2019年最新中考数学模拟练习试卷及答案7991261
- 格式:doc
- 大小:664.50 KB
- 文档页数:17
2019年中考数学模拟试卷一.选择题(共6小题,满分18分,每小题3分) 1.﹣3的倒数是( )A .3B .C .﹣D .﹣32.下列计算中,正确的是( ) A .(2a )3=2a 3B .a 3+a 2=a 5C .a 8÷a 4=a 2D .(a 2)3=a 63.如图所示的几何体的主视图是( )A .B .C .D .4.下列各题估算正确的是( )A .B .C .D .5.如图,OA ,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O 上,则∠ACB 等于( )A .20°B .25°C .35°D .45°6.如图,等边△ABC 内有一点O ,OA =3,OB =4,OC =5,将BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①点O 与O ′的距离为4;②∠AOB =150°;③S 四边形AOBO ′=6+4;④S△AOC+S △AOB =6+.其中正确的结论有( )个.A .1B .2C .3D .4二.填空题(共10小题,满分30分,每小题3分)7.二次根式中,x的取值范围是.8.58万千米用科学记数法表示为:千米.9.用半径为30的一个扇形纸片围成一个底面半径为10的圆锥的侧面,则这个圆锥的侧面积为.10.下表记录了某种幼树在一定条件下移植成活情况由此估计这种幼树在此条件下移植成活的概率约是(精确到11.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.12.已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.13.当﹣1<a<0时,则=.14.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.15.观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;…根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1=.16.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是.三.解答题(共11小题,满分102分)17.计算:(﹣2)﹣2+cos60°﹣(﹣2)0;18.先化简,再求值:,其中x=﹣319.解不等式组:并把它的解集在所给数轴上表示出来.20.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?21.有两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?22.如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数y2=图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)当y2>y1时,求x的取值范围;(3)求点B到直线OM的距离.23.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA =30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)24.(1)如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;(2)如图2,若将“正方形ABCD”改为“菱形ABCD”,其他条件不变,探索线段EF与线段GH的关系并加以证明;(3)如图3,若将“正方形ABCD”改为“矩形ABCD”,且AD=mAB,其他条件不变,探索线段EF 与线段GH的关系并加以证明;附加题:根据前面的探究,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题,画出图形,并证明,若不能,说明理由.25.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.26.如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;(2)点M,N分别在直线AD,AC上,且∠BMN=90°.①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.27.如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.2019年中考数学一模试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.【解答】解:A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.【点评】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键.3.【分析】找到从几何体的正面看所得到的视图即可.【解答】解:几何体的主视图是,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握所看的方向和位置.4.【分析】A、被开方数0.35接近于0.36,所以算术平方根接近于0.6,由此即可判定;B、2.6的立方为17.576,大于被开方数10很多,由此即可判定;C、35.1的平方约为1232.01,接近于被开方数,由此即可判定;D、26900接近于27000,立方根应接近于30,由此即可判定.【解答】解:A、∵0.35接近0.36,∴应接近0.6,故选项错误;B、∵2.53=>10,∴ 2.5,故选项错误;C、∵35.1的平方约为1232.01,接近于被开方数,故选项正确;D、∵26900<27000,∴<30,故选项错误;故选:C.【点评】此题主要考查了无理数的估算能力,应先算出算术平方根的平方立方根的立方,与所给的被开方数进行比较,得到相应的答案.注意区分开平方还是开立方. 5.【分析】根据圆周角定理解答. 【解答】解:∵OA ⊥OB , ∴∠AOB =90°,由圆周角定理得,∠ACB =∠AOB =45°, 故选:D .【点评】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.【分析】根据旋转的性质即可得到△OBO '为正三角形,进而得出OO '=OB =4;根据O 'A =OC =5,OA =3,OO '=4,可得O 'A 2=OA 2+O 'O 2,进而得到∠AOO '=90°,根据∠AOB =∠AOO '+∠O 'OB 进行计算可得结果;根据S 四边形AOBO ′=S △AOO '+S △BOO ',进行计算即可得到结果;将△AOB 绕A 点逆时针旋转60°至△AO “C ,可得△AOO “是边长为3的等边三角形,△COO “是边长为3,4,5的直角三角形,再根据S △AOC +S △AOB =S 四边形AOCO “=S △COO “+S △AOO “进行计算即可. 【解答】解:如图,连接OO ', ∵△BOC 旋转60°至△BO 'A , ∴△BOC ≌△BO 'A , ∴BO =BO ',∠OBO '=60°, ∴△OBO '为正三角形, ∴OO '=OB =4, 故①正确;∵O 'A =OC =5,OA =3,OO '=4, ∴O 'A 2=OA 2+O 'O 2, ∴∠AOO '=90°,∴∠AOB =∠AOO '+∠O 'OB =150°, 故②正确;S 四边形AOBO ′=S △AOO '+S △BOO ',=×3×4+×42,=6+4,故③正确;如图,将△AOB 绕A 点逆时针旋转60°至△AO “C ,连接OO “,同理可得,△AOO “是边长为3的等边三角形, △COO “是边长为3,4,5的直角三角形, ∴S △AOC +S △AOB =S 四边形AOCO “ =S △COO “+S △AOO “=×3×4+×32=6+.故④正确; 故选:D .【点评】本题主要考查了旋转的性质,等边三角形的性质以及勾股定理的逆定理的运用,解决问题的关键是利用旋转变换构造等边三角形以及直角三角形;解题时注意:旋转前、后的图形全等;如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形. 二.填空题(共10小题,满分30分,每小题3分) 7.【分析】根据二次根式有意义的条件即可求出答案. 【解答】解:由题意可知:x +1≥0, 解得x ≥﹣1, 故答案为x ≥﹣1.【点评】本题考查二次根式有意义的条件,解题的关键是掌握二次根式中的被开方数必须是非负数,本题属于基础题型.8.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:根据58万=580000,用科学记数法表示为:5.8×105. 故答案为:5.8×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长解答即可.=•2πr•l=πrl=π×10×30=300π,【解答】解:这个圆锥的侧面积为S侧故答案为:300π.=•2πr•l=πrl解答.【点评】此题考查圆锥的计算,关键是根据圆锥的侧面积为S侧10.【分析】概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.11.【分析】由AE∥BD,可求得∠CBD的度数,又由∠CBD=∠2(对顶角相等),求得∠CDB的度数,再利用三角形的内角和等于180°,即可求得答案.【解答】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°【点评】此题考查了平行线的性质,对顶角相等以及三角形内角和定理.解题的关键是注意数形结合思想的应用.12.【分析】根据方程有两个相等的实数根得出△=0,求出m的值即可.【解答】解:∵关于x的方程x2+3x﹣m=0有两个相等的实数根,∴△=32﹣4×1×(﹣m)=0,解得:m=﹣,故答案为:﹣.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac的关系是解答此题的关键.13.【分析】根据题意得到a+<0,a﹣>0,根据完全平方公式把被开方数变形,根据二次根式的性质计算即可.【解答】解:∵﹣1<a<0,∴a+<0,a﹣>0,原式=﹣=a﹣+a+=2a,故答案为:2a.【点评】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.14.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.15.【分析】先根据题中的一系列等式,把5的平方,11的平方以及19的平方变形后,归纳猜想得到所求式子的化简结果,然后进行证明,方法是利用多项式的乘法法则把等式的左边化简,合并后,把平方项的系数拆为10+25,然后利用完全平方公式化简后,即可得到与等式的右边相等.【解答】解:由1×2×3×4+1=25=52=(02+5×0+5)2;2×3×4×5+1=121=112=(12+5×1+5)2;3×4×5×6+1=361=192=(22+5×2+5)2,…观察发现:(n+1)(n+2)(n+3)(n+4)+1=(n2+5n+5)2.证明:等式左边=(n+1)(n+2)(n+3)(n+4)+1=(n2+3n+2)(n2+7n+12)+1=n4+7n3+12n2+3n3+21n2+36n+2n2+14n+25=n4+10n3+35n2+50n+25=n4+2n2(5n+5)+(5n+5)2=(n2+5n+5)2=等式右边.故答案为:(n2+5n+5)2【点评】此题考查学生根据已有的等式归纳总结,得出一般性规律的能力,是一道中档题.16.【分析】设平移后直角边交斜边AB于M、N,延长CG交AB于H.利用平行线的性质求出GN、GM 即可解决问题;【解答】解:设平移后直角边交斜边AB于M、N,延长CG交AB于H.∵G是重心,∴HG:HC=1:3,∵GN∥AC,AC=9,∴GN:AC=HG:HC,∴GN=3,同法可得MG=2,=×2×3=3.∴S△MGN故答案为3;【点评】本题考查三角形的重心、三角形的面积、平移变换等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.三.解答题(共11小题,满分102分)17.【分析】直接利用零指数幂的性质以及负指数幂的性质、特殊角的三角函数值分别代入得出答案.【解答】解:原式=+×﹣1=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】原式括号中通分并利用同分母分式的加减法则计算,再把除法转化为乘法,约分得到最简结果,然后把x的值代入计算即可求出值.【解答】解:===,当x=﹣3时,原式===.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<4,所以不等式组的解集为1≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.20.【分析】(1)由体育社团的人数除以占的百分比,确定出共调查的人数即可;(2)由文学社团的人数除以总人数,再乘以360°即可得到结果;(3)由体育社团的百分比乘以1500即可得到结果.【解答】解:(1)根据题意得:80÷40%=200(人),则此次共调查了200人;(2)根据题意得:60×200×360°=108°,则文学社团在扇形统计图中所占的圆心角度数为108°;(3)根据题意得:1500×40%=600(人),则喜欢体育类社团的学生约有600人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.21.【分析】根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.【解答】解:列表得:2种,则P(一次打开锁)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)先把M(﹣2,m)代入y=﹣x﹣1求出m得到M(﹣2,1),然后把M点坐标代入y=中可求出k的值,从而得到反比例函数解析式;(2)通过解方程组得反比例函数与一次函数的另一个交点坐标为(1,﹣2),然后写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可;(3)设点B到直线OM的距离为h,然后利用面积法得到••h=1,于是解方程即可,【解答】解:(1)把M(﹣2,m)代入y=﹣x﹣1得m=2﹣1=1,则M(﹣2,1),把M(﹣2,1)代入y=得k=﹣2×1=﹣2,所以反比例函数解析式为y=﹣;(2)解方程组得或,则反比例函数与一次函数的另一个交点坐标为(1,﹣2),当﹣2<x<0或x>1时,y2>y1;(3)OM==,S=×1×2=1,△OMB设点B到直线OM的距离为h,••h=1,解得h=,即点B到直线OM的距离为.