19.3矩形的定义和性质
- 格式:pptx
- 大小:987.46 KB
- 文档页数:30
矩形的性质及应用矩形是一种常见的几何形状,具有一些独特的性质和广泛的应用。
本文将介绍矩形的性质及其在日常生活和工程领域中的应用。
一、矩形的定义和性质矩形是一种四边形,具有以下性质:1. 边长相等:矩形的对边两两相等,即AB = CD,BC = AD。
2. 对角线相等:矩形的对角线相等,即AC = BD。
3. 内角为直角:矩形的四个内角均为直角(90度角),即∠A = ∠B = ∠C = ∠D = 90°。
4. 互相平行:矩形的对边互相平行,即AB∥CD,AD∥BC。
5. 对边垂直:矩形的对边互相垂直,即AB⊥BC,AD⊥DC。
二、矩形的应用1. 建筑设计:矩形是建筑设计中常用的几何形状之一。
例如,在房屋平面设计中,矩形可以表示房间的墙壁,屋顶的平面形状等。
使用矩形结构可以简化建筑设计过程,使结构更稳定。
2. 产品设计:许多产品的外观设计都使用了矩形的形状。
例如,电视、手机、书桌等产品的外形通常是矩形,因为矩形有较大的空间利用率和良好的稳定性,便于制造和使用。
3. 数学推导:矩形的性质在数学推导中经常被应用。
例如,利用矩形的对角线相等性质,可以推导出勾股定理;利用矩形的内角为直角性质,可以推导出平行线之间的角度关系等。
4. 图像处理:在图像处理和计算机图形学中,矩形常被用作图像的基本单元。
图像可以被划分成一个个矩形像素块,利用矩形的性质和坐标系统进行处理和显示。
5. 地理测量:在地理测量中,矩形常被用来表示土地的边界、建筑物的平面布局等。
通过测量矩形的边长和角度,可以计算土地的面积和建筑物的体积。
6. 电路布局:在电路设计中,矩形的形状可以用来表示电路板的外形和内部布局。
矩形的边界可以作为电路板的导线和器件的连接点,方便电路布线和组装。
7. 几何推理:利用矩形的性质,可以进行一些几何推理和证明。
例如,通过对矩形的两个对角线进行分析,可以证明一个四边形是矩形。
三、总结矩形是一种重要的几何形状,具有明确的性质和广泛的应用。
矩形几何知识点总结
1. 矩形的定义
矩形是一种特殊的四边形,具有以下特点:
(1) 四条边两两平行
(2) 四个角都是直角
(3) 两条对角线相等
2. 矩形的性质
(1) 对角线相等:矩形的两条对角线相等。
(2) 内角度数:矩形的每个内角都是90度。
(3) 相对边相等:矩形的对边相等。
3. 矩形的周长
矩形的周长是其四条边的和,可以用公式表示为:周长 = 2*长 + 2*宽。
4. 矩形的面积
矩形的面积是其长度和宽度的乘积,可以用公式表示为:面积 = 长 * 宽。
5. 矩形的对角线
矩形的两条对角线相等,可以用勾股定理求解其长度:对角线的长度= √(长的平方 + 宽的平方)。
6. 矩形的中位线
矩形的中位线是连接对边中点的直线,是一条平行于底边和顶边的线段。
中位线的长度可以直接用底边或顶边的一半来表示。
7. 矩形的特殊情况
当矩形的长度和宽度相等时,即为正方形。
正方形是矩形的特殊情况,具有矩形所有的性质,同时还具有一些特殊的性质,如对角线相等、角度为90度、边长相等等。
8. 矩形的应用
矩形是几何学中的基本图形,广泛应用于物理、工程、建筑等领域。
矩形的周长和面积是计算其它形状的重要基础,对角线和中位线也有着重要的几何意义。
总之,矩形是几何学中一个重要的图形,具有许多重要的性质和特点,对于学习几何学和应用几何学都具有重要的意义。
通过深入理解矩形的定义、性质、周长、面积、对角线、中位线等知识点,可以更好地应用和理解几何学知识。
高三数学矩形知识点总结矩形是我们数学学科中的一个重要图形,在高三数学中也是一个常见的考点。
熟练掌握矩形的相关知识点对于解题和应对考试都非常有帮助。
本文将总结高三数学中与矩形相关的知识点,帮助同学们更好地理解和记忆。
一、基本概念1. 矩形的定义:矩形是四边形的其中一种,具有两对相等且平行的边。
2. 矩形的性质:具有四个直角和两对对边相等。
3. 矩形的元素:矩形的元素有边长、周长和面积。
二、周长和面积的计算1. 周长计算公式:矩形的周长等于两倍的长加两倍的宽,即P=2(长+宽)。
2. 面积计算公式:矩形的面积等于长乘以宽,即S=长×宽。
