离散数学试卷二十四试题与答案
- 格式:doc
- 大小:191.00 KB
- 文档页数:7
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。
10.下图所示的偏序集中,是格的为 。
二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
3、设A={1,2,3},则A 上的二元关系有()个。
A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。
4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。
5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下t st spR=∈=则P(A)/ R=()<A∧>)(||||}s({t,,|A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。
离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( B ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。
页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
绝密★启用前2020年8月高等教育自学考试全国统一命题考试离散数学试题答案及评分参考(课程代码 02324)一、单项选择题:本大题共15小题,每小题1分,共15分。
1. D2. B3. D4. A5. B6. C7. B8. D9. A 10. C11.B 12.A 13.D 14.C 15.D二、填空题:本大题共10小题,每小题2分,共20分。
16. 317.{1,5,9}18.T19.1120.{〈1,2〉}21.∀x∀y∃z�F(x)∨¬G(y)∨H(z)�22.1123.∅24.825.{〈3,1〉,〈9,2〉,〈6,3〉}三、简答题:本大题共7小题,第26~30小题,每小题6分;第31~32小题,每小题7分,共44分。
26.解:命题公式(P∧Q)∨(¬Q→R)的真值表如下P Q R P∧Q¬Q→R(P∧Q)∨(¬Q→R)(1分)F F F F F FF F T F T T (1分)F T F F T TF T T F T T (1分)T F F F F FT F T F T T (1分)T T F T T TT T T T T T (1分) 由上表可知,命题公式为非重言式的可满足式。
(1分)离散数学试题答案及评分参考第1页(共4页)离散数学试题答案及评分参考第2页(共4页) 27. 解:(P ∨¬Q )∧(¬R →Q )⇔(P ∨¬Q )∧(R ∨Q ) (2分) ⇔(P ∨¬Q ∨R )∧(P ∨¬Q ∨¬R )∧(P ∨Q ∨R )∧(¬P ∨Q ∨R )(1分) 主合取范式为 (P ∨Q ∨R )∧(P ∨¬Q ∨R )∧(P ∨¬Q ∨¬R )∧(¬P ∨Q ∨R ), (1分)成假赋值为000,010,011和100。
(2分) 28. 解:集合A ={a ,b ,c ,d }的二元关系R ={〈a ,b 〉,〈b ,d 〉,〈c ,a 〉,〈c ,c 〉,〈d ,c 〉},(2分) R 的关系矩阵M R =�0100000110001010�,(2分) 对称闭包的关系矩阵M s (R )=M R ∨M R −1=�0110100110011110�。
离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
2024年4月高等教育自学考试全国统一命题考试离散数学(课程代码 02324)注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
2.应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
3.涂写部分、画图部分必须使用2B铅笔,书写部分必须使用黑色字迹签字笔。