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.23.【分析】过点D作DH⊥BC于点H,则四边形DHCE是矩形,DH=EC,DE=HC,设建筑物BC的高度为xm,则BH=(x﹣5)m,由三角函数得出DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,得出x=tan60°•[(x﹣5)﹣10],解方程即可.【解答】解:过点D作DH⊥BC于点H,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC=5,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,在Rt△ACB中,∠BAC=50°,tan∠BAC=,∴=解得:x=,答:建筑物BC的高为m.【点评】本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.24.【分析】(1)可通过构建全等三角形来求解.分别过G、F作GN∥AD,FM∥CD,那么FM=GN,∠EMF=∠GNH=90°,而∠OGN和∠OFM都是等角的余角,因此三角形EFM和HGN全等,那么可通过全等三角形EFM和HGN来得出GH=EF.(2)(3)(4)方法同(1)都是分别过G、F作AD、CD的垂线,根据∠GOF=∠A,来得出三角形HGN和EFM中的∠HGN和∠EFM相等,然后再得出全等或相似.【解答】证明:(1)如图1,过点F作FM⊥AD于M,过点G作GN⊥CD于N,则FM=GN=AD=BC,且GN⊥FM,设它们的垂足为Q,设EF、GN交于R∵∠GOF=∠A=90°,∴∠OGR=90°﹣∠GRO=90°﹣∠QRF=∠OFM.∵∠GNH=∠FME=90°,FM=GN,∴△GNH≌△FME.∴EF=GH.(2)如图2,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,在四边形MQND中,∠QMD=∠QND=90°∴∠ADC+∠MQN=180°.∴∠MQN=∠A=∠GOF.∵∠ORG=∠QRF,∴∠HGN=∠EFM.∵∠A=∠C,AB=BC,∴FM=AB•sin A=BC•sin C=GN.∵∠FEM=∠GNH=90°,∴△GNH≌△FME.∴EF=GH.(3)如图3,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,∵∠GOF=∠A=90°,∴∠OGR=90°﹣∠GRO=90°﹣∠QRF=∠OFM.∵∠GNH=∠FME=90°,∴△GNH∽△FME.∴.附加题:已知平行四边形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,AD=mAB,则GH=mEF.证明:如图,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,在四边形MQND中,∠QMD=∠QND=90°,∴∠MDN+∠MQN=180°.∴∠MQN=∠A=∠GOF.∵∠ORG=∠QRF,∴∠HGN=∠EFM.∵∠FME=∠GNH=90°,∴△GNH∽△FME.∴.即GH=mEF.【点评】本题主要考查了全等三角形和相似三角形的判定,构建出相关的三角形是解题的关键.25.【分析】(1)连接BO并延长交⊙O于点E,连接DE.由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC是⊙O的切线;(2)分别求出等边三角形DOB的面积和扇形DOB的面积,即可求出答案.【解答】证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB ⊥BC ,又∵点B 在⊙O 上,∴BC 是⊙O 的切线;(2)连接OD ,∵∠BOD =2∠A =60°,OB =OD ,∴△BOD 是边长为6的等边三角形,∴S △BOD =×62=9,∵S 扇形DOB ==6π,∴S 阴影=S 扇形DOB ﹣S △BOD =6π﹣9.【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD +∠DBC =90°和分别求出扇形DOB 和三角形DOB 的面积.26.【分析】(1)先判断出∠BAD =∠CAD =45°,进而得出∠CAD =∠B ,再判断出∠BDE =∠ADF ,进而判断出△BDE ≌△ADF ,即可得出结论;(2)①先判断出AM =PM ,进而判断出∠BMP =∠AMN ,判断出△AMN ≌△PMB ,即可判断出AP =AB +AN ,再判断出AP =AM ,即可得出结论;②先求出BD ,再求出∠BMD =60°,最后用三角函数求出DM ,即可得出结论.【解答】解:(1)∵∠BAC =90°,AB =AC ,∴∠B =∠C =45°,∵AD ⊥BC ,∴BD =CD ,∠BAD =∠CAD =45°,∴∠CAD =∠B ,AD =BD ,∵∠EDF =∠ADC =90°,∴∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA ),∴BE =AF ;(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°,∵∠PAM=45°,∴∠P=∠PAM=45°,∴AM=PM,∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN,∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),∴AN=PB,∴AP=AB+BP=AB+AN,在Rt△AMP中,∠AMP=90°,AM=MP,∴AP=AM,∴AB+AN=AM;②在Rt△ABD中,AD=BD=AB=,∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°﹣30°=60°,在Rt△BDM中,DM==,∴AM=AD﹣DM=﹣.【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,锐角三角函数,判断出△BDE≌△ADF是解(1)的关键,构造出全等三角形是解(2)的关键.27.【分析】(1)写出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可;(2)根据抛物线解析式求出点A、B的坐标,然后求出∠OBA=45°,再联立两抛物线解析式求出交点C的坐标,再根据∠CPA=∠OBA分点P在点A的左边和右边两种情况求解;(3)先求出直线OC的解析式为y=x,设与OC平行的直线y=x+b,与抛物线y2联立消掉y得到关于x的一元二次方程,再根据与OC的距离最大时方程有且只有一个根,然后利用根的判别式△=0列式求出b的值,从而得到直线的解析式,再求出与x轴的交点E的坐标,得到OE的长度,再过点C作CD⊥x轴于D,然后根据∠COD的正弦值求解即可得到h的值.【解答】解:(1)抛物线y1=x2﹣1向右平移4个单位的顶点坐标为(4,﹣1),所以,抛物线y2的解析式为y2=(x﹣4)2﹣1;(2)x=0时,y=﹣1,y=0时,x2﹣1=0,解得x1=1,x2=﹣1,所以,点A(1,0),B(0,﹣1),∴∠OBA=45°,联立,解得,∴点C的坐标为(2,3),∵∠CPA=∠OBA,∴点P在点A的左边时,坐标为(﹣1,0),在点A的右边时,坐标为(5,0),所以,点P的坐标为(﹣1,0)或(5,0);(3)存在.∵点C(2,3),∴直线OC的解析式为y=x,设与OC平行的直线y=x+b,联立,消掉y得,2x2﹣19x+30﹣2b=0,当△=0,方程有两个相等的实数根时,△QOC中OC边上的高h有最大值,此时x1=x2=×(﹣)=,此时y=(﹣4)2﹣1=﹣,∴存在第四象限的点Q(,﹣),使得△QOC中OC边上的高h有最大值,此时△=192﹣4×2×(30﹣2b)=0,解得b=﹣,∴过点Q与OC平行的直线解析式为y=x﹣,令y=0,则x﹣=0,解得x=,设直线与x轴的交点为E,则E(,0),过点C作CD⊥x轴于D,根据勾股定理,OC==,则sin∠COD==,=×=.解得h最大【点评】本题是二次函数综合题型,主要考查了利用平移变换确定二次函数解析式,联立两函数解析式求交点坐标,等腰三角形的判定与性质,(3)判断出与OC平行的直线与抛物线只有一个交点时OC边上的高h最大是解题的关键,也是本题的难点.。
2019年中考模拟试卷数学卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1、在百度网页中搜索“霍金”,一共显示有19500000个搜索结果,用科学记数法表示19500000个,正确的是( ▲ ) A .61.9510⨯ B .71.9510⨯ C . 719.510⨯ D .80.19510⨯2、一列四个水平放置的几何体中,三视图如图所示的是( ▲ )3、下列计算正确的是( ▲ )4、在平面直角坐标系中,半径为1的圆的圆心P (a ,0)沿x 轴移动.已知⊙P 与y 轴相离,则a 的取值范围是( ▲ )A .a >1B .-1<a <1C .a >1或a <-1D .a <-15、(网络)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AEAB =AD AC =12,则S △ADE ∶S 四边形BCED 的值为( ▲ ) A .1∶3 B .1∶2 C . 1∶ 3 D .1∶46、已知关于x 的方程2x +4=-m -x 的解为负数,则m 的取值范围是( ▲ )A .m <43 B .m >43C .m <-4D .m >-47、如图,正六边形ABCDEF 中,AB =5,点P 在ED 上,EP :PD =2:3连结AP ,则AP 的长为( ▲ )A .BC . 8 D8、关于分式232x x x a--+,有下列说法,错误的有( ▲ )个:(1)当x 取2时,这个分式有意义,则a ≠1;(2)当x=3时,分式的值一定为零;(3)若这个分式的值为零,则a ≠-3;(4)当x 取任何值时,这个分式一定有意义,则二次函数y=x 2+x+a 与x 轴没有交点。
A. 0 B. 1 C. 2 D. 39、抛物线y =ax 2+bx+c 图像如图所示,则一次函数y =-bx -4ac +b 2与反比例函数a b cy x ++=在同一坐标系内的图像大致为( ▲ )10、关于二次函数233y x kx k =-+-,以下结论:① 抛物线交x 轴有两个不同的交点;②不论k 取何值,抛物线总是经过一个定点;③设抛物线交x 轴于A 、B 两点,若AB=1,则k=9;;④ 抛物线的顶点在2y 3(1)x =--图像上.其中正确的序号是( ▲ ) A .①②③④ B .②④ C .②③ D .①②④二、耐心填一填(本题有6个小题,每小题4分,共24分)11、在实数范围内分解因式:4a 2﹣8=__▲__ .12、一个不透明的袋中装有除颜色外均相同的9个白球、5个红球和若干个黄球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到黄球的频率稳定于0.3,由此可估计袋中约有黄球__▲__个.13、把一个半径为8cm 的圆形硬纸片等分成4个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则这个圆锥的侧面积为__▲___;圆锥的高为__▲__.14、对于实数b a 、定义一种新运算“⊗”为:2aa b a b ⊗=-,这里等式右边是实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是 ▲ .15、如图,已知△ABC ,AB =AC =4,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则BD 的长是 ▲ ,△BDA 的面积与△BDC 的面积比是 ▲ .(结果保留根号)16、如图,在边长为3正方形ABCD 中,动点E 、F 分别以相同的速度从D 、C 两点同时出发,向C 和B 运动(任何一个点到达即停止),在运动过程中,则线段CP 的最小值为 ▲ .三、认真答一答:(本题7个小题,共66分)17、(本小题满分6分)计算:第16题01( 3.14)(sin 30)4cos 45π︒-︒-++-18、(本题满分8分)如图,已知弧AB .求作:(1)确定弧AB 所在圆的圆心O ;(2)过点A 且与⊙O 相切的直线.(要求用直尺和圆规作图,保留作图痕迹,不要求写作法)19、(本小题满分8分)如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =7,∠B =∠C =60°,P 为BC 边上一点(不与B ,C 重合),过点P 作∠APE =∠B ,PE 交CD 于E .(1)求证:△APB ∽△PEC ; (2)若CE =3,求BP 的长.20、(本小题满分10分)我校对全部1200名学生就交通安全知识的了解程度,采用随机抽样调查的方式进行调查,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有___ 人,条形统计图中“了解”部分所对应的人数是 人; (2) 扇形统计图中“基本了解”部分所对应扇形的圆心角为_______°;(3)若没有达到“了解”或“基本了解”的同学必须重新接受安全教育。
