轴上,连CD交x轴的负半轴于点M,且S△MBC=S△MOD,求点D的坐标;(3)平移直线AB,交x轴正半轴于E,交y轴于F,P为直线EF上第三象限内的点,过P 作PG⊥x轴于G,若S△PAB=20,且GE=12,求点P的坐标.【江夏T24】如图1,点A(a,0)、B(b,0),其中a、b满足(3a+b)2+=0,将点A、B分别向上平移2个单位,再向石平移1个单位至C、D,连接AC、BD.(1)直接写出点D的坐标______;(2)连接AD交OC于一点F,求的值;(3)如图2,点M从O点出发,以每秒1个单位的速度向上平移运动,同时点N从B点出发,以每秒2个单位的速度向左平移运动,设射线DN交y轴于F.问S△FMD-S△OFN的值是否为定值?如果是定值,请求出它的值;如果不是定值,请说明理由.。
绝密★启用前2017-2018学年第二学期期末复习备考七年级地理期末模拟试题A卷湘教版考试范围:湘教版七年级地理下册难度:A卷较易B卷一般C卷较难注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题,共50分)一、选择题(本题共20小题,每小题2.5分,共50分,在每小题给出的四个选项中只有一个选项是符合题意的)读“撒哈拉以南非洲”简图,据此回答下面小题。
1.下列关于撒哈拉以南非洲的说法正确的一项是()A. 撒哈拉以南非洲被称为“黑种人的故乡”,主要民居是茅草房B. 撒哈拉以南非洲的石油、天然气丰富,有利于与其他发达地区进行经济交流C. 撒哈拉以南非洲的气候类型主要以热带季风气候为主D. 撒哈拉以南非洲的“人口-粮食-环境-资源”问题突出2.下列现象在撒哈拉以南的非洲看不到的是()A. 茂密的热带雨林里,大象在其间戏水B. 辽阔的热带草原上,长颈鹿吃着树梢上嫩叶C. 浩瀚的沙漠里,骆驼在散步D. 一望无际的田野上,收割机正在收割金黄色的小麦读亚洲图,回答下列各题3.亚洲幅员辽阔,自然环境复杂多样.关于亚洲的叙述正确的是()A. 河流呈放射状从中部流向周边海洋B. 地面起伏很大,地势中部低,四周高C. 位于亚欧大陆东部,大西洋西岸D. 气候复杂多样,亚热带季风气候分布最广4.世界最深的海沟是()A. 日本海沟B. 智利海沟C. 马里亚纳海沟D. 加利福尼亚海沟5.世界上地势最高的高原是()A. 巴西高原B. 伊朗高原C. 青藏高原D. 中西伯高原读“南美洲略图”,完成下列各题。
6.南美洲西部有世界上最长的山脉( )A. 落基山B. 安第斯山脉C. 喜马拉雅山脉D. 阿尔卑斯山脉7.相比亚马孙河流域,图中阴影区域更适合人类居住,其主要原因是( ) A. 资源丰富 B. 地形平坦 C. 气候温暖湿润 D. 水源丰富8.北美洲的地形分布特点是( )A. 西部为平原,中部为高原,东部为山地B. 西部为山地,中部为平原,东部为低矮高原山地C. 大部分为高原,有“高原大陆”之称D. 中部为高原山地,四周大多为平原读东南亚地区图,完成下列各题。
七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A .2 B .5 C .10 D.156.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1- C .64-的立方根为4- D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若总分 核分人3421BCAD -1 0 1 2 43 P3l 2l3∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46°D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y a x 是方程02=+y x 的一个解,则=-+236b a ;15.已知线段MN 平行于x 轴,且MN 的长度为5,若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °;BCA输入 x×2>95 +1停止是 否1DCBA17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1) 32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组:23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x各选项人数的扇形统计图各选项人数的条形统计图请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a=________%,b=________%,“常常”对应扇形的圆心角的度数为__________;(2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点坐标为A(2,-1),C(6,2),点M为y轴上一点,△MAB的面积为6,且MD<MA;请解答下列问题:(1)顶点B的坐标为;(2)求点M的坐标;(3)在△MAB中任意一点P(x,y)经平移后对应点为1P(x-5,y-1),将△MAB作同样的平移得到△111BAM,则点1M的坐标为。
七年级下期末复习三 2018.6.14完成句子(共10分,每小题2分)根据汉语意思完成英语句子,每空一词。
1. 你们可以握手或鞠躬。
You can ________ ________ or bow.2. 朋友应该互相帮助。
Friends should help ________ ________.3. 这些北美人在庆祝节日。
These ________ ________ are celebrating the festival.4. 事实上她很活泼。
________ ________, she is lively.5. 你对京剧感兴趣吗?Are you interested in ________ ________?6. 她对舞曲感兴趣。
She is interested in ________ ________.7. 多么令人振奋的故事!________ ________ exciting story!8. 那本书叫《学习》。
That book ________ ________ Study.9. 去年她在中国举办音乐会了吗?Did she ________ ________ in China last year?10. 许多年前他们创作了两首绝好的音乐作品。
They wrote two ________ ________ of music many years ago.11. 这是一首著名的舞曲。
This is a famous ________ ________.12. 这些学生喜欢流行音乐。
The students like ________ ________.13. 他认为京剧很有趣。
He thinks ________ ________ is interesting.14. 我正在看一个摇滚乐节目。
I’m watching a programme about ________ ________.15. 谁要举办音乐会?Who is going to ________ ________?16. 她出生在印度。
