大学物理 光栅衍射
- 格式:ppt
- 大小:1.81 MB
- 文档页数:33
第八讲 光栅 光栅衍射第八讲 光栅 光栅衍射一、光栅衍射现象二、光栅方程三、屏上明条纹的位置四、缺级现象五、光栅光谱一、光栅衍射现象1、光栅:d反射光栅d透射光栅大量等宽等间距的平行狭缝(或反射面)构成的光学元件。
它能等宽、等距地分割入射光的波阵面d = a + b2、光栅衍射光栅衍射是多光束干涉与夫琅禾费单缝衍射的综合结果:来自不同缝的相干光的叠加是多光束干涉,而同一条缝的波阵面上各点发出的衍射光的叠加是单缝衍射。
一系列又窄又亮的明纹也叫主极大多光束干涉单缝衍射光栅衍射:受单缝衍射调制的多光束干涉。
光栅衍射sin θ0I 单I 0单-2-112(λ/a )单缝衍射光强曲线I N 2I 0单48-4-8sin θ(λ/d )单缝衍射 轮廓线光栅衍射光强曲线sin θN 24-8-48(λ/d )多光束干涉光强曲线4 4N d a ,==主极大次极大相邻主极大之间有3个暗纹,2个次级大7光栅狭缝条数越多,明纹越细亮(a)1条缝(f)20条缝(e)6条缝(c)3条缝(b)2条缝(d)5条缝二、光栅方程 0屏fxab()a b +sin θθ()sin a b θ+相邻两缝光线的光程差:= 0123()sin ,,,a b k k θλ+=ᄆᄆᄆK ,光栅方程 明纹、主极大、谱线012sin d k k ,,,θλ==ᄆᄆKoP fScreenLendλθd sin θdθ三、屏上明条纹的位置xtan x f θ=θθθtg sin ≠≠,2,1,0sin ±±==k k d ,λθ单缝衍射光强为零的位置:,3,2,1 sin ±±±=''='k k a ,λθ光栅衍射主极大(明纹)所缺级次:k ad k '=多光束干涉主极大位置:四、缺级现象,3,2,1 ,±±±='k −− k 只能取整数如果某一θ 角同时满足这两个方程,则光栅衍射中k 级主极大消失−− 缺级现象3=da λλaλ2dλ2d λ缺级缺级缺级缺级,2,1,0sin ±±==k k d ,λθ a sin k k ,,,θλᄆᄆ==ᄆᄆᄆ123,例题:用波长为λ=600nm 的单色光垂直照射光栅,观察到第二级明纹出现在sin θ =0.20处,第四级缺级。
大学物理光栅衍射光栅衍射是大学物理中的一项重要内容,它涉及到光的波动性和干涉原理。
本文将从光栅衍射的原理、实验装置、实验方法和结论等方面进行介绍。
一、光栅衍射原理光栅是一种具有周期性结构的衍射器件,它由许多平行且等距的狭缝构成。
当光通过光栅时,会产生一系列明暗相间的衍射条纹,这种现象被称为光栅衍射。
光栅衍射的原理是基于光的波动性和干涉原理。
根据波动理论,光在通过光栅时会产生衍射现象,即光波偏离了直线传播路径。
同时,由于光波的干涉作用,不同狭缝产生的光波相互叠加,形成了明暗相间的衍射条纹。
二、实验装置实验装置主要包括光源、光栅、屏幕和测量工具等。
光源通常采用激光器或汞灯等高亮度光源,以便产生足够的光强度。
光栅是一块具有许多狭缝的透明板,狭缝的数目和间距可以根据实验需要进行选择。
屏幕用于接收衍射条纹,测量工具用于测量衍射条纹的间距和亮度。
三、实验方法实验时,首先将光源、光栅和屏幕按照一定距离放置,确保光束能够照射到光栅上并产生衍射条纹。
然后,通过调整光源的角度和位置,观察衍射条纹的变化。
同时,使用测量工具对衍射条纹的间距和亮度进行测量和记录。
为了获得准确的实验结果,需要进行多次测量并取平均值。
四、结论通过实验,我们可以得出以下1、光栅衍射现象是光的波动性和干涉原理的表现。
2、衍射条纹的间距和亮度受到光源角度和位置的影响。
3、通过测量衍射条纹的间距和亮度,可以推断出光源的角度和位置。
4、光栅衍射现象在光学测量和光学通信等领域具有广泛的应用价值。
大学物理光栅衍射是一个非常重要的实验内容,它不仅有助于我们理解光的波动性和干涉原理,还可以应用于实际生产和科学研究领域。
光,这一神奇的物理现象,是我们日常生活中无处不在的存在。
当我们看到五彩斑斓的世界,欣赏着阳光下波光粼粼的湖面,或是夜空中闪烁的星光,这一切都离不开光的衍射。
在大学物理中,光的衍射是理解波动光学和深入探究光本质的关键。
我们需要理解什么是光的衍射。
实验名称:光栅衍射实验目的:1.进一步掌握调节和使用分光计的方法。
2.加深对分光计原理的理解。
3.用透射光栅测定光栅常数。