第一部分选择题一、单项选择题:本大题共15小题,每小题2分,共30分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.含有3个命题变元的任一命题公式的指派个数是A.6个B.8个C.9个D.10个2.下列命题公式为矛盾式的是A.P→(P ⋁Q ⋁R)B.¬(Q→P) APC.(P→¬P)→¬PD.(P ⋀¬P)→Q3.含有2个命题变元的命题A是重言式的条件是A的主析取范式含有A.4个小项B.1个小项C.4个大项D.1个大项4.设论域元素为a、b,与∀xR(x) ∧(∋y)S(x) 等价的是A.(R(a) ⋀R(b)) ⋀(S(a) ⋀S(b))B.(R(a) ⋀R(b)) ⋀(S(a) ⋁S(b))C.(R(a) ⋁R(b)) ⋀(S(a) ⋀S(b))D.(R(a) ⋁R(b)) ⋀(S(a) ⋁S(b))5.谓词公式 ∀xF(x) ⋀G(x,y) 中变元x 为A.自由出现B.约束出现C.既不是自由出现也不是约束出现D.既是自由出现也是约束出现6.设论域是正整数,下列谓词公式中值为真的是A.)10(22=+∃∀y x y xB.)10(22=+∃∀y x x yC.)10(22=+∀∀y x y xD.)10(22=+∃∃y x y x7.设A ={a,∅},P(A)是A 的幂集,下列选项中正确的是A.{a}∈ P(A),{a}⊆P(A)B.{{A}}∈P(A),{{a}}⊆P(A)C.{a}∈P(A),{∅}∈P(A)D.{a}∈P(A),{∅}⊆P(A)8.一个8阶简单图的边数最大为A.20B.25C.28D.309.下面关于n 阶树的描述,错误..的是 A.连通图 B.连通且有n-1条边C.无回路且有n-1条边D.连通且无回路10.R={<0,1>,<1,2>,<2,3>},S={<2,1>,<1,2>,<3,3>},下列正确的是A.ran(R) ⊂ ran(R ∩S)B.ran(S) = ran(R ∪S)C.dom(R) = dom(S)D.dom(R) ∪ dom(S) = ran(R) ∪ ran(S)11.设A={1,2,3},则下列关系中是反自反关系的为A.R={<1,1>,<1,2>}B.R={<1,2>,<3,3>}C.R={<1,2>,<3,2>}D.R={<3,1>,<1,3>,<2,2>}12.设A={a,b,c} ,下列选项中既不是对称也不是反对称的是A.R={<a,a>,<a,b>,<b,a>,<c,b>,<b,c>}B.R={<a,a>,<b,b>}C.R={<a,c>,<a,b>}D.R={<a,c>,<b,b>}13. 设f: R →R,f(x) =⎩⎨⎧<-≥3232x x x ,,;g:R →R,g(x)=x+2,则g ∘f:R →R 是A.单射不满射B.满射不单射C.不单射不满射D.双射14.一个5阶简单图G,保证G 为连通图的最少边数为A.4B.5C.6D.715.下列各集合对于整除关系构成偏序集,不能..构成格的集合是 A.L 1={1,2,3,4} B.L 2={1,2,3,6}C. L 3={1,3,5,15}D.L 4={1,3,9,81}第二部分 非选择题二、填空题:本大题共10小题,每小题2分,共20分。
离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。
A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。
A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。
A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。
A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。
A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。
A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。
A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。
A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。
A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。
答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。
全国 2009 年 4 月自学考试离散数学试题(附答案)课程代码: 02324一、(本大共15 小,每小 1 分,共 15 分)在每小列出的四个中只有一个是符合目要求的,将其代填写在后的括号内。
、多或未均无分。
1.下列两个命元P, Q 的小是()A . P∧Q ∧ P B. P∨ QC. P∧Q D. P∨P∨ Q2.下列句中是真命的是()A .我正在B.禁吸烟C.如果 1+2=3 ,那么雪是黑的D.如果 1+2=5 ,那么雪是黑的3. P:我划船, Q :我跑步。