She was born ________ ________.17. 他们是南美人吗?Are they ________ ________?18. 事实上,他们那时在体育馆。
________ ________, they were in the sports hall at that time. 19. 不要把食物带到这儿来。
________ ________ the food here.20. 你们怎样道别?How do you ________ ________?21.他们通常握手吗?Do they usually ________ ________?22.学生们要互相学习。
Students should learn from ________ ________.23.这是一本关于南美人的书。
This is a book about ________ ________.24.事实上,他会弹钢琴。
________ ________, he can play the piano.25.每个人都需要个人空间。
Everyone needs ________ ________.26. 你坐火车去那儿用了多长时间?________ ________ did it take you to go there by train?27. 那时王老师和学生们在一起。
Mr Wang ________ ________ the students at that time. 28. 你猜怎么着?我通过了考试。
________ ________? I passed the exam.29. 他们坐飞机来的。
They came ________ ________.30. 游客们喜欢这儿的街市。
Tourists like the ________ ________ here.31. 她去哪儿度假了?Where did she go ________ ________?32. 昨天晚上他和他的朋友们在一起。
He ________ ________ his friends last night.33. 她住在巴黎。
She lives ________ ________.34. 我们经常去街市。
We often go to the ________ ________.35. 那时他通常开车送我们去农场。
He usually ________ us ________ the farm then.36. 我家附近有三所小学。
There are three ________ ________ near my home.37. 她经常独自一人在家。
She is often at home ________ ________.38. 王老师拿起书仔细阅读起来。
Miss Wang ________ ________ the book and read carefully.39. 下周我们要庆祝儿童节。
We’ll celebrate ________ ________ next week.40. 十分钟前我们查到了他的电话号码。
We ________ ________ his phone number ten minutes ago.41. 国庆节他计划去上海。
He's going to Shanghai on ________ ________.42. 这些学生正盼望着儿童节的到来。
These students are looking forward to ________ ________.43. 昨天他发现了一个读书的好地方。
He ________ ________ a good place to read yesterday.44. 你正在写什么?What are you ________ ________?45. 当时她也在教室里。
She was in the classroom ________ ________ at that time.46. 国庆节他计划外出。
He is going out on ________ ________.47. 我的生日在四月。
My birthday is ________ ________.48. 这些孩子正在为儿童节做准备。
These children are getting ready for ________ ________.49. 我们昨晚在网上查见了她的电话号码。
We ________ ________ her phone number on the Internet last night.50. 他去年毕业了。
He ________ ________ last year.51. 我常看到他独自一人在公园散步。
I often see him walk ________ ________ in the park.52. 他在地上捡了什么?What did he ________ ________ on the ground?53. 这些杯子都碎了。
These cups are all ________ ________.54. 起初,他想当一名经理。
________ ________, he wanted to be a manager.55. 那个男孩指着一家商店, 向它跑去。
That boy ________ ________ a shop and ran to it.56.不要独自一人在家。
Don’t be ________ ________ at home.57.他拿起铅笔写下了一个电话号码。
He ________ ________ the pencil and wrote down a phone number.58.为什么面包是碎的?Why is the bread ________ ________?59.起初,那所学校很小。
________ ________, that school was very small.60.这位老师指着黑板回答了问题。
This teacher ________ ________ the blackboard and answered the question.61. 你家附近有电影院吗?Are there any ________ ________ near your home?62. 他在上海的时候你在哪儿?________ ________ you when he was in Shanghai?63. 那时迈克什么样子?________ was Mike ________ at that time?64. 你的第一位老师是谁?Who was your ________ ________?65. 我妈妈的许多同学都在学校工作。
________ ________ my mother's classmates work at school.66.小学附近通常有很多商店。
There are usually lots of shops near ________ ________.67.好大的客厅!What a big ________ ________!68.这座城市有多少家电影院?How many ________ ________ are there in the city?69.他是我的第一位老师。
He was my ________ ________.70.他们是我最喜爱的电影明星。
They are my favourite ________ ________.。