基于PLC的离心风机变频调速控制系统设计开题报告
- 格式:doc
- 大小:44.50 KB
- 文档页数:2
基于PLC的离心风机变频调速控制系统设计摘要:现代冶炼工业用离心风机由于风量的要求往往都在大负荷下运行,风机叶轮直径通常设计比较大,大多达一米以上,为了克服风机的启动时的巨大力矩,风机所配备的电机功率也非常大,风机在运行时,通常处于大马拉小车状态,造成极大的电能浪费。
另外风机电机为固定转速,风量的调节靠风机入口导叶的开度来实现,小风量时,入口导叶的开度很小,造成风机振动加大,严重时甚至损坏风机,风机无法实现低负荷运转,因此用基于PLC的离心风机变频调速系统对对现代企业的离心风机的改造,在节能和安全系统稳定性都很有意义。
关键词:离心风机,变频调速,PLC,节能1、引言随着电子技术的发展,PLC和变频器正成为普遍和高性价比的可靠的控制和交流传动设备,在工业中得到广泛的应用。
PLC和变频器组成的离心风机供风系统,具有较高的可靠性和高效节能的特点,能组成整体的自控系统,并用组态软件实时监控系统运行组态、显示运行数据及报警,可方便地实现各种控制切换和远程监控,从而提高离心风机可靠性、稳定性。
2、紫金铜业离心风机概况紫金铜业转炉风机为SDG50-A离心鼓风机,引进时为单一工频运行的入口导叶和出口放空调节的老式系统,机组工作运行在两个工况:吹炼和放空。
吹炼时负载电流约120A,放空时约60A,放空的低风量运行时间达9小时以上,电能浪费大,节能空间巨大。
3、基于PLC和变频调速系统3.1 PLC基本工作原理可编程逻辑控制器,简称PLC(Programmable Logic Controller),是一种以计算机技术为基础的工业控制电子装置,具有微处理器的用于自动化控制的数字运算控制器,可以将控制指令随时载入内存进行储存与执行。
可编程控制器由CPU、指令及数据内存、输入/输出接口、电源、数字模拟转换模组,通讯模组等功能单元组成。
其基本工作原理是通电后对硬件、软件初始化后反复不停地分阶段处理各种不同任务,这种周而复始的循环工作方式称为扫描工作方式:读取DI输入并把对应的状态映像输入寄存器——执行用户程序,程序结果写入相应的寄存器——通讯处理,执行通讯所需的任务——CPU自诊断,检查PLC硬件——改写输出,通过相应的映像寄存器的值更新输出点——中断处理,有中断事件发生时立即执行中断事件,这是为提高PLC对某些事件的响应速度——返回主程序,进入下一程序周期。
基于PLC控制的1250离心机变频调速系统的设计1.前言1250 离心机是立式刮刀卸料自动过滤离心机,主要用于固相为颗粒状悬浮物料固液相分离,也可用于纤维状物料固液相分离。
矿物、环保、医药、化工等行业中广泛应用。
目前多数离心机仍由继电器控制,采用有级调速,离心机工作转速调节单一、设备故障率较高,生产效率低下。
为克服这些问题,我们对制药厂1250 离心机电控系统进行技术改造,采用PLC 控制和变频器调速,该系统自动化程度高、稳定性好,运行可靠,现已成功应用于多家制药厂。
2.系统原理离心机工作原理是将待分离物料经进料管送入高速旋转离心机转鼓内,离心机力场作用下,物料滤布(滤网)实现过滤,液相经出液管排出,固相则截留转鼓内,待转鼓内滤饼达到机器规定装料量,停止装料,对滤饼进行洗涤,同时将洗涤液滤出,达到分离要求后,离心机低速运转,刮刀装置动作,将滤饼刮下,完成一次工作循环。
图1 为1250 离心机结构图。
离心机离心工艺过程:1)进料:当变频器速度达到20Hz 时,首先打开进料阀、料层检测阀,当检测到料层满时,关闭进料阀并延时10S,料层满信号消失再次打开进料阀连续执行上述动作2 次。
2)离心:当第三次料满信号产生时,关闭进料阀变频器升速至50Hz 进行高速分离,离心时间可由触摸屏设置,时间到后变频器降速至40Hz。