九年级(上)第二次模拟数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)在﹣2,﹣1,0,2这四个数中,最大的数是()A.﹣2 B.﹣1 C.0 D.22.(3分)如图所示的几何体的俯视图是()A.B.C.D.3.(3分)今年某市约有102 000名应届初中毕业生参加中考,102 000用科学记数法表示为()A.0.102×106B.1.02×105C.10.2×104D.102×1034.(3分)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.5.(3分)下列长度的三条线段不能组成直角三角形的是()A.5,12,13 B.1,2,C.6,8,12 D.3a,4a,5a(a>0)6.(3分)已知正六边形的边长为6,则它的边心距()A.3 B.6 C.3 D.7.(3分)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.8 B.4 C.2 D.08.(3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm9.(3分)如图所示的图象中所反映的过程是:王强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示王强离家的距离.以下四个说法错误的是()A.体育场离王强家2.5千米B.王强在体育场锻炼了15分钟C.体育场离早餐店4千米D.王强从早餐店回家的平均速度是3千米/小时10.(3分)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)在函数y=中,自变量x的取值范围是.12.(3分)计算2﹣的结果是.13.(3分)把多项式3m2﹣6mn+3n2分解因式的结果是.14.(3分)在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则x=.15.(3分)一个扇形的弧长是20π,圆心角是150度,则此扇形的半径是.16.(3分)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是度.17.(3分)如图,△ABC中,AB=AC=2,BC=8,AB的垂直平分线交AB于点D,交BC于点E,设△BDE的面积为S1,四边形ADEC的面积为S2,则的值等于.18.(3分)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+﹣(﹣2)0+(﹣0.5)﹣2(2)化简:÷(﹣1)20.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计年该城市有多少天不适宜开展户外活动.(年共365天)21.(8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.求改直的公路AB的长.(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22.(8分)如图,⊙O的直径CD垂直于弦AB,垂足为E,∠ACD=22.5°,CD=4.(1)求AB的长;(2)求∠BAC的正切值.23.(8分)如图,点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上.(1)求k的值;(2)求△AOB的面积.24.(8分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.25.(10分)小明参加某个智力竞答节目,最后两道单选题全部答对就顺利通关.第一道单选题有A、B、C三个选项,第二道单选题有A、B、C、D四个选项,这两道题小明都完全不会,不过小明还有一次“求助”的机会没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项),假设两道题的正确答案均为A.(1)如果小明“求助”第一题,那么小明答对第一道题的概率是.(2)请用树状图或者列表来帮小明分析,他应该在第几题使用“求助”,顺利通关的概率才更大.26.(10分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x米,矩形区域ABCD的面积为y米2.(1)求证:AE=2BE;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)x为何值时,y有最大值?最大值是多少?27.(13分)如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E运动的速度为每秒1个单位,运动的时间为x 秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.28.(13分)如图,抛物线y=ax2+bx+5与x轴交于A(﹣1,0)、B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是抛物线上一动点,过点P作直线PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若点P在x轴上方的抛物线上,当PE=5EF时,求点F的坐标;(3)若点E’是点E关于直线PC的对称点,当点E’落在y轴上时,请直接写出m的值.-学年江苏省南通市通州区九年级(上)第二次模拟数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(•成都)在﹣2,﹣1,0,2这四个数中,最大的数是()A.﹣2 B.﹣1 C.0 D.2【解答】解:﹣2<﹣1<0<2,故选:D.2.(3分)(•吉林一模)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.3.(3分)(2009•武汉)今年某市约有102 000名应届初中毕业生参加中考,102 000用科学记数法表示为()A.0.102×106B.1.02×105C.10.2×104D.102×103【解答】解:102 000=1.02×105.故选B.4.(3分)(•德州)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选:D.5.(3分)(秋•南通月考)下列长度的三条线段不能组成直角三角形的是()A.5,12,13 B.1,2,C.6,8,12 D.3a,4a,5a(a>0)【解答】解:A、∵52+122=132,∴能构成直角三角形,故本选项不符合题意;B、∵12+22=()2,∴能构成直角三角形,故本选项不符合题意;C、∵62+82≠122,∴不能构成直角三角形,故本选项符合题意;D、∵(3a)2+(4a)2=(5a)2,∴能构成直角三角形,故本选项不符合题意.故选C.6.(3分)(秋•南通月考)已知正六边形的边长为6,则它的边心距()A.3 B.6 C.3 D.【解答】解:如图所示,此正六边形中AB=6,则∠AOB=60°;∵OA=OB,∴△OAB是等边三角形,∵OG⊥AB,∴∠AOG=30°,∴OG=OA•cos30°=6×=3,故选A.7.(3分)(2010•武汉)若x1,x2是方程x2=4的两根,则x1+x2的值是()A.8 B.4 C.2 D.0【解答】解:原方程可化为:x2﹣4=0;∴x1+x2=﹣=0;故选D.8.(3分)(•防城港)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm【解答】解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20﹣2x)cm,∴,解得5cm<x<10cm.故选:B.9.(3分)(秋•南通月考)如图所示的图象中所反映的过程是:王强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示王强离家的距离.以下四个说法错误的是()A.体育场离王强家2.5千米B.王强在体育场锻炼了15分钟C.体育场离早餐店4千米D.王强从早餐店回家的平均速度是3千米/小时【解答】解:A、∵函数图象中y值的最大值为2.5,∴体育场离王强家2.5千米,该结论符合题意;B、∵30﹣15=15(分钟),∴王强在体育场锻炼了15分钟,该结论符合题意;C、∵2.5﹣1.5=1(千米),∴体育场离早餐店1千米,该结论不符合题意;D、∵1.5÷=3(千米/小时),∴王强从早餐店回家的平均速度是3千米/小时,该结论符合题意.故选C.10.(3分)(秋•南通月考)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个【解答】解:设OA的解析式为y=kx,则3k=1,解得k=,则OA的解析式为y=x,∵A(3,1),∴C点坐标为(1.5,0.5),设CD的解析式为y=﹣3x+b,则﹣3×1.5+b=0.5,解得b=5,则CD的解析式为y=﹣3x+5,则=1,解得k=3,则双曲线为y=,联立双曲线与CD的解析式可得﹣3x+5=,∴3x2﹣5x+3=0,△=(﹣5)2﹣4×3×3=﹣11<0,∴方程无解,根据反比例函数的对称性可得:若△AOB为等腰三角形,则点B为(1,3),(﹣1,﹣3)(﹣3,﹣1),一共3个.故选:A.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)(秋•南通月考)在函数y=中,自变量x的取值范围是x≠1.【解答】解:由题意,得x+1≠0,解得x≠1,故答案为:x≠﹣1.12.(3分)(•高淳县一模)计算2﹣的结果是﹣.【解答】解:原式=﹣2=﹣.故答案为:﹣.13.(3分)(•哈尔滨)把多项式3m2﹣6mn+3n2分解因式的结果是3(m﹣n)2.【解答】解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.14.(3分)(•哈尔滨模拟)在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则x=3.【解答】解:由题意知:=,解得x=3.故答案为3.15.(3分)(秋•南通月考)一个扇形的弧长是20π,圆心角是150度,则此扇形的半径是24.【解答】解:∵l=,∴r===24.故答案为:24.16.(3分)(秋•南通月考)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是150度.【解答】解法1:∵OA=OB=OC,∴∠OAB=∠OBA,∠OBC=∠OCB,∵∠ABC=∠OBA+∠OBC=70°,∴∠OAB+∠OBA+∠OBC+∠OCB=140°,即∠OAB+∠ABC+∠OCB=140°,又∵∠ABC+∠BCD+∠ADC+∠BAD=360°,即∠ABC+∠OCB+∠OCD+∠ADC+∠DAO+∠OAB=360°,∵∠ADC=70°,∠OAB+∠ABC+∠OCB=140°,∴∠DAO+∠DCO=360°﹣140°﹣70°=150°.解法2:由AO=BO=CO,可知O是三角形ABC的外心,∠ABC是圆周角,∠AOC是圆心角,所以∠AOC=2∠ABC=140°,又∠D=70°,所以∠DAO+∠DCO=360°﹣140°﹣70°=150°.故答案为:150.17.(3分)(秋•南通月考)如图,△ABC中,AB=AC=2,BC=8,AB的垂直平分线交AB于点D,交BC于点E,设△BDE的面积为S1,四边形ADEC的面积为S2,则的值等于.【解答】解:过A作AE⊥BC于E,∵AB=AC=2,BC=8,∴BE=CE=4,∵DE垂直平分AB,∴BD=AB=,∵∠BDE=∠AEB=90°,∠B=∠B,∴△BED∽△ABE,∴=()2=,∵S△ABC=2S△ABE,∴=,∴=.故答案为:.18.(3分)(秋•南通月考)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.【解答】解:设P点坐标为P(a,a2﹣2ma+m2+m﹣1),AP2=(m﹣a)2+[a2﹣2ma+m2+m﹣1﹣(m+1)]2=(m﹣a)2+[(m﹣a)2﹣2]2令(m﹣a)2=t(t≥0)则有AP2=t+(t﹣2)2=t2﹣3t+4=(t﹣)2+,所以,当t=时,AP2有最小值,所以AP=,故答案为.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(秋•南通月考)(1)计算:|﹣2|+﹣(﹣2)0+(﹣0.5)﹣2(2)化简:÷(﹣1)【解答】解:(1)原式=2﹣2﹣1+4=3;(2)原式=•=﹣x﹣1.20.(8分)(•河南模拟)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计年该城市有多少天不适宜开展户外活动.(年共365天)【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:年该城市有219天不适宜开展户外活动.21.(8分)(秋•南通月考)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.求改直的公路AB 的长.(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【解答】解:如图,作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2,AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1,在Rt△BCH中,BH==≈=5.6,∴AB=AH+BH=9.1+5.6=14.7,答:改直的公路AB的长14.7千米.22.(8分)(秋•南通月考)如图,⊙O的直径CD垂直于弦AB,垂足为E,∠ACD=22.5°,CD=4.(1)求AB的长;(2)求∠BAC的正切值.【解答】解:(1)连结OA.∵∠ACD=22.5°,∴∠AOD=45°,∵CD⊥AB,∴∠AEO=90°,∴AE=OE,在Rt△AOE中,OA=2,∴AE=OE=,由垂径定理,得AB=2AE=2;(2)∵CE=2+,AE=,∴tan∠BAC===+1.23.(8分)(秋•南通月考)如图,点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上.(1)求k的值;(2)求△AOB的面积.【解答】解:(1)∵点A(a,a+5)和点B(6,a+1)都在双曲线y=(k<0)上,∴k=a(a+5)=6(a+1),整理得:a2﹣a﹣6=(a+2)(a﹣3)=0,解得:a=﹣2或a=3(舍去),∴k=a(a+5)=﹣2×(﹣2+5)=﹣6.(2)∵a=﹣2,∴A(﹣2,3),B(6,﹣1).设直线AB的解析式为y=kx+b(k≠0),将A(﹣2,3)、B(6,﹣1)代入y=kx+b中,,解得:,∴直线AB的解析式为y=﹣x+2.设直线AB与y轴交于点C,则点C的坐标为(0,2),∴OC=2,∴S△AOB=OC•(x B﹣x A)=×2×[6﹣(﹣2)]=8.24.(8分)(•朝阳区一模)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.【解答】(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.25.(10分)(秋•南通月考)小明参加某个智力竞答节目,最后两道单选题全部答对就顺利通关.第一道单选题有A、B、C三个选项,第二道单选题有A、B、C、D四个选项,这两道题小明都完全不会,不过小明还有一次“求助”的机会没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项),假设两道题的正确答案均为A.(1)如果小明“求助”第一题,那么小明答对第一道题的概率是.(2)请用树状图或者列表来帮小明分析,他应该在第几题使用“求助”,顺利通关的概率才更大.【解答】解:(1)小明答对第一道题的概率=;故答案为;(2)若小明“求助”第一题(假设去掉错误选项C)画树状图为:共有8种等可能的结果数,其中两题全答对的结果数为1,所以他顺利通关的概率=,若小明“求助”第二题(假设去掉错误选项D)画树状图为:共有9种等可能的结果数,其中两题全答对的结果数为1,所以他顺利通关的概率=,而>,所以他应该在第一题使用“求助”,顺利通关的概率才更大.26.(10分)(秋•南通月考)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x米,矩形区域ABCD的面积为y米2.