实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器)实验原理:光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。
原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。
光栅上的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。
原制光栅价格昂贵,常用的是复制光栅和全息光栅。
图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为光栅常数。
它是光栅基本常数之一。
光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。
图1光栅片示意图图2光线斜入射时衍射光路图3光栅衍射光谱示意图图4载物台当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为(1)出现明纹时需满足条件(2)(2)式称为光栅方程,其中:为单色光波长;k为明纹级数。
由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。
在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。
如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。
对于低压汞灯,它的每一级光谱中有4条谱线:紫色1=435.8nm;绿色2=546.1nm;黄色两条3=577.0nm和4=579.1nm。
衍射光栅的基本特性可用分辨本领和色散率来表征。
角色散率D(简称色散率)是两条谱线偏向角之差Δ 两者波长之差Δ 之比:(3)对光栅方程微分可有(4)由(4)式可知,光栅光谱具有如下特点:光栅常数d越小,色散率越大;高级数的光谱比低级数的光谱有较大的色散率;衍射角很小时,色散率D可看成常数,此时,Δ 与Δ 成正比,故光栅光谱称为匀排光谱。
光栅衍射实验一、实验目的:1.了解光栅的结构及光学原理;2.学会搭建实验模型;3.测左光波波长及光栅常数等。
二、实验原理:光栅(grating)是大量等宽、等间距的平行狭缝(或发射而)构成的光学元件。
一般常用的光栅是在玻璃片上刻出大量平行的刻痕,刻痕为不透光部分,两刻痕之间的光滑部分可以透光(相当于狭缝)。
这种利用透射光衍射的光栅称为透射光栅。
精制的光栅,在1mm宽度内刻有数百乃至数千条刻痕。
另外一类是利用两刻痕间的反射光衍射的光柵,如在镀有金属层的表而,上刻出许多平行刻痕,两刻痕间的光滑金属面可以反射光。
这种光栅称为反射光栅(常称为闪耀光栅)。
实际应用中,各类光学设备使用的光栅基本上都是反射光栅。
透射光栅和反射光栅的原理如图所示:I.如液单色平疔光取射金光HHW 上(图I).则览hlk 欣縫的光终丙衍射梅简%个方问俗 拓.这岐術射光级又兀相干沙・金抡收腭上久形威明塩的谱縄仙构.呂由5八心瑕定・即«/(>in^A —jiin^? )« *AS< «Af ・O 」2 .......... > ( I )此比琢为允捌力程•勻入射箱“幻U 时・间化为”“W A =止人人•尢恸力程中・"=。
・/>林勾光栩帘数:厂幻入射允波K ・X 亦炸纹级故・ 叫•足人 级明 乂纹的初姑知< mm O-从光栅力•程中町以右刘・如杲入射光不足P 色光・M1W>t 的波・KfijW/tJ V>A 也 各•平tUEJ ・「足型色Jt 将被分解・在中央位宜・K-O ・驱・0处・斤色%仍亜业住一・启・形 欣中央明纹(不级«n>- e 中央明纹刈阿対祢地分命笛AT -I ・2・$・•级允诺・各级光语堆都按波长人小的*?序依次HF 列戚一 如彩色暗绘・広歼就耙厦色•光分解力 Jtitt. (aim .3 所示.於种循團较人色敬的光宁仪為 如光赠仪箸和1W5徑分光器竹.光栅就 处册於用的分光・它能耙坯 件光分解力光带.2.反射•光冊 从透射光柵的光柵方程中可以看 到.透射光柵的零级谱线并没有分光 作用•但零级谱线的光强蜕大・因此 透射光柵的衍射谱线对能量的利用率 足很低的・造成这个现象的原因足. 光冊缝间干涉的零级极大与单经衍射 因子的主极大方向一致.光强主要樂 中在衍射主极大方向.而这个方向上 足縫间干涉的零级.无分光作用.所 以造成了光强的极大浪费.实际应用中・人们总足使用闪維光柵來分光•图4尢线入射至闪塔尢柵发生的衍射它能扱大地捉髙光的利用效皐. 反射光柵光路原理如图4所示.d 足光柵•常数:。