3)清洗甩干:打开清洗阀进行清洗,清洗时间、暂停时间和清洗次数所分离药物品种由触摸屏设置。
清洗工艺完成后进入甩干过程,变频器升至50Hz,甩干时间由触摸屏设置。
时间到后进入卸料状态。
4)卸料:甩干后料层过厚,刮刀采用分段定时旋转卸料,即刮刀旋转(时间可设置)→停2 秒→刮刀下降(下降高度可设置),重复上述动作,直至最后一次刮刀下降至下限感器动作,然后上升到顶部至上限位停止动作。
变频调速控制系统设计的开题报告一、研究背景和意义随着工业自动化的深入发展,变频调速技术在电气驱动领域依然处于有利地位。
变频控制技术解决了传统直流调速技术中难以消除的直流调速系统的工作环境污染、电流调节模式单一、设备故障率较高等问题。
变频调速系统更为节能、稳定、可靠,使得其在制造、交通、能源等领域得到广泛应用。
本课题旨在探究设备及其控制系统的基本动力学建模方法,并基于此进行变频调速控制系统的设计和实现。
二、研究内容和研究方法1. 基于电机及其控制系统的基本动力学建模方法:介绍电机动力学基本知识,探究动力学建模方法,建立电机及其控制系统的动力学模型。
2. 变频调速控制系统的设计:根据电机及其控制系统的动力学模型,设计变频调速系统中的控制方案和算法,并考虑系统控制策略的优化和调试。
3. 进行仿真实验和实际测试:通过matlab等仿真软件模拟控制系统,并对实际实验数据进行测试,验证系统性能以及控制策略的有效性。
三、预期结果1. 设计一套小型变频调速控制系统,包括硬件和软件两部分。
2. 建立电机及其控制系统的动力学模型,实现控制系统的正反转、变频调速功能。
3. 对系统进行仿真实验和实际测试,验证系统性能和稳定性。
四、可行性分析1. 本课题基础理论和方法成熟,文献充足,实现可行性高。
2. 设备与技术条件成熟,实验过程受控制,可行性高。
3. 研究预期结果具有较强的实用价值和推广价值,经济效益较大。
五、研究进度安排1. 第一阶段:研究电机及其控制系统基本动力学建模知识。
预计耗时1个月。
2. 第二阶段:设计控制系统方案和算法。
预计耗时2个月。
3. 第三阶段:进行仿真实验和实际测试。
预计耗时3个月。
六、参考文献1. 何伟,《电机控制系统动力学建模》,机械工业出版社,2015年。
2. 匡文兵,《变频调速控制系统设计与应用》,中国电力出版社,2018年。
3. 王阳,《基于Matlab的变频调速控制系统仿真与实现》,电子科技大学硕士学位论文,2016年。
研究现状:可编程控制器简称——PLC是以微处理器为基础,综合了计算机技术、自动控制技术和通讯技术发展而来的一种新型工业控制装置。
它具有结构简单、编程方便、可靠性高等优点,已广泛用于工业过程和位置的自动控制中。
据统计,可编程控制器是工业自动化装置中应用最多的一种设备。
专家认为,可编程控制器将成为今后工业控制的主要手段和重要的基础设备之一,PLC是在继电器控制逻辑基础上,与3C(Computer,Control,Communication)技术相结合,不断发展完善的。
目前已从小规模单机顺序控制,发展到包括过程控制、位置控制等场合的所有控制领域。
长期以来,plc始终处于工业控制自动化领域的主战场,为各种各样的自动化控制设备提供非常可靠的控制方案,与dcs和工业pc形成了三足鼎立之势。
变频调速系统:变频调速具有高效率、宽范围和高精度等特点,是运用最广、最有发展前途的调速方式。
目前变频调速的主要方案有:交一交变频调速,交一直一交变频调速,同步电动机自控式变频调速系统,正弦波脉宽调制(SPWM),矢量控制、直接转矩控制变频调速等,而且无速度传感技术日益成熟。
许多智能技术逐步渗透到其中,如模糊控制、专家系统、神经网络、自适应控制等,与这些控制方式相结合,大大提高了变频器调速系统的控制效果。