三、特殊情况1. 正方形:正方形是一种特殊的矩形,所有边长相等。
正方形的周长公式为P=4a,面积公式为S=a²,其中a为边长。
2. 长方形:长方形是一种边长不等的矩形。
长方形的周长公式为P=2(长+宽),面积公式为S=长×宽。
四、对角线1. 对角线的定义:矩形中连接两个非相邻顶点的线段称为对角线。
矩形有两条对角线,且相等。
2. 对角线的性质:对角线相等,且互相平分。
3. 对角线的求解:对角线的长度可以使用勾股定理来求解。
五、性质和定理1. 矩形的内角和为360度。
2. 矩形是平行四边形的一种特殊情况,具有平行四边形的性质和定理。
3. 矩形的主对角线与副对角线相等。
六、相关例题1. 若一个矩形的周长为20cm,且其中一边长为4cm,求其面积。
解析:设矩形的长为x cm,宽为y cm。
由周长公式可得2(x+y)=20,即x+y=10。
又已知一边长为4cm,设为x,即x=4。
将x=4代入x+y=10中可得4+y=10,解得y=6。
故矩形的长为4cm,宽为6cm,面积为4×6=24 cm²。
2. 一个正方形的对角线长度为10cm,求其面积。
解析:设正方形的边长为a cm。
由对角线性质可知,对角线长度等于边长乘以√2,即a√2=10。
矩形菱形正方形1.矩形的定义和性质(1)矩形的定义:有一个角是直角的平行四边形叫做矩形.矩形的定义有两个要素:①是平行四边形;②有一个角是直角.两者缺一不可.(2)矩形的性质:①矩形具有平行四边形的所有性质.②矩形的四个角都是直角.如图,在矩形ABCD中,∠ABC=90°,又由邻角互补、对角相等可得∠BAD=∠ADC =∠DCB=∠ABC=90°推理形式为:∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠BCD=∠CDA=90°.③矩形的对角线相等.如上图,在矩形ABCD中,AB=DC,∠ABC=∠BCD=90°,BC为公共边,可得△ABC≌△DCB.从而证得AC=BD.其推理形式为:∵四边形ABCD是矩形,∴AC=BD.④矩形既是中心对称图形(对称中心是对角线的交点)(20.4节讲到),又是轴对称图形(有两条对称轴).①“矩形的四个角都是直角”这一性质可用来证明两条线段互相垂直或角相等,“矩形的对角线相等”这一性质可用来证明线段相等.②矩形的两条对角线分矩形为面积相等的四个等腰三角形.【例1】如图所示,在矩形ABCD中,∠CAD=30°,CD=5 cm,求矩形ABCD的周长(精确到0.1).解:连接BD交AC于点O.在矩形ABCD中,AB=CD,AD=BC.∵∠ADC=90°,∠CAD=30°,∴AC=2CD=10(cm).在Rt△ADC中,AD=AC2-CD2=102-52=75≈8.66(cm).∴AB+BC+CD+DA=2(AD+DC)=2×(8.66+5)≈27.3(cm).∴矩形ABCD的周长约为27.3 cm.2.直角三角形的一个性质直角三角形斜边上的中线等于斜边的一半.如图所示,由矩形的对角线相等可知,AC =BD .又因为矩形的对角线互相平分,所以OA =OC =12AC ,OB =OD =12BD .所以OA =OB =OC =OD .所以在Rt △ABC 中,斜边上的中线OB =12AC .直角三角形的这一性质与两锐角互余、勾股定理、30°角所对的直角边等于斜边的一半都是直角三角形的重要性质.这一性质常常用来证明线段的倍分关系.【例2】如图,BD ,CE 是△ABC 的两条高,G ,F 分别是BC ,DE 的中点,求证:FG ⊥DE .分析:有三角形的高就会出现直角三角形,有中点就可以联想到直角三角形斜边上中线的性质和等腰三角形的性质.证明:连接EG ,DG .因为BD ,CE 是△ABC 的两条高,所以△BDC 和△BEC 都是直角三角形. 又因为G 是BC 的中点,所以DG =12BC =EG ,即△GDE 是等腰三角形.因为F 是DE 的中点,所以GF 是等腰三角形GDE 的底边DE 上的中线. 所以GF 是底边DE 上的高. 所以FG ⊥DE . 3.矩形的判定(1)定义法:有一个角是直角的平行四边形是矩形. (2)方法一:对角线相等的平行四边形是矩形. (3)方法二:有三个角是直角的四边形是矩形.