(1)求证:AE=2BE;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)x为何值时,y有最大值?最大值是多少?【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,又∵EF是公共边,∴AE=2BE;(2)设BE=a,则AE=2a,∴8a+2x=80,∴a=﹣x+10,AB=3a=﹣x+30∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,∴0<x<40(3)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.27.(13分)(秋•南通月考)如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB ﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E 运动的速度为每秒1个单位,运动的时间为x 秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.【解答】(1)证明:∵四边形ABCD与四边形DEFG都是正方形,∴AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG (SAS),∴∠DCG=∠DAE=90°,∵∠DCB=90°,∴∠DCG+∠DCB=180°,∴点G在直线BC上;(2)解:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,如图1所示:则AC∥EK∥AD,∴∠HEK=∠EHB,∠DEK=∠EDA,∵∠EHB+∠BEH=90°,∠EDA+∠AED=90°,∠HEK+∠DEK=90°,∴∠EDA=∠BEH,∠AED=∠EHB,∴△ADE∽△BEH,∴=,即=,∴BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积=2×2﹣×2×x﹣×(2﹣x)×=;②当点E在BC边上时,S=△DEC的面积=×2×(4﹣x)=4﹣x;(3)解:由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;∵BD===2,∴BF+FG=2BD=4,∴点F运动的路径长为4.28.(13分)(秋•南通月考)如图,抛物线y=ax2+bx+5与x轴交于A(﹣1,0)、B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是抛物线上一动点,过点P作直线PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若点P在x轴上方的抛物线上,当PE=5EF时,求点F的坐标;(3)若点E’是点E关于直线PC的对称点,当点E’落在y轴上时,请直接写出m的值.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A (﹣1,0),B(5,0)两点,∴,解得,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|﹣m+15|①若﹣m2+m+2=﹣m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;②若﹣m2+m+2=﹣(﹣m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.∴点F的坐标为(2,0)或(,0).(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴=,即=,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m1=3+,m2=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,∴P(0,5)综上所述,存在满足条件的m的值为0或﹣或4或3+.中考数学模拟试卷好题精选(河北一模)12.(2分)数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径(河北一模)19.(4分)如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于,第n个三角形的面积等于.(河北一模)20.(8分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.(河北一模)26.(14分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x 轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.(江苏南通通州二模)8.(3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm(江苏南通通州二模)10.(3分)已知A(3,1)、B两点都在双曲线y=上,O为坐标原点,若△AOB为等腰三角形,则点B的个数为()A.3 个B.4个 C.5个 D.6个(江苏南通通州二模)16.(3分)如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是度.(江苏南通通州二模)18.(3分)已知点A(m,m+1)和抛物线y=x2﹣2mx+m2+m﹣1上的动点P,其中m是常数,则线段AP的最小值是.(安徽宿州灵璧磬乡协作校一模)18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.(安徽宿州埇桥一模)15.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.(安徽宿州埇桥一模)22.(12分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转,得到矩形CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图2,G为BC的中点,且0°<α<90°,求证:GD′=E′D;(3)小矩形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.(安徽宿州埇桥一模)23.(14分)如图,已知抛物线l1经过原点与A点,其顶点是P(﹣2,3),平行于y轴的直线m与x轴交于点B(b,0),与抛物线l1交于点M.(1)点A的坐标是;抛物线l1的解析式是;(2)当BM=3时,求b的值;(3)把抛物线l1绕点(0,1)旋转180°,得到抛物线l2.①直接写出当两条抛物线对应的函数值y都随着x的增大而减小时,x的取值范围;②直线m与抛物线l2交于点N,设线段MN的长为n,求n与b的关系式,并求出线段MN 的最小值与此时b的值.(广东韶关南雄二中一模)19.(6分)如图,△ABC中,AB=AC,∠A=40°(1)作边AB的垂直平分线MN(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连结BD,求∠DBC的度数.(广东韶关南雄二中四模)14.(4分)在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C 的度数为.(广东韶关南雄二中四模)19.(6分)已知:如图,在△ABC中,AD平分∠ABC.(1)作线段AD的垂直平分线MN,MN与AB边交于点E,AC边交于点F.(2)若AB=AC,请直接写出EF和BC的关系.(广东韶关南雄二中五模)18.(6分)如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.(广东深圳龙岗一模)15.(3分)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于.(河北保定涿州一模)11.(2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a﹣b=1 C.2a+b=﹣1 D.2a+b=1(河北保定涿州一模)12.(2分)如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°(河北数学模拟三)9.(3分)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0(河北数学模拟三)15.(2分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0) B.(1,)C.(,)D.(,)(河北数学模拟三)26.(12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.(河南南阳新野新航中学模拟)5.(3分)两个不等的实数a、b满足a2+a﹣1=0,b2+b﹣1=0,则ab的值为()A.1 B.﹣1 C.D.(河南南阳新野新航中学模拟)9.(3分)对于一次函数y=kx+b,当自变量x的取值为﹣2≤x≤5时,相应的函数值的范围为﹣6≤y≤﹣3,则该函数的解析式为.(河南濮阳一模)7.(3分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数y的最小值为5,则h的值是()A.﹣1 B.﹣1或5 C.5 D.﹣5(河南濮阳一模)9.(3分)从﹣3,﹣1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣2 B.﹣3 C.D.(河南濮阳一模)16.(8分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.(河南濮阳一模)21.(10分)阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.下面是他的探究过程,请将(2)、(3)、(4)补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x﹣1>;当x<0时,原不等式可以转化为x2+4x﹣1<;(2)构造函数,画出图象设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图象.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为;(4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为.(河南濮阳一模)22.(10分)(1)【问题发现】。
2019年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. )1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC中,AB = AC,∠ABC = 72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°. 小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF = 1米,从E 处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- BC 、0D 、2 2、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2019年中考模拟试题一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是()A.0B.5C.﹣D.﹣2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.x7÷x=x7B.(﹣3x2)2=﹣9x4C.x3•x3=2x6D.(x3)2=x64.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)2019年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A.9.56×106B.95.6×105C.0.956×107D.956×1046.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)如图所示,该几何体的左视图是()A.B.C.D.8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140D.﹣140=10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.A、5B、2C、D、二、填空题(本题共6小题,每小題3分,共18分)11.(3分)若在实数范围内有意义,则x的取值范围为.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.16.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n 的横坐标为(结果用含正整数n的代数式表示)三、解答题(第17题6分,第18、19题各5分,第20、21题各6分,第22、23题各10分,第24、25题各12分,共,72分)17.计算:(1)(﹣2)2++6(2)÷+18.某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.19.某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?20.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.21.如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.22.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.23.某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?24.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.24.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).25.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.2019年中考模拟试题参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:0既不是正数,也不是负数;5是正数;和都是负数.故选:B.2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.3.