20世纪80年代中期随着第三代电力半导体器件如门极可关断晶闸管GTO、绝缘栅双极晶体管工GBT的相继出现,交流变频调速技术得到了飞速发展。
日、美、德、英等国家在结合现代微处理器控制技术、电力电子技术、电机传动技术的基础上,相继推出了一系列的变频器,且不断进行更新换代。
选题意义:随着电力电子技术以及计算机控制技术的发展,使得交流变频调速在工业电机拖动领域得到了广泛应用;由于PLC的功能强大、使用容易、可靠性高,常常被用来作为现场数据的采集和设备的控制。
电动机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境,推动技术进步的一种主要手段。
基于PLC的变频调速通风机系统设计1. 引言1.1 背景介绍随着工业化进程的不断发展,通风机在工业生产中起着至关重要的作用。
通风系统能够有效地循环空气,调节室内温度和湿度,提高工作环境的舒适度和生产效率。
而随着现代工业对于节能降耗的需求不断增加,传统的固定速度通风机已经无法满足需求,变频调速通风机系统应运而生。
本文旨在探讨基于PLC的变频调速通风机系统设计,通过详细介绍PLC技术在通风系统中的应用、系统设计方案、控制策略等内容,对系统的性能进行分析和优化设计,以期为工业生产提供更加智能、节能的通风解决方案,促进工业生产的可持续发展。
1.2 研究目的研究目的是为了探讨基于PLC的变频调速通风机系统设计的实际应用可行性,并通过系统设计方案、控制策略、系统性能分析以及系统优化设计的详细讨论,为工程实践提供参考和借鉴。
在工业生产中,通风系统是非常重要的设备,通常由电机驱动,而通过变频调速能够实现对通风机的精准控制。
基于PLC的设计能够实现更加灵活、高效的控制策略,提高通风系统的智能化水平。
本研究的目的是探讨如何利用PLC技术实现变频调速通风机系统的设计,提高系统的自动化程度和能效,从而为工业生产提供更加可靠和环保的通风解决方案。
通过本研究,我们希望可以为工程技术人员和相关领域的研究者提供有益的参考,推动通风系统在工业生产中的应用与发展。
2. 正文2.1 PLC技术在变频调速通风机系统中的应用PLC(可编程逻辑控制器)是一种专门用于工业控制的计算机,它具有高稳定性、可靠性和灵活性的特点,广泛应用于各种自动化系统中。
在变频调速通风机系统中,PLC技术可以发挥重要作用。
PLC可以实现对通风机系统的自动控制。
通过程序编写,PLC可以根据环境温度、湿度等数据自动调节通风机的转速,实现精确的控制。
这不仅提高了通风效果,还节省了能源消耗。
PLC还可以实现对通风机系统的远程监控和故障诊断。
通过与上位机系统的连接,操作员可以远程监控通风机系统的运行状态,并及时发现和处理故障,提高了系统的可靠性和维护效率。
PLC风力发电控制系统设计--开题报告一、项目背景近年来,风力发电已成为一种重要的清洁能源,占据着全球新能源发展的重要地位。
风力发电的工作原理是利用风轮旋转带动发电机发电,由于气候、地形等原因,风速的大小和方向常常变化,因此需要一个智能化的控制系统来协调发电机的输出功率。
PLC控制系统因其稳定、高效、易于维护的特点,已经成为风力发电控制系统的主要控制手段。
二、研究目的及意义本项目旨在研究和设计一种基于PLC的风力发电控制系统,实现对风力发电机的自动控制和优化,以提高风力发电机的发电效率和稳定性,节约能源和减少环境污染。
该控制系统具有操作简单、性能稳定、自适应性强等优点,可以在风速变化较大的环境下自动调节风力发电机的输出功率,保证风力发电机的正常运行。
三、研究内容1. 风力发电机的工作原理与结构设计首先需要了解风力发电机的基本工作原理,以及常见的风力发电机结构设计。
考虑风机的叶片采用变叶距调节,以及叶片角度的自适应调节。
2. PLC控制器的选择与设计根据风力发电机的结构和设计,选择适合的PLC控制器,并进行程序设计。