命“我不能既划船又跑步” 符号化()A . P∧ Q B. P∨ QC.( P Q)D.( P∨ Q)4.命公式( P∧( P→ Q))→ Q 是()A .矛盾式B.含式C.重言式D.等价式5.命公式(P∧ Q)→ R 的成真指派是()A . 000,001, 110,B. 001, 011, 101,110, 111C.全体指派D.无6.在公式(x )F ( x,y)→(y) G( x,y)中元 x 是()A .自由元B.束元C.既是自由元,又是束元D.既不是自由元,又不是束元7.集合 A={1 , 2,⋯,10}上的关系 R={< x,y>|x+y=10, x∈ A , y∈A} , R 的性是()A .自反的B.称的C.的、称的D.反自反的、的8.若 R 和 S 是集合 A 上的两个关系,下述正确的是()A .若 R 和 S 是自反的,R∩ S 是自反的B.若 R 和 S 是称的,R S 是称的C.若 R 和 S 是反称的,R S 是反称的D.若 R 和 S 是的,R∪ S 是的9. R={<1 , 4>,<2 , 3>,<3, 1> , <4, 3>} ,下列不是t( R)中元素的是()A . <1, 1>B. <1, 2>C. <1, 3>D. <1, 4>10.设 A={{1 ,2, 3} , {4 , 5} , {6 ,7, 8}} ,下列选项正确的是()A . 1∈ A B. {1 , 2, 3} AC. {{4 , 5}} A D.∈ A11.在自然数集 N 上,下列运算是可结合的是()A . a b=a-2b B. a b=min{ a,b}C. a b=-a-b D. a b=|a-b|12.在代数系统中,整环和域的关系是()A .整环一定是域B.域不一定是整环C.域一定是整环D.域一定不是整环13.下列所示的哈斯图所对应的偏序集中能构成格的是()A .B.C.D.14.设 G 为有 n 个结点的简单图,则有()A .(G) <n B. (G) ≤nC.(G) >n D. (G) ≥ n15.具有 4 个结点的非同构的无向树的数目是()A . 2B. 3C. 4D. 5二、填空题(本大题共10 小题,每小题 2 分,共 20 分)请在每小题的空格中填上正确答案。
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
离散数学考试题目及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},集合B={3,4,5},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:B2. 函数f: X→Y是一个双射,当且仅当:A. f是单射且满射B. f是单射C. f是满射D. f是双射答案:A3. 命题p: "x是偶数",命题q: "x是3的倍数",下列逻辑运算中,表示"x是6的倍数"的是:A. p∧qB. p∨qC. ¬p∧¬qD. ¬p∨¬q答案:A4. 有向图G中,若存在从顶点u到顶点v的有向路径,则称顶点u可达顶点v。
若G中任意两个顶点都相互可达,则称G为:A. 强连通图B. 弱连通图C. 无向图D. 有向无环图答案:A5. 在二进制数系统中,下列哪个数的值最大?A. 1010B. 1100C. 1110D. 1101答案:C6. 布尔代数中,逻辑或运算符表示为:A. ∧B. ∨C. ¬D. →答案:B7. 有限自动机中,状态q0是初始状态,状态q1是接受状态。
若存在从q0到q1的ε-转移,则该自动机:A. 仅在输入为空时接受B. 仅在输入非空时接受C. 无论输入为何都接受D. 无法确定是否接受答案:C8. 命题逻辑中,若命题p和q都为真,则p∧q的真值是:A. 真B. 假C. 可能为真,也可能为假D. 无法确定答案:A9. 集合{1,2,3}的子集个数为:A. 4B. 6C. 7D. 8答案:D10. 若关系R在集合A上是自反的,则对于A中的任意元素a,有:A. (a,a)∈RB. (a,a)∉RC. (a,a)是R的自反对D. (a,a)不是R的自反对答案:A二、填空题(每题3分,共15分)1. 集合A={1,2,3}的幂集包含__个元素。
答案:82. 若函数f: X→Y是满射,则对于Y中的任意元素y,至少存在X中的一个元素x,使得f(x)=__。
《离散数学》复习题及答案《离散数学》试题及答案⼀、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪⼏个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2),(3),(4),(5),(6)4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,⾃由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华⼈民共和国的⾸都。
(2) 陕西师⼤是⼀座⼯⼚。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三⾓形有4条边。