【解答】解:A、x7÷x=x6,故此选项错误;B、(﹣3x2)2=9x4,故此选项错误;C、x3•x3=x6,故此选项错误;D、(x3)2=x6,故此选项正确;故选:D.4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.5.【解答】解:将数据9560000科学记数法表示为9.56×106.故选:A.6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.7.【解答】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.8.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.9.【解答】解:设甲型机器人每台x万元,根据题意,可得:,故选:A.10.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.11.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.12.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【解答】解:以点O为位似中心,相们比为,把△ABO缩小,点A的坐标是A (4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.15.【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.16.【解答】解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x 轴,C3D3⊥x轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=故答案为:17.【解答】(1)解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.(2)解:原式=×﹣=﹣=.18.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×=300(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.19.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.20.【解答】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=621、【解答】解:(1)∵顶点A的坐标是(0,2),顶点C的纵坐标是﹣4,∴AE=6,又▱ABCD的面积是24,∴AD=BC=4,则D(4,2)∴k=4×2=8,∴反比例函数解析式为y=;(2)由题意知B的纵坐标为﹣4,∴其横坐标为﹣2,则B(﹣2,﹣4),设AB所在直线解析式为y=kx+b,将A(0,2)、B(﹣2,﹣4)代入,得:,解得:,所以AB所在直线解析式为y=3x+2.22.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠PAC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.23.【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.24.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA∴∵∠ABE=∠BAF,∠ABE=∠AFB∴△ABF∽△BAD∴,且AB=kBD,AF=BC=BF ∴k=,即∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°∴∠ABH=∠C,且∠BAC=∠BAC∴△ABH∽△ACB∴∴AB2=AC×AH设BD=m,AB=km,∵∴BC=2k2m∴AC==km∴AB2=AC×AH(km)2=km×AH∴AH=∴HC=AC﹣AH=km﹣=∴25.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m=或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).。
2019年初中学业考试模拟测试卷数学试题卷一.选择题:(本题有10小题,每小题3分,共30分) 1.16的算术平方根是(▲). A . 4B .4± C .2D .2±2.下列计算正确的是(▲).A .1243a a a =∙ B .a a a =-34C .()1243a a = D .428a a a =÷3.如图,直线a//b ,直线c 与直线a ,b 分别交于A,B 两点,射线AC ⊥直线c ,则图中与∠1互余的角有(▲). A .4个B . 3个C . 2个D .1个4.使代数式42-+x x 有意义的x 的取值范围是(▲).A .x >-2B .x ≥-2C .x ≥4D .x ≥-2且x ≠45.下列图形中,既是轴对称图形又是中心对称图形的是(▲).6.从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程kx 2-x +1=0 的k 值,则所得的方程中有两个不相等的实数根的概率是(▲). A .51 B .52 C . 53 D . 547.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是(▲).8.请运用所学知识判断sin 44.9°与cos 44.9°的大小(▲).A . sin 44.9°> cos 44.9°B .sin 44.9°< cos 44.9°C .sin 44.9°= cos 44.9°D .无法判断 9.如图,△ABC 和△CDE 均为等腰直角三角形,点B 、C 、D 在一条直线上,点M是AE 的中点,下列结论:①tan ∠AEC =BCCD;②S △ABC +S △CDE ≥S △ACE ;③BM ⊥DM ;④BM =DM .正确结论的个(▲).A . 1个B . 2个C . 3个D . 4个10.如图,P 为正方形ABCD 对角线BD 上一动点,若AB=2,则AP+BP+CP 的最小值为(▲).A .26+B . 23C . 2210+D .无法确定二、填空题:(本题有6小题,每小题4分,共24分)11.分解因式:2am 2﹣8a = ▲ .12.如图,在△ABC 中,∠CAB =65°.在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′= ▲ .13.若一组数据 2、2、3、3、4、4、x 的平均数是3,则这组数据的众数是 ▲ . 14.对于实数a ,b 定义一种新运算“@”为a @b=ba -21,这里等式右边是实数运算。
2019年中考数学模试试题(2)(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年中考数学模试试题(2)(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年中考数学模试试题(2)(含解析)的全部内容。
中考数学模试卷一、选择题(本大题共14小题,每小题3分,共42分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,互为倒数的是()A.﹣3与3 B.﹣3与C.﹣3与D.﹣3与|﹣3|2.(3分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°3.(3分)下列运算正确的是()A.||=B.x3•x2=x6C.x2+x2=x4D.(3x2)2=6x44.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(3分)如图,几何体是由3个完全一样的正方体组成,它的左视图是()A.B.C.D.6.(3分)某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A.B.C.D.7.(3分)已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.98.(3分)十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进来,结果每位同学比原来少分摊4元车费.设原来游玩的同学有x 名,则可得方程()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=49.(3分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.16,10。
2019年中考数学模拟试卷(附答案)一、选择题(本大题10题,每小题3分,共30分).在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 四个数0,3-,2,32中,无理数的是( ) A .0 B .3- C .2 D .32 2. 2019年濠江区保障性住房建设预计资金投入约5300000元,将5300000用科学记数法表示为( )A .51053⨯B .5103.5⨯C .71053.0⨯D .6103.5⨯ 3. 如图是由3个大小相同的小正方体组成的几何体,它的左视图是( )A .B .C .D .4. 数据3,4,6,7,3的众数和中位数分别是( )A .3 ,4B .3 ,7C .4 ,3D .4 ,6 5. 下列计算正确的是( )A .326x x x =÷B .2)1(1+-=--x xC .222)(b a b a -=-D .226)3(x x = 6.使1+x 有意义的x 的取值范围是( )A .1->xB .x ≥1-C .1-<xD .x ≤1- 7. 如图,已知∠AOB =70°,OC 平分∠AOB ,DC ∥OB ,则∠C 为( )A.20°B.35°C.45°D.70°8. 将2x y =向上平移2个单位后所得的抛物线的解析式为( )A .22+=x yB .22-=x yC .2)2(+=x yD .2)2(-=x y 9. 如图,边长相等的正方形和正六边形的一边重合,则∠1的度数是( )A .10°B .20°C .30°D .40°10.如图①,点P 从等边△ABC 的顶点A 出发,沿A →B →C 以1cm/s 的速度匀速运动到点C ,图②是点P 运动时,△PAC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .3B .1C .23D .32 二、填空题(本大题6题,每小题4分,共24分).请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:222-a = .12.不等式组⎪⎩⎪⎨⎧+>--<-2115304x x x 的解集为 .13.已知关于x 的方程02=-+n x x 有两个相等的实数根,那么n 的值为 . 14.如图,在△ABC 中,DE ∥BC ,AE :EC=2:3,则ABC ADE S S ∆∆:的值为 . 15.如图,在边长为1的正方形网格中,AB 是半圆的直径,则阴影部分的面积为 (结果保留π)16.规定12-=i ,且i 满足运算律.如:i i i i i 2)1(21121)1(222=-++=+⨯⨯+=+,那么8)1(i -的值为三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:10220199|2|-+-+-18.先化简,再求值:21)231(2+-÷+-a a a ,其中13-=a19.如图,在△ABC中,∠A=30°,∠B=50°.(1)作∠ACB的平分线交AB边于点D,(要求:尺规作图,保留作图痕迹,不写作法);(2)求证:DC=DB.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某校为奖励在学校活动中表现优秀的同学,计划购买甲、乙两种奖品.已知购买甲种奖品30件和乙种奖品25件需花费1950元,购买甲种奖品15件和乙种奖品35件需花费1650元.(1)求甲、乙两种奖品的单价.(2)若学校计划花费1000元购买甲、乙两种奖品,且要求甲、乙两种奖品的数量比为2:3,问最多可以购买多少件甲种奖品?21.如图,矩形EFGH的四个顶点分别在平行四边形ABCD的各条边上,AB=EF.(1)求证:△AFE≌△CHG;(2)若点H为DC的中点,∠A=90°,试判断AF和BF的数量关系,并说明理由.22.某中学为关注儿童成长的健康,实施“关注留守儿童计划”,对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图: (1)全校班级个数 个,并将该条形统计图补充完整;(2)在扇形统计图中,表示“3名”的扇形圆心角为 度;(3)为了了解留守儿童的饮食情况,某校决定从只有2名留守儿童的这些班级中,任选两名进行调查,请用列表法或画树形图的方法,求出所选两名留守儿童来自同一个班级的概率.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在矩形OABC 中,OC=2,OA=3,以OA 所在的直线为x 轴,以OC 所在的直线为y 轴建立平面直角坐标系.反比例函数xmy 的图象与CB 交于点D (2,2),与BA 交于点E ,连接AC ,DE ,OE.(1)求反比例函数的解析式; (2)求 sin ∠EOA 的值; (3)求证:DE ∥CA .24.如图,在正方形ABCD中,AD=4,E是AB上一点,AC与DE相交于点F.以DE为直径的⊙O与AC相交于点G,连接EG,DC与BG的延长线相交于点H.(1)求证:∠AEG=∠AFD;(2)若∠EGB=∠BAC,判断BH与⊙O的位置关系,并说明理由;(3)在(2)的条件下,求AE的长.25.如图1,已知Rt△ABC,∠AB C=90°,AB=3,BC=6,将Rt△ABC绕点B顺时针旋转90°,连接CD,与AE的延长线交于点F,连接BF,与ED相交于点G.(1)填空:∠BCD= °;(2)求BG的长度;(3)如图2,点M从点E出发,沿EA方向以每秒2个单位长度的速度向终点A运动,点N 从点E出发,沿ED方向以每秒5个单位长度的速度向终点D运动,M,N两点同时出发,当点M停止时,点N也随之停止.设运动时间为x秒,问:是否存在x的值,使得△BMN 为等腰三角形?若存在,请直接写出x的值;若不存在,请说明理由.数学参考答案与评分标准一、选择题二、填空题11.)1)(1(2-+a a ;12.7-<x ;13. ;14. ;15. ;16.16三、解答题(一)17.解:原式= ………………4分 = ………………6分18.解:原式11)1)(1(2212)1)(1(2322+=-++⋅+-=+-+÷⎪⎭⎫ ⎝⎛+-++=a a a a a a a a a a a a ……………………3分 ………………4分当13-=a 时,原式331131=+-=………………6分 19.解:(1)如图所示,CD 即为所求。