通过对风速、功率等参数的采集和分析,实现对风力发电机的自动控制和优化,提高发电效率和稳定性。
3. 与风力发电机的连接及控制风力发电机输出的电能需要通过变频器进行处理,并与电网相连接。
在这个过程中,需要控制风力发电机输出的电压、频率等参数,保证电能的有效传输。
4. 监测与故障诊断监测风力发电机的运行状态,并实现故障诊断和维护。
在实际应用中,风力发电机的故障率较高,需要及时进行故障诊断和维修,从而减少停机时间和维修成本。
四、研究计划与进度安排本项目计划在6个月内完成,具体进度安排如下:第1-2个月:调研和需求分析,熟悉PLC控制器的基本原理和程序设计方法。
第3-4个月:PLC控制器的选型和设计,获取风速、功率等数据,并进行实时监测和控制。
第5-6个月:系统调试和测试,完成对风力发电机的实际控制和优化,并进行故障诊断和维护。
基于PLC的变频调速通风机系统设计1. 引言1.1 研究背景变频调速技术是一种能够实现电机调速的先进技术,广泛应用于各种工业领域中。
通风机系统作为工业生产中常见的设备之一,其调速调节对于保证工艺过程的顺利进行具有重要意义。
传统的通风机系统采用传统的调速方式,存在调速精度低、能效低、噪音大等问题,为了解决这些问题,需要引入基于PLC的变频调速技术。
基于PLC的变频调速通风机系统设计可以有效提高通风机系统的调速精度,实现能效优化,减少噪音等问题。
通过PLC控制器对变频器进行精确的控制,可以实现对通风机的精细调节,满足不同工艺条件下的调速需求。
研究基于PLC的变频调速通风机系统设计具有重要的实际意义和应用价值。
本文旨在通过对变频调速技术和PLC控制技术的深入研究,结合通风机系统的硬件设计和软件设计,探讨基于PLC的变频调速通风机系统设计原理及其应用,从而为工业生产中通风系统的优化和提升提供一种新的技术解决方案。
1.2 研究目的本文旨在设计一个基于PLC的变频调速通风机系统,以实现对通风机转速的精确控制。
通过对系统设计原理、PLC在变频调速系统中的应用、通风机系统的硬件设计、通风机系统的软件设计以及系统性能测试的深入探讨和实践,旨在验证该系统在实际工程中的可行性和有效性。
具体研究目的包括:1.探索基于PLC的变频调速通风机系统设计原理,明确各个模块之间的关联和配合关系,为系统的正常运行提供可靠的理论基础;2.研究PLC在变频调速系统中的具体应用方法,通过对PLC编程和参数设置的实践,实现对通风机转速的精确控制;3.设计通风机系统的硬件部分,包括传感器、执行器和通讯模块等的选型和连接方法,确保系统的稳定性和可靠性;4.设计通风机系统的软件部分,包括PLC程序的编写和调试,实现系统的各项功能和逻辑控制;5.对系统性能进行测试和评估,验证系统设计的准确性和有效性,为进一步工程应用提供参考依据和技术支持。
通过本研究的实施,旨在为通风系统的智能化运行和节能优化提供技术支持和参考,推动通风系统领域的发展。
PLC控制电机变频调速试验系统的设计与实现的开题报告一、选题背景及意义PLC(可编程逻辑控制器)和变频调速技术是现代自动化控制领域的关键技术,广泛应用于电机控制系统中。
PLC控制电机变频调速试验系统具有自动化程度高、控制精度高、可靠性强、且易于维护和扩展等优点,能够满足电机控制系统的多种需求,在众多领域中得到了广泛的应用。
因此,本文选取PLC控制电机变频调速试验系统的设计与实现为研究课题,旨在系统地掌握这一重要系统的技术原理,解决实际工程中的一系列问题,具有很高的理论和实践的意义。
二、研究内容和方法本文的研究内容主要包括:PLC控制电机变频调速试验系统的设计与实现的系统分析、主要模块设计、控制系统编程、实现过程中的模块测试等方面。
具体而言,主要包括以下几个部分:系统分析:分析PLC控制电机变频调速试验系统的概要结构及其功能需求,明确系统可行性、功能要求等,并确定硬件平台、软件平台和相关控制器等方面的设备选取。