(5) 前进! (6) 给我⼀杯⽔吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在⼀些⼈是⼤学⽣”的否定是( ),⽽命题“所有的⼈都是要死的”的否定是( )。
答:所有⼈都不是⼤学⽣,有些⼈不会死7、设P:我⽣病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在⽣病时,我才不去学校 (2) 若我⽣病,则我不去学校(3) 当且仅当我⽣病时,我才不去学校(4) 若我不⽣病,则我⼀定去学校答:(1)PP?P→(4)QQ→→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)答:(1)对任⼀整数x存在整数 y满⾜x+y=0(2)存在整数y对任⼀整数x满⾜x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( )(3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)∨Q(x))在哪个个体域中为真?( )(1) ⾃然数(2) 实数 (3) 复数(4) (1)--(3)均成⽴答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学试题及答案一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=_____{3}______________; ρ(A) - ρ(B)=____{{3},{1,3},{2,3},{1,2,3}}__________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = ___2^(n^2)________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是____A1 = {(a,1), (b,1)}, A2 = {(a,2), (b,2)}, A3 = {(a,1), (b,2)}, A4 = {(a,2), (b,1)},_________ _____________, 其中双射的是______A3, A4__________.4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是____P∧⌝Q∧R (m5)____.5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为___12______,分枝点数为_______3_________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B=______{4}______; A⋃B=____{1,2,3,4}_________;A-B=______{1,2}_______ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______自反性____________, _________对称性_________, _________传递性_____________.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有_____(1,0,0)__________,______(1,0,1)________, ________(1,1,0)________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1•R2= ___{(1,3),(2,2),(3,1)}____,R2•R1 =_____{(2,4), (3,3), (4,2)}_____, R12=_______{(2,2), (3,3)}_________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = ______2^(m*n)___________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = _____{x | -1 ≤x < 0, x ∈R}_______ , B-A = ______{x | 1 < x < 2, x ∈R}_____ ,A∩B = ______{x | 0 ≤x ≤1, x ∈R}__________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________________{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}_________.14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是_____∃y∃x(P(y)→Q(x))________ _____.15.设G是具有8个顶点的树,则G中增加__21___条边才能把G变成完全图。