2019年河南省中考数学模试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1. - 3的绝对值是()A.— 3B. 3C. . —D.—3 32. 中国的陆地面积和领水面积共约9970000km2, 9970000这个数用科学记数法可表示为()A. 9.97 X 105B. 99.7 X 105C. 9.97 X 106D. 0.997 X 1074. 一次函数y= - 3x+b和y=kx+1的图象如图所示,其交点为P (3, 4),则不等式kx+1 >-3x+b的解集在数轴上表示正确的是()A. *B. * C ' D5. 某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数7.97.98.03. 如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是A. 9B.左视图C. 7D. 6主视图根据以上图表信息,参赛选手应选()血成绩环* X10 ---------9 —…“…”8 ”4“ ■-7 --------A.甲B.乙C.丙D. 丁A. 1 : 3B. 1: 5C. 1: 6D. 1: 119.如图,在平面直角坐标系中,抛物线y=. x2经过平移得到抛物线y=ax2+bx,其对称轴与6.如图,四边形ABCD内接于O 0,F是二上一点,且~7=-,连接CF并延长交AD的延长线于点E,连接AC,若/ ABC=105 ,/ BAC=25,则/ E的度数为(7.如图,菱形0ABC的一边0A在x轴上,将菱形0ABC绕原点0顺时针旋转75°至0A B'DC于点F,60°连接AE并延长交C'的位置,若0B=「,/ C=120°,则点B'的坐标为(则S A DEF:S A AOB的值为(两段抛物线所围成的阴影部分的面积为;,则a 、b 的值分别为(C 2、巳、E 4、G 3…在x轴上,已知正方形 A i B i C i D二、填空题(本小题共 5小题,每小题3分,共15分)11. ________________________________________ 计算:一二 + ( n - 2) 0+ (- 1) 2017= . 12.已知关于x 的一元二次方程 ax 2-( a+2) x+2=0有两个不相等的正整数根时,整数 a 的值是 _______ .10.在平面直角坐标系中,正方形A BCD 、 Di E 1E 2B 2、AB 2C 2D 、DBE4B …按如图所示的方式放置,其中点 B 在y 轴上,点G 、E 、E 、的边长是(13. 如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=14. ____________________________________________ 如图,扇形OAB中,/ AOB=60,扇形半径为4,点C在-爲上,CD! OA垂足为点D, 当厶OCD的面积最大时,图中阴影部分的面积为 .O D .415. 如图,在矩形ABCD中, AB=5 BC=3点E为射线BC上一动点,将△ ABE沿AE折叠,得到△ AB' E.若B'恰好落在射线CD上,贝U BE的长为__________ .三、解答题(本题共8小题,共75分.)::一1 r, 216. 先化简,再求值:十一=,其中m是方程x+2x- 3=0的根.3 ID1 2 3-6m rn-2 717. 在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A, B两组户数频数直方图的高度比为 1 : 5.月信息消费额分组统计表1这次接受调查的有 _________ 户;2在扇形统计图中,“ E”所对应的圆心角的度数是 ________(3 )请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于 200元的户数是多少?(户数)18. 如图,AB 是半圆O 的直径,点P 是半圆上不与点 A B 重合的一个动点,延长BP 到点C, 使PC=PB D 是AC 的中点,连接 PD PO (1) 求证:△ CDP^A POB (2) 填空:① 若AB=4,则四边形AOPD 勺最大面积为 _________ ;② 连接OD 当/ PBA 的度数为 ______ 时,四边形BPDC 是菱形.C19. 如图,在大楼 AB 的正前方有一斜坡 CD CD=4米,坡角/ DCE=30,小红在斜坡下的点 C 处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A C E 在同一直线上.(1) 求斜坡CD 的高度DE(2) 求大楼AB 的高度(结果保留根号)20.同庆中学为丰富学生的校园生活, 准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同, 每个篮球的价格相同),若购买3个足球和2个篮球共需310元, 购买2个月信JS 湾奏颤分组頻数直方图各粗户数扇球统计圈2015 105・・・10足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21. 根据下列要求,解答相关问题:(1 )请补全以下求不等式- 2x2- 4x > 0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2- 4x;抛物线的对称轴x=- 1 ,开口向下,顶点(-1, 2)与x轴的交点是(0, 0), (- 2, 0),用三点法画出二次函数y= - 2x2- 4x的图象如图1 所示;②数形结合,求得界点:当y=0时,求得方程-2x2- 4x=0的解为___________ ;③借助图象,写出解集:由图象可得不等式-2x2- 4x > 0的解集为_________ .(2)利用(1)中求不等式解集的方法步骤,求不等式x2- 2x+1v 4的解集.①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x 的不等式ax2+bx+c > 0 (a > 0)的解集.22. (1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BG AB上的点,且CE=BF连接DE过点E 作EG! DE 使EG=DE 连接FG FC,请判断:FG 与CE 的数量关系是 ,位置关玄阜 系是 (2)拓展探究:请出判断判断予以证明; (3) 类比延伸:如图3,若点E 、F 分别是BC AB 延长线上的点,23. 如图,二次函数 y=ax 2+bx+c 的图象与x 轴的交点为 A D (A 在D 的右侧),与y 轴的交 点为C,且A (4, 0), C ( 0,- 3),对称轴是直线x=1 . (1 )求二次函数的解析式;(2)若M 是第四象限抛物线上一动点,且横坐标为 m 设四边形 OCMA 勺面积为s .请写出 s 与m 之间的函数关系式,并求出当 m 为何值时,四边形 OCMA 勺面积最大;(3) 设点B 是x 轴上的点,P 是抛物线上的点,是否存在点 P,使得以A , B 、C, P 四点为如图2,若点E 、F 分别是CB BA 延长线上的点,其它条件不变, (1)中结论是否仍然成立?GBB(1)中结论是否仍然成立?其它条件不变, 请直接写出你的判断.顶点的四边形为平行四边形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.参考答案与试题解析 一、选择题(本大题共 13的绝对值是( )A.— 3B. 3C. . —D.—3 3【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解. 第一步列出绝对值的表达式; 第二步根据绝对值定义去掉这个绝对值的符号. 【解答】解:| - 3|=3 . 故-3的绝对值是3. 故选:B. 2.中国的陆地面积和领水面积共约 9970000km 2, 9970000这个数用科学记数法可表示为 ( )55 —67A. 9.97 X 10 B . 99.7 X 10 C. 9.97 X 10 D. 0.997 X 10 【考点】科学计数法.【分析】 科学记数法的表示形式为 a x 10n 的形式,其中1W |a| v 10, n 为整数.确定 n 的 值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当 原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数. 【解答】 解:9970000=9.97 X 106, 故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a X 10n 的形式,其中1w |a| v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为10小题,每小题3分,共30 分) 主视图A. 9B. 8*左视图C. 7D. 61的正方体的个数是【考点】U3:由三视图判断几何体.【分析】易得这个几何体共有 2层,由俯视图可得第一层正方体的个数, 由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有 6个正方体,第二层有 2个正方体,那么共有 6+2=8 个正方体组成, 故选B.4. 一次函数y= — 3x+b 和y=kx+1的图象如图所示,其交点为 P (3, 4),则不等式kx+1 > —• ••当 x 》3 时,kx+1》—3x+b , •不等式kx+1 >— 3x+b 的解集为x > 3,在数轴上表示为: *故选B.5.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示, 丁的成绩如图所示.甲乙 丙 平均数 7.9 7.9 8.0 方差3.290.491.8元一次不等式;C4:在数轴上表示不等式的解集.【分析】 观察图象,直线 y=kx+1落在直线 y= - 3x+b 上方的部分对应的 x 的取值范围即为所 求.【解答】 解:•一次函数 y= - 3x+b 和y=kx+1的图象交点为 P (3, 4),3x+b 的解集在数轴上表示正确的是(FD 一次函数与 【考C .根据以上图表信息,参赛选手应选( )【考点】W7方差;W1:算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可. 【解答】解:由图可知丁射击 10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为: —X( 8+8+9+7+8+8+9+7+8+8) =8, 丁的成绩的方差为: 了一X [ (8 - 8)+ ( 8 - 8)2+ (8 - 9) 2+ ( 8 - 7) 2+ (8 -8)+ (8 - 8)2 2 2 2 2+ (8 - 9) + (8 - 7) + (8 - 8) + (8 - 8) ]=0.4 , •••丁的成绩的方差最小, •••丁的成绩最稳定, •••参赛选手应选丁, 故选:D.F 是•上一点,且| ; =「,连接CF 并延长交AD 的延长根据三角形外角的性质即可得出结论.【解答】 解:••四边形 ABCD 内接于O 0,Z ABC=105,6.如图,四边形 ABCD 内接于O 0,线于点E ,连接AC,若/ ABC=105,/ BAC=25,则/ E 的度数为(M6圆内接四边形的性质;M4: 圆心角、弧、弦的关系.【分析】 先根据圆内接四边形的性质求出/ ADC 的度数,再由圆周角定理得出/ DCE 的度数,【考60°•••/ ADC=180 -Z ABC=180 - 105 ° =75 °.•••衣=| ,/ BAC=25 , • Z DCEZ BAC=25 ,• Z E=Z ADC-Z DCE=75 - 25° =50 °. 故选B.7.如图,菱形OABC 的一边OA 在 x 轴上,将菱形OABC 绕原点0顺时针旋转75°至OA B ' C'的位置,若 OB= _,Z C=120°,则点B'的坐标为( )/A ”oX1%帕\L J A r7 R fA.( 3,二)B .( 3,一) C.(「,「)D.(「,7)【考点】R7:坐标与图形变化-旋转; L8:菱形的性质.【分析】 首先根据菱形的性质,即可求得Z AOB 的度数,又由将菱形 OABC 绕原点O 顺时针 旋转75°至OA B ' C'的位置,可求得Z B' OA 的度数,然后在 Rt △ B' OF 中,利用三角 函数即可求得 OF 与B ' F 的长,则可得点 B '的坐标.【解答】 解:过点B 作BE X OA 于E ,过点B'作B' F 丄OA 于 F , • Z BE0=Z B ' FO=9C ° , •••四边形OABC 是菱形, • OA// BC, Z AOB= Z AOC • Z AOC-Z C=180°,•••Z C=120° ,• Z AOC=60 , • Z AOB=30 ,• •菱形OABC 绕原点O 顺时针旋转75°至OA B' C'的位置, • Z BOB =75°, OB =OB=2 :, • Z B' OF=45 ,在Rt△ B' OF中,•••点B'的坐标为:(唧匚,-i :).&如图,在?ABCD 中, AC 与BD 相交于点 O, E 为OD 的中点,连接 AE 并延长交 DC 于点F , 则 S A DEF : S A AOB 的值为()A. 1 : 3 B . 1: 5 C . 1: 6 D . 1: 11 【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质可知 BO=DO 又因为E 为OD 的中点,所以DE BE=1: 3,根S A iQR 9 据相似三角形的性质可求出 S A DE :S A BAE .然后根据=p ,即可得到结论.仏 ABE 3【解答】解:I O 为平行四边形ABCD 对角线的交点, • DO=BO又••• E 为OD 的中点, • DE= DB4• DE: EB=1: 3, 又••• AB// DC• △ DFE^A BAEOF=OB? cos45 •-B ' F= 7,=2 r =",故选D.・'二=(1)2=1'△BAE 39• I S A DE = S A BAE ,■..S AADB = 2 S A ABE 3,确定出抛物线y=ax 2+bx 的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点可得解.• °. S A AO =S :△ BAE,V S ^EAE…S A DEF : S A AO ==1 : 6,y S ABAE9.如图,在平面直角坐标系中,抛物线 两段抛物线所围成的阴影部分的面积为y= . x 2经过平移得到抛物线 y=ax 2+bx ,其对称轴与 [,则a 、b 的值分别为(H6:二次函数图象与几何变换.