主要模块设计:研究系统主要功能模块的设计,包括变频器控制、电机控制、参数调整、数据采集与处理等方面。
控制系统编程:根据系统需求设计相应的控制程序,并针对系统的实际需求进行调试和测试。
在实现控制系统编程的基础上,对系统性能进行评估。
实现过程中的模块测试:在系统实现过程中进行各功能模块的测试,包括变频器控制、电机控制、参数调整、数据采集与处理等功能,以验证系统各功能模块及整体性能,确保系统的稳定运行。
本文采用实验室实验、文献阅读、网上调研、数学模拟等研究方法,结合理论和实践,全面分析PLC控制电机变频调速试验系统的技术体系,并对其进行深入探讨和分析。
针对实验结果,进行实验数据分析,进行相关实验总结,得出相关实验结论,并提出改进方案。
三、预期成果及意义本文将完成PLC控制电机变频调速试验系统的设计与实现,系统验证电机的变频调速功能,系统性能优良,适用于多种类型的电机。
预期的研究成果包括:深入分析PLC控制电机变频调速试验系统的技术原理与工作流程,设计相应的控制程序,搭建出完整的系统;完成实验室实验,获取实验数据,并进行数据分析,得出相应的实验结论;深入总结改进方案,为电机变频调速技术的应用提供技术支持。
基于PLC的变频调速通风机系统设计PLC(可编程逻辑控制器)是一种数字化电子设备,常用于工业自动化控制系统中。
变频调速通风机系统是一种能够根据需求调整风机转速的系统。
本文将介绍一个基于PLC的变频调速通风机系统的设计。
该系统由以下几个主要部分组成:PLC模块、变频器、传感器、通风机和人机界面。
1. PLC模块:PLC模块是整个系统的核心控制设备。
它可以编程实现对通风机的控制和调节,以及与其他设备的通信。
PLC模块可根据温度、湿度、气压等传感器采集的数据,通过控制变频器调整通风机的转速。
PLC模块也可以与监控系统或上位机进行通信,以实现远程监控和远程控制功能。
2. 变频器:变频器用于控制通风机的转速。
根据PLC模块发出的指令,变频器可以调整通风机电机的电压和频率,从而实现风机的转速调节。
变频器通常具有多种工作模式和预设参数,可以根据不同的需求进行调整。
3. 传感器:传感器用于监测环境参数,例如温度、湿度、气压等。
它们将实时采集的数据传输给PLC模块,PLC模块根据这些数据采取相应的控制措施。
当温度过高时,PLC 模块可以通过变频器调整通风机的转速,以加强散热效果。
5. 人机界面:人机界面是用户与系统进行交互的窗口。
它可以是一个触摸屏、键盘或按钮等。
通过人机界面,用户可以设置系统的工作模式、调整风速,以及查看系统状态等。
基于PLC的变频调速通风机系统具有以下优点:1. 系统控制精度高,响应速度快。
PLC模块通过编程实现对风机转速的精确调节,可以满足不同工况下的需求。
2. 系统稳定可靠,可实现全自动控制。
PLC模块可以根据传感器采集的数据进行自动控制,不需要人工干预。
3. 系统可靠性高,故障诊断和维修简便。
PLC模块具有故障诊断功能,可以快速定位和排除故障。
基于PLC的变频调速通风机系统可以实现对通风机转速的精确控制和调节,提高系统的效率和可靠性。
它在工业自动化控制领域具有广阔的应用前景。
附件B:毕业设计(论文)开题报告1、课题的目的及意义(含国内外的研究现状分析或设计方案比较、选型分析等)可编程程序控制器是近二十几年发展起来的一种新型工业控制器,在工业生产过程控制中的应用越来越广泛.另一方面,随着计算机技术、自动控制技术的发展及现代工业生产过程的需求,越来越多的计算机系统正在广泛应用与各种工业生产过程。
风动控制在自动化生产线和机器人等领域广泛应用。
这些应用需要在过程中能快速,准确地完成预先指定的任务,因而必须具有高精度,快速反应,具备一定的承载能力,灵活的自由度以及在任意位置能自动精确定位等要求。