矩形的定义也是矩形判定方法中的一个 矩形的判定可用下图表示:①用定义判定一个四边形是矩形必须具备两个条件:一是有一个角是直角;二是平行四边形.也就是说有一个角是直角的四边形不一定是矩形,必须加上“平行四边形”这个条件,它才是矩形.②用方法一判定一个四边形是矩形,也必须满足两个条件:一是对角线相等;二是平行四边形.也就是说,两条对角线相等的四边形不一定是矩形,必须加上“平行四边形”这个条件,它才是矩形.【例3】如图所示,在四边形ABCD中,BE=DF,AC与EF互相平分于点O,∠B=90°.求证:四边形ABCD是矩形.分析:此题要证四边形ABCD是矩形,要先证它是平行四边形,而要证明它是平行四边形,应结合条件确定合适的判定方法,即具体情况具体分析.证明:连接AF,CE.∵EF和AC互相平分,∴四边形AECF是平行四边形.∴AB∥CD,CF=AE.又∵DF=BE,∴AB=CD.∴四边形ABCD是平行四边形.∵∠B=90°,∴四边形ABCD是矩形.4.菱形的定义有一组邻边相等的平行四边形是菱形.如图,当把平行四边形的一条边平移后,使邻边相等,平行四边形就变成了菱形.菱形是特殊的平行四边形,但平行四边形不一定是菱形.①菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.②菱形的定义既是菱形的基本性质,也是菱形的判定方法.【例4】如图,在△ABC中,CD是∠ACB的平分线,DE∥AC,DF∥BC,四边形DECF是菱形吗?试说明理由.分析:由菱形的定义去判定,由DE∥AC,DF∥BC可得四边形DECF是平行四边形,再由∠1=∠2,证得邻边相等即可.解:四边形DECF是菱形.理由:∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形.∵CD平分∠ACB,∴∠1=∠2.∵DF∥BC,∴∠2=∠3.∴∠1=∠3,∴CF=DF.∴四边形DECF是菱形.5.菱形的性质菱形具有平行四边形的所有性质,除此之外它也具有自己特殊的性质:(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每条对角线平分一组对角;(3)菱形是轴对称图形,有两条对称轴即每条对角线所在的直线;(4)菱形的面积等于对角线乘积的一半.①由于菱形对角线互相垂直平分,故菱形可被两条对角线分成四个全等的直角三角形,这样容易与勾股定理联系起来;②菱形的面积除了用对角线计算之外,也可以用底乘以高来计算.即菱形的面积有两种求法.【例5】如图所示,在菱形ABCD中,两条对角线AC=6,BD=8,则此菱形的边长为().A.5 B.6 C.8 D.10解析:设AC,BD相交于点O,因为菱形的对角线互相垂直且平分,所以AO=3,BO =4,根据勾股定理,AB=5.答案:A6.菱形的判定(1)定义法:一组邻边相等的平行四边形是菱形.(2)方法一:四边都相等的四边形是菱形.(3)方法二:对角线互相垂直的平行四边形是菱形.菱形的判定方法可用下图表示:判定一个四边形是菱形时,一定要注意判定前提,即在什么条件下判定.若在四边形的条件下判定,则可证其四边相等,也可先判定其是平行四边形,再证一组邻边相等或对角线互相垂直;若在平行四边形的条件下判定,则证其一组邻边相等或对角线互相垂直即可.【例6】如图所示,ABCD的对角线AC的垂直平分线与边AD,BC分别相交于点E,F.求证:四边形AFCE是菱形.证明:因为四边形ABCD是平行四边形,所以AD∥BC.所以∠EAO=∠FCO,∠AEO=∠CFO.又EF是AC的垂直平分线,所以OA=OC.所以△AOE≌△COF.所以OE=OF.所以AC与EF互相垂直平分.所以四边形AFCE是菱形.7.正方形的定义有一个角是直角,且有一组邻边相等的平行四边形叫做正方形.正方形与矩形、菱形的关系可用下图表示:①正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形;②既是矩形又是菱形的四边形是正方形;③正方形不仅是特殊的平行四边形,而且是特殊的矩形,还是特殊的菱形.【例7】如图所示,△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB,求证:四边形BEDF是正方形.证明:∵∠ABC=90°,DE⊥BC,∴DE∥AB.