【分析】 坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即故选C.【考c •一,3 3 2 4•••平移后抛物线的顶点坐标为(- 爭,-电右),对称轴为直线x=-爭, 当x=-丄一时,y=2 4•平移后阴影部分的面积等于如图三角形的面积,'x( ■)X(-)=2 4 4234解得b= - -y故选:C.ABCD、D1E1E2B、A2B2 C2D、D>E3E4B B…按如图所示的方的边长为I,/ B i C i O=60°, BQ// B2C2// B3C3…,则正方形A2017R0仃C2o仃D2o仃的边长是()【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长, 可得出答案.【解答】解:•••正方形A i B i CD的边长为1,/ B i CO=60°, BC // B2C2 / RC3,• D E1=B2E2, D>E3=B S E4, / DCE1=/ GB2E2=/仑£3巳=30°,式放置,其中点B在y轴上,点C、E、E>、C2、巳、巳、C3…在x轴上,已知正方形A i B i G D 10.在平面直角坐标系中,正方形El E: Q Ej E4 G x进而得出变化规律即31【考点】D2:规律型:点的坐标.则 B 2C>== = () 1cos30fl 33 同理可得:RG==(—二)2,33故正方形 ABGD 的边长是:()「13则正方形A 2017B 2017C 2017 D 2017的边长为: 故选:C.二、填空题(本小题共 5小题,每小题3分,共15分) 11. 计算:-二 +( n - 2) 0+ (- 1) 2017= - 2 . 【考点】2C:实数的运算;6E :零指数幕.【分析】直接利用零指数幕的性质以及立方根的定义分别化简进而求出答案. 【解答】 原式=-2+1 - 1 =-2. 故答案为:-2.12.已知关于x 的一元二次方程 ax 2-( a+2) x+2=0有两个不相等的正整数根时,整数 a 的值是 a=1.【考点】AA 根的判别式.【分析】由一元二次方程的定义可得出 a z 0,再利用根的判别式△ =b 2- 4ac ,套入数据即可 得出△ = (a - 2) 2> 0,可得出a z 2且a z 0,设方程的两个根分别为刘、X 2,利用根与系数9的关系可得出X 1?X 2=,再根据X 1、X 2均为正整数,a 为整数,即可得出结论.a【解答】 解:•••方程ax 2-( a+2) X +2=0是关于X 的一元二次方程, a z 0.•/△ = (a+2) 2- 4a X 2= (a - 2) 2> 0,•••当a=2时,方程有两个相等的实数根, 当a z 2且a z 0时,方程有两个不相等的实数根. •• •方程有两个不相等的正整数根, 设方程的两个根分别为 X I 、X 2,--DE i =CDsin30一, 20169/. X1?X2=,a•/X I、X2均为正整数,•••「为正整数,a■/ a为整数,a^ 2且a^ 0,a=1,故答案为:a=1.13. 如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=【考点】G6:反比例函数图象上点的坐标特征.【分析】作AC± X轴于点C,作BD丄X轴于点D,易证△ OB/A AOC则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.【解答】解:作ACLX轴于点C,作BD丄X轴于点D.则/ BD02 ACO=90 ,则/ BOD丄OBD=90 ,•/ OA! OB•••/ BOD丄AOC=90 ,•••/ B0D2 AOC•••△ OBD^A AOC二口工 2 /»八2一•••..,.= —) =( tanA )=,又••• S A AO(=_77 X 2=1 ,• S _1・・S A OB=,■-9故答案为:-•・k=-二14. 如图,扇形OAB中,/ AOB=60,扇形半径为4,点C在富上,CtU OA垂足为点D, 当厶OCD勺面积最大时,图中阴影部分的面积为2 n —4 .BO D A【考点】MO扇形面积的计算;H7:二次函数的最值;KQ勾股定理.【分析】由OC=4点C在亦上,CDL OA求得DC彳0严4)!)鼻&&~0卫,运用& OC誌OD ? !..厂,求得OD=2 —时厶OCD的面积最大,运用阴影部分的面积=扇形AOC的面积-△ OCD的面积求解.【解答】解:••• OC=4点C在「上,CDL OA•DC“「」「=厂厂•S A OC=;O D? i / .■ pr'Q 1 1 1•••,「= ’O D?( 16—O D)=——O D+4OD=—’(O D- 8) 2+16•••当O D=8,艮卩OD=2】时厶OCD的面积最大,•- DC=foF_)2= =2 _,•••/ COA=45 ,2•••阴影部分的面积 = 扇形AOC 勺面积-△ OCD 的面积=!打八"- X 2 7X 2 7=2 n - 4, 360 2 % % 故答案为:2 n - 4.【分析】如图1,根据折叠的性质得到 AB' =AB=5, B' E=BE 根据勾股定理得到 B E= ( 3 -BE 2+12,于是得到吨,如图2,根据折叠的性质得到AB =沖求得AB =BF =5根据勾股定理得 到CF=4根据相似三角形的性质列方程得到CE=12即可得到结论.【解答】 解:如图1,v 将厶ABE 沿 AE 折叠,得到△ AB' E ,• AB' =AB=5 B' E=BE •- CE=3- BE,: AD=3 •- DB' =4,二 B ' C=1,v B ' h=cE+B' C 2,• BE "= ( 3 - BE 2+12, • BE =,如图2,:将厶ABE 沿 AE 折叠,得到△ AB' E , • AB' =AB=5 :CD// AB,:丄仁/ 3,:/ 仁/2,• / 2=7 3,:AE 垂直平分 BB', • AB=BF=5 • CF=4, :CF // AB,• △ CEF^A ABE15.如图,在矩形 ABCD 中, AB=5 BC=3 点E 为射线BC 上一动点,将△ ABE 沿AE 折叠, 得到△ AB' E .若B'恰好落在射线CD 上,则BE 的长为—或15 .【考点】PB:翻折变换(折叠问题) ;LB: 矩形的性质.即 d =:,5 CE+3.CE=12,. BE=15,综上所述:BE 的长为:一或15, 故答案为:一或15 .38小题,共75分.)* J .I . 一 ,其中m 是方程X 2+2X -3=0的根. 3 m -6m叶<【考点】6D:分式的化简求值;A8:解一元二次方程-因式分解法.m —35【分析】首先根据运算顺序和分式的化简方法, 化简十-,然后应用因3 in" -6n前一2数分解法解一元二次方程, 求出m 的值是多少;最后把求出的m 的值代入化简后的算式,求叶3/5、出算式 -* :,的值是多少即可.3 m -6m叶2m-3E【解答】解: _* ■ I :.-3 m -on.(TD +3) (E -3)(X +3) (X - 1) =0, 解得 X i =- 3, X 2=1,■/m 是方程X 2+2X - 3=0的根,••• m= - 3, m=l ,三、解答题(本题共 16•先化简,再求值:=IP -3________________ 3m(n5—2) m -2= 12•/x +2x - 3=0,•/ m+趺0,•• m^- 3,• m=1,所以原式=「一厂=3X1 X (1+3)=11217•在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分•某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图•已知A, B两组户数频数直方图的高度比为 1 : 5. 月信息消费额分组统计表请结合图表中相关数据解答下列问题:(1) 这次接受调查的有50户;(2) 在扇形统计图中,“E”所对应的圆心角的度数是28.8 °;(3 )请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?【考点】VB 扇形统计图;V5:用样本估计总体; V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)根据A B 两组户数直方图的高度比为 1 : 5,即两组的频数的比是 1 : 5,据此 即可求得A 组的频数;利用 A 和B 两组的频数的和除以两组所占的百分比即可求得总数; (2)用“ E ”组百分比乘以360°可得;(3 )禾9用总数乘以百分比即可求得 C 组的频数,从而补全统计图; (4) 利用总数2000乘以C 、D E 的百分比即可. 【解答】 解:(1) A 组的频数是:10=2;5•••这次接受调查的有(2+10)十(1 - 8%- 28%- 40%) =50 (户), 故答案为:50 ;故答案为:28.8(3) C 组的频数是:50X 40%=2Q 如图,(4) 2000X( 28%+8%+40%=1520 (户),月信星涔妻頼分组頻數曹左圉各組户数屈形统计图201010 --■ ■ ■ ■■ ■广 ■ ■ ■ ■ ■ ■ ■ ■¥ >9 ■ ■(2) “E ”所对应的圆心角的度数是360°X 8%=28.8°,月信星涔妻頼分组頻數曹左圉各組户数福形统计图5E18. 如图,AB是半圆O的直径,点P是半圆上不与点A B重合的一个动点,延长BP到点C, 使PC=PB D是AC的中点,连接PD PO(1)求证:△ CDP^A POB(2)填空:①若AB=4,则四边形AOPD勺最大面积为 4;②连接OD当/ PBA的度数为60°时,四边形BPDC是菱形.C【考点】L9:菱形的判定;KD全等三角形的判定与性质.【分析】(1)根据中位线的性质得到DP// AB, DP=AB由SAS可证厶CDP^A POB(2)①当四边形AOPD勺A0边上的高等于半径时有最大面积,依此即可求解;②根据有一组对应边平行且相等的四边形是平行四边形,可得四边形BPDO是平行四边形, 再根据邻边相等的平行四边形是菱形,以及等边三角形的判定和性质即可求解.【解答】(1)证明:T PC=PB D是AC的中点,••• DP/ AB,••• DP=.AB,Z CPD2 PBOLa•/ BO=_AB,• DP=BO在厶CDP-与^ POB中,r DP=B0ZCPD^ZPBOPC=PB•••△CDP^A POB( SAS ;(2)解:①当四边形AOPD的AO边上的高等于半径时有最大面积,=2X 2 =4;②如图:•••DP// AB, DP=BO•••四边形BPDO是平行四边形,••四边形BPDO是菱形,•PB=BQ•/ PQ=BQ•PB=BQ=PQ•△ PBQ是等边三角形,•/ PBA的度数为60°.故答案为:4; 60°.C19. 如图,在大楼AB的正前方有一斜坡CD CD=4米,坡角/ DCE=30,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A C E在同一直线上.(1)求斜坡CD的高度DE(2)求大楼AB的高度(结果保留根号)【考点】TA:解直角三角形的应用-仰角俯角问题;T9:解直角三角形的应用-坡度坡角问题.【分析】(1)在直角三角形 DCE 中,禾U 用锐角三角函数定义求出 DE 的长即可;(2)过D 作DF 垂直于AB,交AB 于点F,可得出三角形 BDF 为等腰直角三角形, 设BF=DF=x 表示出BC, BD, DC 由题意得到三角形 BCD 为直角三角形,禾U 用勾股定理列出关于 x 的方 程,求出方程的解得到 x 的值,即可确定出 AB 的长.【解答】 解:(1)在 Rt △ DCE 中, DC=4米,/ DCE=30,/ DEC=90 , ••• DE= DC=2 米;2(2)过D 作DF 丄AB 交AB 于点F , •••/ BFD=90,/ BDF=45 ,•••/ BFD=45,即△ BFD 为等腰直角三角形, 设 BF=DF=x 米,•••四边形DEAF 为矩形, • AF=DE=2米,即卩 AB=(x+2)米, 在 Rt △ ABC 中,/ ABC=30 ,BD= =BF=「X 米, DC=4米, •••/ DCE=30,/ ACB=60 , •••/ DCB=90 ,在Rt △ BCD 中,根据勾股定理得: 2x 2=」T +16, 解得:x=4+4 .:, 则 AB= ( 6+4 .=)米.球(每个足球的价格相同, 每个篮球的价格相同),若购买3个足球和2个篮球共需310元,…B C =;os30' =詈=二=「;「、米,20.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮购买2个足球和5个篮球共需500元. (1) 购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共 96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?【考点】C9: 一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)根据费用可得等量关系为: 购买3个足球和2个篮球共需310元;购买2个足 球和5个篮球共需500元,把相关数值代入可得一个足球、一个篮球的单价; (2)不等关系为:购买足球和篮球的总费用不超过 5720元,列式求得解集后得到相应整数解,从而求解.•••购买一个足球需要 50元,购买一个篮球需要80元.(2 )方法一:解:设购买a 个篮球,则购买(96 - a )个足球. 80a+50 (96- a )< 5720, 亦30.•/ a 为正整数,• a 最多可以购买30个篮球.•••这所学校最多可以购买 30个篮球. 方法二:解:设购买n 个足球,则购买(96 - n )个篮球. 50n+80 (96- n )< 5720, n 》65厶 •/ n 为整数,•- n 最少是66 96 - 66=30 个.【解答】(1)解:设购买一个足球需要 ■・」根据题意得- 解得沪50y=80,x 元,购买一个篮球需要y 元,•••这所学校最多可以购买30个篮球.21 •根据下列要求,解答相关问题:(1 )请补全以下求不等式- 2x2- 4x > 0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2- 4x;抛物线的对称轴x=- 1,开口向下,顶点(-1, 2)与x轴的交点是(0, 0), (- 2, 0),用三点法画出二次函数y= - 2x2- 4x的图象如图1所示;②数形结合,求得界点:当y=0时,求得方程-2x2- 4x=0的解为 _ 1=0, x2=- 2③借助图象,写出解集:由图象可得不等式-2x2- 4x > 0的解集为 -2 < x w 0 .