实验研究显示,采用PLC控制方法能改善风动模型控制系统的定位特性,结合控制算法能达到高精度的控制要求,并能实现任意位置的定位。
本文正是顺应时代发展的需要和改善风动模型控制系统的控制特性出发设计了基于PLC的风动模型控制系统设计。
随着计算机技术、通信技术和控制技术的发展,传统的控制领域正经历着一场前所未有的变革,开始向网络化方向发展。
计算机控制系统的发展在经历了基地式气动仪表控制系统、电动单元组合式模拟仪表控制系统、集中式数字控制系统以及集散控制系统(DCS)后,今后将朝着现场总线控制系统的方向发展.现场总线(Fieldbus)是指开放式、国际标准化、数字化、相互交换操作的双向传送、连接智能仪表和控制系统的通信网络。
它是一项以智能传感、控制、计算机、数字通讯等技术为主要内容的综合技术。
当今现场总线技术一直是国际上各大公司激烈竞争的领域,由于现场总线技术的不断创新,过程控制系统由第四代的DCS发展至今的FCS(Fieldbus Control System)系统,已被称为第五代过程控制系统.现场总线技术经过10年的研发、试验和局部应用阶段,现已开始大量地在中小系统中应用,并开始在超大规模的自动化系统工程中应用。
进入二十一世纪以来,随着我国国民经济的高速发展,我国现场总线控制系统行业保持了多年高速增长,并随着我国加入WTO,近年来,现场总线控制系统行业的出口也形势喜人.针对风动模型控制系统的设计以下提出了两种控制方案。
目录1 绪论 (1)2 总体设计方案 (1)2.1 控制系统的要求 (1)2.2 系统构成及工作原理 (1)2.3 变频调速节能分析 (2)2.4 变频调速的依据 (3)2.5 离心风机控制原理分析 (3)3 硬件设计 (6)3.1 温度传感器的选择 (6)3.2 PLC的选择 (7)3.2.1 FP0系列PLC的特点 (7)3.2.2 PLC控制系统设计流程 (7)3.3 变频器的选择 (8)4 软件设计 (11)4.1 PLC程序设计 (11)4.1.1 离心风机转换过程分析 (14)4.1.2 系统工作状态 (14)4.1.3 状态转换过程的实现方法 (15)4.2 程序设计的梯形图 (16)5 系统可靠性设计 (16)6 系统调试 (19)6.1 软件系统的调试 (19)6.2 硬件系统的调试 (19)6.3 软硬件结合调试 (19)7 结论 (19)谢辞 (20)参考文献 (20)附录:程序清单 (22)1 绪论在工业生产、产品加工制造业中,风机设备主要用于锅炉的燃烧系统、其他设备的烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。
而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。
这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失的形式消耗掉了。
在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。
从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。
为此,需要采用多项措施实现对离心风机的自动控制,以使系统的各种性能达到合理的要求。
近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用PLC 和变频器易操作、易维护、控制精度高,并可以实现高功能化等特点,采用基于PLC的变频器驱动方案开始逐步取代风门、挡板、阀门的控制方案。
基于PLC的变频调速通风机系统设计1. 引言1.1 研究背景随着现代工业生产的发展和环境保护意识的增强,通风系统在工业生产中起着越来越重要的作用。