同理可得DF∥BC.∴四边形BEDF是平行四边形.∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF.∴四边形BEDF是菱形.又∠ABC=90°,∴四边形BEDF是正方形.8.正方形的性质正方形具有四边形、平行四边形、矩形、菱形的所有的性质.(1)边的性质:正方形的四条边都相等,对边平行,邻边垂直;(2)角的性质:正方形的四个角都是直角;(3)对角线的性质:正方形的对角线互相垂直平分且相等,并且每条对角线平分一组对角.正方形还有特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形;两条对角线把正方形分成四个全等的等腰直角三角形;正方形是轴对称图形,有四条对称轴.【例8】如图所示,A,B,C三点在同一条直线上,AB=2BC,分别以AB,BC为边作正方形ABEF和正方形BCMN,连接FN,EC.求证:FN=EC.证明:在正方形ABEF中和正方形BCMN中,AB=BE=EF,BC=BN,∠FEN=∠EBC=90°.因为AB=2BC,所以EN=BC.所以△FNE≌△ECB.所以FN=EC.9.正方形的判定(1)一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)有一组邻边相等且有一个角是直角的平行四边形是正方形;(4)既是矩形又是菱形的四边形是正方形.判定一个四边形是正方形的主要依据是定义,途径有两种:①先证明它是矩形,再证它有一组邻边相等;②先证明它是菱形,再证它有一个角是直角.【例9】如图所示,已知ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.若∠AED=2∠EAD.求证:四边形ABCD是正方形.证明:因为四边形ABCD是平行四边形,所以AO=CO.又因为△ACE是等边三角形,所以EO⊥AC,即DB⊥AC.所以平行四边形ABCD是菱形.因为△ACE是等边三角形,所以∠AEC=60°.所以∠AEO=12∠AEC=30°.因为∠AED=2∠EAD,所以∠EAD=15°.所以∠ADO=∠EAD+∠AED=45°.因为四边形ABCD是菱形,所以∠ADC=2∠ADO=90°.所以四边形ABCD是正方形.10.矩形、菱形、正方形性质的综合运用矩形、菱形、正方形都是特殊的平行四边形,所以矩形、菱形、正方形具有平行四边形的所有性质.应从边、角、对角线三个方面区分它们的性质:(1)从边的角度:平行四边形、矩形、菱形、正方形都具有对边平行且相等的性质,而菱形和正方形还具有四条边相等的性质;(2)从角的角度:平行四边形、矩形、菱形、正方形都具有对角相等且邻角互补的性质,而矩形和正方形还具有四个角都等于90°的性质;(3)从对角线的角度:平行四边形、矩形、菱形、正方形都具有对角线互相平分的性质,而矩形和正方形的对角线还具有相等的性质,菱形和正方形的对角线还具有互相垂直的性质.【例10】如图,在正方形ABCD中,E为对角线AC上一点,连接EB,ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.(1)证明:∵四边形ABCD是正方形,∴CD=CB,∠DCA=∠BCA.∵CE=CE,∴△BEC≌△DEC.(2)解:∵∠DEB=140°,△BEC≌△DEC,∴∠DEC=∠BEC=70°,∴∠AEF=∠BEC=70°.∵∠DAB=90°,∴∠DAC=∠BAC=45°,∴∠AFE=180°-70°-45°=65°.11.矩形、菱形、正方形判定的综合运用几种特殊平行四边形的判定方法可用下图表示:正方形、矩形、菱形都是特殊的平行四边形,当平行四边形的一个内角变为直角时(角特殊化了),平行四边形变成矩形;当平行四边形的邻边变为相等时(边特殊化了),平行四边形变成菱形;当平行四边形的一个内角变为直角,一组邻边变为相等时(角、边均特殊化了),平行四边形变为正方形.【例11】已知如图,在正方形ABCD中,点E,F分别在BC和CD上,AE=AF.(1)试说明BE=DF的理由;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM.判断四边形AEMF是什么特殊四边形?