光栅衍射实验是大学物理实验中的一项基础实验,旨在让学生掌握光栅衍射的原理,熟悉分光计的调整与使用,以及光栅常数和光波波长的测量方法。
通过本实验,学生可以加深对光栅衍射规律的理解,为后续学习和研究光学理论奠定基础。
二、实验目的1. 熟悉分光计的调整与使用;2. 学习利用衍射光栅测定光波波长及光栅常数的原理和方法;3. 加深理解光栅衍射公式及其成立条件;4. 掌握光栅光谱的形成原理及特点;5. 熟悉光栅在光学仪器中的应用。
三、实验原理光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体。
当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。
光栅常数d是相邻两狭缝上相应两点之间的距离,是光栅基本常数之一。
光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数。
光栅衍射条纹的间距与光栅常数、光波波长和入射角有关。
根据光栅衍射公式,当光栅常数d、光波波长λ和入射角i确定时,衍射条纹的间距可以表示为:Δθ = λ/d其中,Δθ为衍射条纹的角间距。
四、实验仪器与设备1. 分光计:用于调节入射光的方向和测量衍射条纹的角度;2. 光栅:用于产生衍射条纹;3. 低压汞灯:提供单色光源;4. 平面镜:用于反射光;5. 望远镜:用于观察衍射条纹。
1. 将光栅放置在分光计的载物台上,调整分光计使光栅垂直于入射光;2. 调整低压汞灯,使光束垂直照射在光栅上;3. 调整望远镜,使观察者能够清晰地看到衍射条纹;4. 测量衍射条纹的角间距,计算光栅常数和光波波长;5. 改变入射角,观察光栅衍射条纹的变化。
六、实验结果与分析1. 通过实验,我们成功调整了分光计,使光束垂直照射在光栅上,并观察到清晰的衍射条纹;2. 根据光栅衍射公式,我们计算出光栅常数和光波波长,并与理论值进行了比较,误差在可接受范围内;3. 通过改变入射角,我们观察到光栅衍射条纹的变化,验证了光栅衍射公式的正确性。
大学物理实验报告光栅衍射大学物理实验报告:光栅衍射一、实验目的1、深入理解光栅衍射的原理。
2、学会使用分光计测量光栅常数。
3、观察光栅衍射现象,测定衍射光谱中各谱线的波长。
二、实验原理光栅是由大量等宽、等间距的平行狭缝所组成的光学元件。
当一束平行光垂直照射在光栅上时,每条狭缝都将产生衍射,由于各狭缝射出的衍射光之间存在光程差,它们在屏幕上叠加时会发生干涉,从而形成一系列明暗相间的条纹,称为光栅衍射条纹。
根据光栅衍射方程:\(d\sin\theta = k\lambda\)(其中\(d\)为光栅常数,\(\theta\)为衍射角,\(k\)为衍射级数,\(\lambda\)为入射光波长)。
当光垂直入射时,衍射角\(\theta\)与衍射条纹的位置\(y\)之间的关系为:\(\tan\theta =\frac{y}{f}\)(其中\(f\)为望远镜的焦距)。
三、实验仪器分光计、光栅、汞灯、平面反射镜、放大镜等。
四、实验内容及步骤1、调节分光计(1)目测粗调,使望远镜、平行光管和载物台大致水平。
(2)用自准直法调节望远镜聚焦于无穷远,使望远镜能接收平行光。
(3)调节望远镜光轴与分光计中心轴垂直。
(4)调节平行光管,使其发出平行光,并使其光轴与望远镜光轴重合。
2、放置光栅将光栅放置在载物台上,使光栅平面与入射光垂直,并使光栅刻痕与载物台的平行度调节螺丝平行。
3、观察光栅衍射现象(1)打开汞灯,让平行光垂直照射在光栅上。
(2)通过望远镜观察光栅衍射光谱,注意各级谱线的分布情况。
4、测量光栅常数(1)转动望远镜,使望远镜的十字叉丝对准中央明纹(\(k =0\))的中心,记录此时望远镜的读数\(\theta_1\)。
(2)依次对准\(k =\pm1\),\(\pm2\)级明纹的中心,记录相应的读数\(\theta_2\),\(\theta_3\),\(\theta_4\),\(\theta_5\)。
(3)根据光栅衍射方程计算光栅常数\(d\)。