传统的通风系统通常采用定速运行的通风机,这样容易导致系统能耗高、控制精度低以及设备寿命短等问题。
为了解决这些问题,基于PLC的变频调速通风机系统逐渐成为了研究热点。
研究基于PLC的变频调速通风机系统设计,对于提高工业生产效率、降低能耗、改善生产环境质量具有重要意义。
本文将围绕这一目标展开研究,并探讨其在工业生产中的应用前景和发展方向。
1.2 研究目的研究目的是为了探究基于PLC的变频调速通风机系统设计在实际工程应用中的可行性和效果,从而提高通风系统的运行效率和节能性能。
通过分析现有的通风系统设计方案和控制方法,将PLC技术与变频调速器相结合,实现通风系统的智能化控制和优化运行。
研究的目的还包括选取合适的变频调速器,并通过系统性能评估来验证设计方案的有效性和可靠性。
通过本研究的实施,旨在为工程实践提供参考和借鉴,促进通风系统的发展和应用,同时也为未来相关研究提供了一定的理论和实践基础。
1.3 研究意义基于PLC的变频调速通风机系统设计具有重要的研究意义。
首先,随着科技的不断发展,PLC技术在工业控制领域得到了广泛应用,其稳定性和可靠性受到了广泛好评。
将PLC应用于变频调速通风机系统设计中,可以提高系统的精度和稳定性,使系统运行更加高效。
其次,通风系统在工业生产中起着至关重要的作用,如何设计一套高效、节能的通风系统对于提高生产效率和保障员工健康具有重要意义。
基于PLC的变频调速通风机系统设计能够实现对风机的精准控制和调节,提高系统的通风效果和节能效率。
此外,通过对系统进行性能评估,可以及时发现问题并进行调整和优化,进一步提高通风系统的整体性能。
因此,研究基于PLC的变频调速通风机系统设计,不仅可以为工业生产提供更加可靠的设备支持,同时也有助于节能减排和提高工作环境质量。
河南工业职业技术学院Henan Polytechnic Institute 毕业设计(论文)题目:基于PLC的风机变频调速控制系统设计班级:电气自动化技术1001目录摘要 (1)1 绪论 (2)2 系统结构和控制方案 (3)2.1 系统的设计功能 (3)2.2 系统结构和方案 (3)3 系统硬件构成及各部分功能 (6)3.1 PLC可编程控制器部分 (6)3.1.1 PLC概述 (6)3.1.2 PLC外部 I/O 连接 (7)3.1.3 I/O接线图 (8)3.2 变频调速的基础知识 (10)3.3 模数转换模块 (10)3.4 离心风机 (11)3.5 变频器的选型和容量的确定 (12)4 系统硬件设计 (14)4.1 硬件电路 (14)4.2 系统控制电路设计 (15)5 软件设计 (16)5.1 瓦斯浓度控制部分 (16)5.2 压力控制部分 (17)5.3 温度控制部分 (19)6 结束语 (21)致 (22)参考文献 (23)附图总程序 (24)摘要在最近几年,PLC 以其诸多优异特点获得广泛的使用,在工业先进国家已成为工业控制的标准设备。
它专为工业控制而设计,集电气、仪表、控制三电于一体,是实现机电一体化的理想控制设备。
本系统将 PLC与变频器有机地结合起来,采用以矿井气压压力为主控参数,实现对离心风机工作过程和运转速度的有效控制,使矿井通风机通风高效、安全,达到了明显的节能效果。
PLC控制系统具有对驱动风机的电机过热保护、故障报警、机械故障报警和瓦斯浓度断电等功能特点,为煤矿矿井通风系统的节能技术改造提供一条新途径。
关键词:矿井,离心通风机,PLC,变频器1 绪论随着电子技术和微电子技术的迅速发展,PLC和变频器正成为通用、廉价和性能可靠的控制和驱动设备,得到广泛的应用。
由PLC控制的变频调速离心风机的通风系统,具有较高的可靠性和较好的节能效果,易于组建成整体的自控系统,很方便地实现各种控制切换和远程监控,本文通过一个实例——基于离心风机的矿井通风系统进行分析。