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
全国2009年4月自学考试离散数学试题(附答案)课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列为两个命题变元P,Q的小项是()A.P∧Q∧⎤ P B.⎤ P∨QC.⎤ P∧Q D.⎤ P∨P∨Q2.下列语句中是真命题的是()A.我正在说谎B.严禁吸烟C.如果1+2=3,那么雪是黑的D.如果1+2=5,那么雪是黑的3.设P:我们划船,Q:我们跑步。
命题“我们不能既划船又跑步”符号化为()A.⎤ P∧⎤ Q B.⎤ P∨⎤ QC.⎤(P↔Q)D.⎤(⎤ P∨⎤ Q)4.命题公式(P∧(P→Q))→Q是()A.矛盾式B.蕴含式C.重言式D.等价式5.命题公式⎤(P∧Q)→R的成真指派是()A.000,001,110,B.001,011,101,110,111C.全体指派D.无6.在公式(x∀)F(x,y)→(∃y)G(x,y)中变元x是()A.自由变元B.约束变元C.既是自由变元,又是约束变元D.既不是自由变元,又不是约束变元7.集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x∈A,y∈A},则R的性质是()A.自反的B.对称的C.传递的、对称的D.反自反的、传递的8.若R和S是集合A上的两个关系,则下述结论正确的是()A.若R和S是自反的,则R∩S是自反的B.若R和S是对称的,则R S是对称的C.若R和S是反对称的,则R S是反对称的D.若R和S是传递的,则R∪S是传递的9.R={<1,4>,<2,3>,<3,1>,<4,3>},则下列不是..t(R)中元素的是()A.<1,1> B.<1,2>C.<1,3> D.<1,4>10.设A={{1,2,3},{4,5},{6,7,8}},下列选项正确的是()A.1∈A B.{1,2,3}⊆AC.{{4,5}}⊂A D.∅∈A11.在自然数集N上,下列运算是可结合的是()A.a*b=a-2b B.a*b=min{a,b}C.a*b=-a-b D.a*b=|a-b|12.在代数系统中,整环和域的关系是()A.整环一定是域B.域不一定是整环C.域一定是整环D.域一定不是整环13.下列所示的哈斯图所对应的偏序集中能构成格的是()A.B.C.D.14.设G为有n个结点的简单图,则有()A.Δ(G)<n B.Δ(G)≤nC.Δ(G)>n D.Δ(G)≥n15.具有4个结点的非同构的无向树的数目是()A.2 B.3C.4 D.5二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
离散数学试题与答案试卷一、选择题(每题5分,共25分)1. 下列哪个集合是空集?A. {x | x是小于0的整数}B. {x | x是大于0的整数}C. {x | x是等于0的整数}D. {x | x是所有整数}2. 下列哪个命题是假命题?A. 2是偶数B. 3是奇数C. 4是偶数D. 5是奇数3. 下列哪个函数是满射?A. f(x) = x^2B. f(x) = x + 1C. f(x) = 2xD. f(x) = x^34. 下列哪个图是树?A. 一个有向图B. 一个有环的图C. 一个连通的图D. 一个无环的连通图5. 下列哪个关系是等价关系?A. 小于关系B. 大于关系C. 等于关系D. 不等于关系二、填空题(每题5分,共25分)6. 3的阶乘是______。
7. 下列序列的前五项是:1, 2, 4, 8, 16,这个序列的通项公式是______。
8. 下列二叉树的层序遍历结果是:ABDCEFG。
9. 下列排列的逆序数是:532416。
10. 下列集合的势是:{a, b, c}。
三、简答题(每题10分,共30分)11. 简述什么是图论中的路径和回路。
12. 简述什么是集合的幂集。
13. 简述什么是函数的复合。
四、计算题(每题10分,共20分)14. 计算下列组合数的值:C(5, 2)。
15. 计算下列排列数的值:P(4, 3)。
五、证明题(每题15分,共30分)16. 证明:对于任意的自然数n,n^2 + n + 1是奇数。
17. 证明:对于任意的自然数n,如果n是偶数,那么n^2也是偶数。
答案:一、选择题1. A2. B3. C4. D5. C二、填空题6. 67. 2^n8. AB, BC, BD, CE, CF, DE, DF, EF, FG9. 410. 3三、简答题11. 路径是图论中从顶点u到顶点v的一条边序列,而回路是起点和终点相同的路径。