并说明你的理由.解:(1)因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=90°.因为AE=AF,所以Rt△ABE≌Rt△ADF.所以BE=DF.(2)四边形AEMF是菱形.因为四边形ABCD是正方形,所以∠BCA=∠DCA=45°,BC=DC.因为BE=DF,所以BC-BE=DC-DF.即CE=CF.又OC为公共边,∴△EOC≌△FOC.所以OE=OF.因为OM=OA,所以四边形AEMF是平行四边形.因为AE=AF,所以平行四边形AEMF是菱形.12.特殊四边形的探究题平行四边形、矩形、菱形、正方形的性质和判定的综合探究题在中考中常出现.它还能与其他知识综合考查,如等腰直角三角形的性质、全等三角形的性质和判定、平行线的性质等知识点,综合运用性质和判定进行推理是解此类题的关键.矩形、菱形、正方形问题在中考中的比重近年来有加大的趋势,不但有选择题、填空题、解答题,也有探究型、开放型试题.解答此类问题,要在牢记矩形、菱形、正方形的性质和判定、弄清它们的特性和共性的基础上,分析图形特征,选择适当的方法.譬如解答正方形问题时,由于正方形既是中心对称图形又是轴对称图形,所以当证明一些与线段有关的问题时,可以借助旋转或平移实现线段的移位,在正方形中这种移位非常地巧妙、自然,比作其他类型的辅助线要来的简捷、顺畅._______________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 【例12】以四边形ABCD的边AB,BC,CD,DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E,F,G,H,顺次连接这四个点,得四边形EFGH.(1)如图①,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图②,当四边形ABCD为矩形时,请判断四边形EFGH的形状(不要求证明);(2)如图③,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°).①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.。
矩形知识点矩形是几何学中最基本的形状之一,具有广泛的应用和重要的特性。
在本文中,我们将详细介绍矩形的定义、性质和常见的计算方法。
定义:矩形是一种有四条边且内角都是直角的四边形。
它具有两对相等且平行的边,且对角线相等。
矩形的四个内角都是直角(90度)。
矩形可由两条相交的平行线段组成,每条线段都是矩形的一条边。
性质:1. 对边和对角线的性质:矩形的对边相等且平行,对角线相等。
这意味着矩形中的两个相对的边长是相等的,并且可以通过对角线划分成两个完全相等的三角形。
2. 内角性质:矩形的每个内角都是直角(90度)。
因此,矩形的四个内角的和为360度。
3. 对称性:矩形具有两个对称轴,即矩形的两条对边是互相对称的。
这意味着矩形可以通过一个对称轴旋转180度得到完全相同的形状。
4. 重心:矩形的重心位于两条对角线的交点处,也是矩形的中心点。
重心将两条对角线等分为四等份。
计算方法:1. 周长:矩形的周长可以通过两个相邻边长之和乘以2来计算,公式为周长=2 × (长 + 宽)。
2. 面积:矩形的面积可通过长乘以宽来计算,公式为面积=长×宽。
3. 对角线长度:矩形的对角线长度可以通过勾股定理来计算。
假设矩形的长为a,宽为b,则对角线长度d可通过公式 d = √(a² + b²) 来计算。
应用:矩形作为几何学的基本形状,在我们的日常生活和工作中有着广泛的应用。
1. 建筑设计:矩形是建筑设计中常见的形状,如房屋的平面图、窗户、门等都可以使用矩形形状来设计。
2. 布局规划:通过将空间划分为矩形区域,可以更好地规划和利用空间,如办公室、仓库等。
3. 计算面积和周长:矩形的面积和周长计算是很常见的数学运算,可以应用在很多实际问题中,如围墙的施工、地板的铺设等。
总结:矩形作为几何学中最基本的形状之一,具有丰富的性质和重要的应用。
通过了解矩形的定义、性质和计算方法,我们可以更好地理解和应用矩形的特性,为我们的日常生活和工作带来便捷和效益。