回路可以是简单回路,即不重复经过任何顶点的回路,也可以是复杂回路,即可能重复经过顶点的回路。
试卷二十四试题与答案一、填空题:(每空1分,本大题共15分)1.设}4,}3{,,2{a A =,}1,4,3,}{{a B =,请在下列每对集合中填入适当的符号:⊆∈,。
(1)}{a B , (2) }}3{,4,{a A 。
2.设}1,0{=A ,N 为自然数集,⎩⎨⎧=是偶数。
,是奇数,,x x x f 10)(若A A f →:,则f 是 射的,若A N f →:,则f 是 射的。
3.设图G = < V ,E >中有7个结点,各结点的次数分别为2,4,4,6,5,5,2,则G 中有 条边,根据 。
4.两个重言式的析取是 ,一个重言式和一个矛盾式的合取是 。
5.设个体域为自然数集,命题“不存在最大自然数”符号化为 。
6.设S 为非空有限集,代数系统>⋃<,2S中幺元为 ,零元为 。
7.设P 、Q 为两个命题,其De-Morden 律可表示为 。
8.当8=G 时,群>*<,G 只能有 阶非平凡子群,不能有阶子群,平凡子群为 。
二、单项选择题:(每小题1分,本大题共15分)1.设}16{2<=x x x A 是整数且,下面哪个命题为假( )。
A 、A ⊆}4,2,1,0{;B 、A ⊆---}1,2,3{;C 、A ⊆Φ;D 、A x x x ⊆<}4{是整数且。
2.设}}{,{,ΦΦ=Φ=B A ,则B -A 是( )。
A 、}}{{Φ;B 、}{Φ;C 、}}{,{ΦΦ;D 、Φ。
3.下图描述的偏序集中,子集},,{f e b 的上界为 ( )。
A 、c b ,;B 、b a ,;C 、b ;D 、c b a ,,。
4.设f 和g 都是X 上的双射函数,则1)(-g f 为( )。
A 、11--g f; B 、1)(-f g ; C 、11--fg ; D 、1-fg 。
5.下面集合( )关于减法运算是封闭的。
A 、N ;B 、}2{I x x ∈; C 、}12{I x x ∈+; D 、}{是质数x x 。
6.具有如下定义的代数系统>*<,G ,( )不构成群。
A 、}10,1{=G ,*是模11乘 ;B 、}9,5,4,3,1{=G ,*是模11乘 ;C 、Q G =(有理数集),*是普通加法 ;D 、Q G =(有理数集),*是普通乘法。
7.设},32{I n m G n m ∈⨯=,*为普通乘法。
则代数系统>*<,G 的幺元为( )。
A 、不存在 ;B 、0032⨯=e ;C 、32⨯=e ;D 、1132--⨯=e 。
8.下面集合( )关于整除关系构成格。
A 、{2,3,6,12,24,36} ;B 、{1,2,3,4,6,8,12} ;C 、{1,2,3,5,6,15,30} ;D 、{3,6,9,12}。
9.设},,,,,{f e d c b a V =,},,,,,,,,,,,{><><><><><><=e f e d d a a c c b b a E ,则有向图 >=<E V G ,是( )。
A 、强连通的 ;B 、单侧连通的 ;C 、弱连通的 ;D 、不连通的。
10.下面那一个图可一笔画出( )。
11.在任何图中必定有偶数个( )。
A 、度数为偶数的结点 ;B 、入度为奇数的结点 ;C 、度数为奇数的结点 ;D 、出度为奇数的结点 。
12.含有3个命题变元的具有不同真值的命题公式的个数为( )。
A 、32; B 、23; C 、322; D 、232。
13.下列集合中哪个是最小联结词集( )。
A 、},{→⌝;B 、},{↔⌝;C 、},{↔→;D 、},,{∨∧⌝。
14.下面哪个命题公式是重言式( )。
A 、)()(R Q Q P →∧→;B 、P Q P →∧)(;C 、)()(Q P Q P ⌝∧⌝∧∨⌝;D 、P Q P ∧∨⌝)(。
15.在谓词演算中,下列各式哪个是正确的( )。
A 、),(),(y x xA y y x yA x ∃∃⇔∃∃;B 、),(),(y x xA y y x yA x ∀∀⇔∃∃;C 、),(),(y x xA y y x yA x ∃∀⇐∀∃;D 、)()(x xA a A ∀⇒。
三、判断改正题:(每小题2分,本大题共20分)1.设}2,1{=A ,}{a B =,则BA B A ⋃=⋃222。
(其中A2为 (A )) ( )2.设}1,0{=A ,}2,1{=B ,则}2,0,1,1,0,1,2,1,0,1,1,0{2><><><><=⨯B A 。
( ) 3.集合A 上的恒等关系是一个双射函数。
( )4.设Q 为有理数集,Q 上运算 * 定义为),max(b a b a =*,则>*<,Q 是半群。
( )5.阶数为偶数的有限群中,周期为2的元素的个数一定为偶数。
( ) 6.在完全二元树中,若有t 片叶子,则边的总数12-=t e 。
( ) 7.能一笔画出的图不一定是欧拉图。
( ) 8.设P ,Q 是两个命题,当且仅当P ,Q 的真值均为T 时,Q P ↔的值为T 。
( ) 9.命题公式Q Q P P →→∧))((是重言式。
( )10.设,是研究生:x x P )(,曾读过大学:x x Q )( 命题“所有的研究生都读过大学”符号化为:))()((x Q x P x ∧∀。
( )四、简答题:(25分)1.设},,{c b a A =,A 上的关系 },,,,,,,{><><><><=b c c b b a a a ρ,求出 )()(,)(ρρρt s r 和。
2.集合}36,24,12,6,3,2{=A 上的偏序关系②为整除关系。
设}12,6{=B ,}6,3,2{=C ,试画出②的哈斯图,并求A ,B ,C 的最大元素、极大元素、下界、上确界。
3.图给出的赋权图表示五个城市54321v v v v v ,,,, 及对应两城镇间公路的长度。
试给出一个最优化的设计方案使得各城市间能够有公路连通。
4.已知}654321{,,,,,=G ,7⨯为模7乘法。
试说明>⨯<7,G 是否构成群?是否为循环群?若是,生成元是什么?5.给定命题公式)())((W S R Q P ∨⌝∨∧⌝∧,试给出相应的二元树。
五、证明题:(25分)1.如果集合A 上的关系R 和S 是反自反的、对称的和传递的,证明:S R ⋂是A 上的等价关系。
2.用推理规则证明)()(a G a P ∧⌝是 ))()((,)(,))()((,)))()(()((x G x S x a S a R a Q x R x Q x P x ↔∀∧⌝∧→∀的有效结论。
3.若有n 个人,每个人都恰有三个朋友,则n 必为偶数。
4.设G 是(11,m )图,证明G 或其补图G 是非平面图。
答案一、填空题1.(1)∈, (2)⊆。
2.双射 , 满射。
3.14 ,Ev Vv ii 2)deg(=∑∈。
4.重言式 ,矛盾式 。
5.)(x y y x >∃∀, 6.Φ,S 。
7.Q P Q P Q P Q P ⌝∧⌝⇔∨⌝⌝∨⌝⇔∧⌝)()(,;P Q P P P Q P P ⇔∧∨⇔∨∧)(,)( 。
8.2,4; 3,5,6,7;>*<>*<,,},{G e 。
二、单项选择题三、判断改正题1.× BABA 222⋃⊇⋃ 。
2.×}211201101111210110200100{2><><><><><><><><=⨯,,,,,,,,,,,,,,,,,,,,,,,B A3.√ 。
4.√ 。
5.× 阶数为偶数的有限群中周期为2 的元素个数一定为奇数。
6.× 完全二叉树中,边数)1(2-=t e 。
7.√ 。
8.× 当且仅当P ,Q 的真值相同时,Q P ↔的真值为T 。
9.√ 。
10.× ))()((x Q x P x →∀。
四、简答案题1.解},,,,,,,,,,,{)(><><><><><><=c c b b b c c b b a a a r ρ, },,,,,,,,,{)(><><><><><=a b b c c b b a a a s ρ,},,,,,,,,,{2><><><><><==c c b b c a b a a a ρρρ , },,,,,,,,,,,{23><><><><><><==b c c b b a c a b a a a ρρρ ,},,,,,,,,,,,,,{)(2><><><><><><><=⋃=∴b c c b c c b b c a b a a a t ρρρ。
2.解: 的哈斯图为集合 最大元 极大元 下界 上确界 A 无 24,36 无 无 B 12 12 6,2,3 12 C66无63.解此问题的最优设计方案即要求该图的最小生成树, 由破圈法或避圈法得最小生成树为: 其权数为1+1+3+4 = 9 。
4.解:>⨯<7,G 既构成群,又构成循环群,其生成元为3,5。
因为:7⨯的运算表为:7⨯1 2 3 4 5 6 1 1 2 3 4 5 6 2 2 4 6 1 3 5 3 3 6 2 5 1 4 4 4 1 5 2 6 3 5 5 3 1 6 4 2 66543211)由运算表知,7⨯封闭; 2)7⨯可结合(可自证明) 3)1为幺元; 4)111=-,421=-,531=-,241=-,351=-,661=-,综上所述,>⨯<7,G 构成群。
由331=,232=,633=,434=,535=,136=。
所以,3为其生成元,3的逆元5也为其生成元。
故>⨯<7,G 为循环群。
5.解:命题公式对应的二元树见右图。
五、证明题1.证明:(1),,,,,,S a a R a a S R A a >∈<>∈<∈∀∴自反,S R S R a a ⋂⋂>∈<∴∴,,自反。