(2)利用(1)中求不等式解集的方法步骤,求不等式x2- 2x+1v 4的解集①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3) 参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于的不等式ax2+bx+c > 0 (a > 0)的解集寸■・■ ■皆■ ■管5 ■■ 込一卜冷f I 4 ■§V 1 li 1:厶二為…;・・;L h I I II【分析】(1)直接解方程进而利用函数图象得出不等式- 2x2-4x>0的解集;(2)首先画出y=x2-2x+1的函数图象,再利用当y=4时,方程x2- 2x+仁4的解,得出不等式x2- 2x+1 V 4的解集;(3)利用ax +bx+c=0的解集,利用函数图象分析得出答案.【解答】解:(1)②方程-2x2- 4x=0的解为:x i=0, X2=- 2; ③不等式-2x2- 4x > 0的解集为:-2<§■耳■4)«h tl fl丿* • J te- n J ■ w "¥f【考点】HC二次函数与不等式(组) ;H2:二次函数的图象;H3:二次函数的性质.x w 0;(2)①构造函数,画出图象,如图2,:构造函数y=x2- 2x+1,抛物线的对称轴x=1, 且开口向上,顶点坐标(1, 0),关于对称轴x=1对称的一对点(0, 1), (2, 1), 用三点法画出图象如图2所示:②数形结合,求得界点:2当y=4 时,方程x - 2x+1=4 的解为:x i=- 1, X2=3;③借助图象,写出解集:由图2知,不等式x2- 2x+1 V 4的解集是:-1 v x v 3;(3)解:①当b2- 4ac> 0时,关于x的不等式ax2+bx+c > 0 (a> 0)的解集是x> 或x V =22a 2a当b2- 4ac=0时,关于x的不等式ax2+bx+c> 0 (a> 0)的解集是:X M-当b2- 4ac v 0时,关于x的不等式ax2+bx+c> 0 (a> 0)的解集是全体实数.22. (1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BG AB上的点,且CE=BF连接DE过点E 作EG! DE 使EG=DE 连接FG FC,请判断:FG 与CE 的数量关系是 FG=CE,位置关系是 FG// CE . (2) 拓展探究:如图2,若点E 、F 分别是CB BA 延长线上的点,其它条件不变, 请出判断判断予以证明; (3)类比延伸:如图3,若点E 、F 分别是BC AB 延长线上的点,其它条件不变,【考点】LO 四边形综合题.利用等量代换即可求出 FG=CE FG// CE(2) 构造辅助线后证明△ HGE^A CED 利用对应边相等求证四边形 GHBF 是矩形后,利用等 量代换即可求出 FG=CE FG// CE(3) 证明△ CBF ^A DCE 即可证明四边形 CEGF 是平行四边形,即可得出结论. 【解答】 解:(1) FG=CE FG// CE;理由如下: 过点G 作GHLCB 的延长线于点 H,如图1所示: 则 GH// BF,Z GHE=90 , •/ EG 丄 DE•••/ GEH 丄 DEC=90 , •••/ GEH 丄 HGE=90 , •••/ DEC=z HGE^ZGHE=ZDCE在^ HGE" CED 中, ZHGE^ZDEC EG 二 DE :• △ HGE^A CED( AAS ,••• GH=CE HE=CD(1)中结论是否仍然成立?(1)中结论是否仍然成立?【分析】(1)构造辅助线后证明△ HGE^A CED 利用对应边相等求证四边形GHBF 是矩形后,请直接写出你的判断.医1•/ CE=BF•GH=BF•/ GH// BF,•四边形GHBF是矩形,•GF=BH FG// CH•FG// CE•••四边形ABCD是正方形,•CD=BC•HE=BC•HE+EB=BC+EB•BH=EC•FG=EC故答案为:FG=CE FG// CE;(2) FG=CE FG// CE仍然成立;理由如下:过点G作GHLCB的延长线于点H ,如图2所示:•/ EG丄DE•/ GEH丄DEC=90 ,•••/ GEH丄HGE=90 ,•/ DEC=z HGE'ZGHE=ZDCE 在厶日6£与4 CED中,ZHGE=ZDEC ,EG-DE•△HGE^A CED( AAS ,•GH=CE HE=CD•/ CE=BF • GH=BF•/ GH// BF,•四边形GHBF是矩形,•GF=BH FG// CH• FG// CE•••四边形ABCD是正方形,••• CD=BC••• HE=BC•HE+EB=BC+EB•BH=EC•FG=EC(3) FG=CE FG// CE仍然成立.理由如下: •••四边形ABCD是正方形,•BC=CD / FBC=/ ECD=90 ,在厶CBF与厶DCE中,1 ZFBC-ZECDBC=DC•△CBF^A DCE( SAS ,•/ BCF=/ CDE CF=DE•/ EG=DE • CF=EG•••DE 丄EG•/ DEC/ CEG=90•/ CDE/ DEC=90•/ CDE/ CEG•/ BCF=/ CEG•CF/ EQ•四边形CEGF平行四边形,_ 223. 如图,二次函数y=ax+bx+c的图象与x轴的交点为A D (A在D的右侧),与y轴的交点为C,且A (4, 0), C ( 0,- 3),对称轴是直线x=1 .(1 )求二次函数的解析式;(2)若M是第四象限抛物线上一动点,且横坐标为m设四边形OCMA勺面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA勺面积最大;(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A, B、C, P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1 )利用抛物线的对称性可得到点D的总表,然后将A、C D的坐标代入抛物线的解析式可求得a、b、c的值,从而可得到二次函数的解析式;(2 )设M( m, —x 2 x —3), |y M= 卅+― m+3 由S=S^ACM+S A OA M可得到S 与m 的函数关8 4 8 4系式,然后利用配方法可求得S的最大值;(3)当AB为平行四边形的边时,则AB// PC则点P的纵坐标为-3,将y=—3代入抛物线的解析式可求得点P的横坐标;当AB为对角线时,AB与CP互相平分,则点P的纵坐标为3, 把y=3代入抛物线的解析式可求得点P的横坐标.【解答】解:(1)v A (4, 0),对称轴是直线x=l ,二 D (—2, 0).又••• C (0,—3)1二-3 二“ 16a+4b+c-04a-2b+c~0解得., b=——,c= - 3,8 4•••二次函数解析式为:丫= X- — x - 3.8 4••• s 冷 x OC X 吨 X OA X |yM =* X 3 x 吨 x 4X (-討计+3 =-討伽+6=一 弓2+9,当m=2时,s 最大是9.(3)当AB 为平行四边形的边时,则 AB// PC,• PC// x 轴.•••点P 的纵坐标为-3.3 2 3将y= - 3代入得:-匚x - ,x - 3= - 3,解得:x=0或x=2 . ••点 P 的坐标为(2,- 3). 当AB 为对角线时. ••• ABCP 为平行四边形, • AB 与CP 互相平分, •••点P 的纵坐标为3.把 y=3 代入得:一 x 2-—x - 3=3,整理得:x 2- 2x - 16=0,解得:x=1+屯厂.j 或 x=1 o 4综上所述,存在点 P (2,- 3)或P (1+ —, 3)或P (1 - —3)使得以A , B C, P四点为顶点|y M=-易 m 4m+3(m — 2)-S=S\ ACI\+S\的四边形为平行四边形.。
中考数学模拟试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的相反数是()A.﹣B.3C.﹣3D.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(xy)2÷=(xy)3C.(x2y3)2=x4y5D.2xy﹣3yx=xy 3.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.(3分)口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移36.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1B.2C.3D.4二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根是.8.(3分)若∠α=32°22′,则∠α的余角的度数为.9.(3分)化简:﹣3的结果是.10.(3分)一组数据2、﹣2、4、1、0的方差是.11.(3分)若关于x的一元二次方程ax2﹣bx+2=0(a≠0)的一个解是x=1,则3﹣a+b的值是.12.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.13.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为cm2.14.(3分)如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于.15.(3分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A=.16.(3分)抛物线y=mx2﹣2mx+m﹣3(m>0)在﹣1<x<0位于x轴下方,在3<x<4位于x轴上方,则m的值为.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)计算或解方程(1)(﹣)﹣2+|3tan30°﹣1|﹣(π﹣3)°;(2)=﹣3.18.(8分)近年来,学校对“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题密切关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对这一问题的看法人数统计表看法没有影响影响不大影响很大学生人数(人)4060m(1)求n的值;(2)统计表中的m=;(3)估计该校1800名学生中认为“影响很大”的学生人数.19.(8分)在一个不透明袋子中有1个红球和3个白球,这些球除颜色外都相同.(1)从袋中任意摸出2个球,用树状图或列表求摸出的2个球颜色不同的概率;(2)在袋子中再放入x个白球后,进行如下实验:从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.95左右,求x的值.20.(8分)学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.21.(10分)写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)已知:.求证:.证明:22.(10分)如图,物理实验室有一单摆在左右摆动,摆动过程中选取了两个瞬时状态,从C处测得E、F两点的俯角分别为∠ACE=60°,∠BCF=45°,这时点F 相对于点E升高了4cm.求该摆绳CD的长度.(精确到0.1cm,参考数据:≈1.41,≈1.73)23.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的最高点到路面的距离为6米.(1)按如图所示建立平面直角坐标系,求表示该抛物线的函数表达式;(2)一辆货运卡车高为4m,宽为2m,如果该隧道内设双向车道,那么这辆货车能否安全通过?24.(10分)如图,在等边△ABC中,M是边BC延长线上一点,连接AM交△ABC的外接圆于点D,延长BD至N,使得BN=AM,连接CN、MN,(1)求证:△CMN是等边三角形;(2)判断CN与⊙O的位置关系,并说明理由;(3)若AD:AB=3:4,BN=4,求等边△ABC的边长.25.(12分)如图1,矩形ABCD中,P是AB边上的一点(不与A,B重合),PE 平分∠APC交射线AD于E,过E作EM⊥PE交直线CP于M,交直线CD于N.(1)求证:CM=CN;(2)若AB:BC=4:3,①当=时,E恰好是AD的中点;②如图2,当△PEM与△PBC相似时,求的值.26.(14分)如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A、B,反比例函数y=经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M 的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y=的图象有唯一公共点M,且OM=,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.2018年中考数学模拟试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的相反数是()A.﹣B.3C.﹣3D.【解答】解:根据相反数的定义,得的相反数是﹣.故选A.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(xy)2÷=(xy)3C.(x2y3)2=x4y5D.2xy﹣3yx=xy【解答】解:(A)2x与2y不是同类项,故A错误;(C)原式=x4y6,故C错误;(D)原式=﹣xy,故D错误;故选(B)3.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【解答】解:如图所示:这个几何体是四棱锥.故选:A.4.(3分)口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球【解答】解:A、随机摸出1个球,是白球是不可能事件,选项不符合题意;B、随机摸出1个球,是红球是随机事件,选项符合题意;C、随机摸出1个球,是红球或黄球是必然事件,选项不符合题意;D、随机摸出2个球,都是黄球是不可能事件,选项不符合题意.故选B.5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:A.6.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1B.2C.3D.4【解答】解:p=a2+2b2+2a+4b+5=(a+1)2+2(b+1)2+2≥2,故选B.二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根是±3.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.8.(3分)若∠α=32°22′,则∠α的余角的度数为57°38'.【解答】解:90°﹣∠α=90°﹣32°22′=57°38'.故答案为:57°38'.9.(3分)化简:﹣3的结果是.【解答】解:原式=2﹣=.故答案为:.10.(3分)一组数据2、﹣2、4、1、0的方差是4.【解答】解:这组数据的平均数是:(2﹣2+4+1+0)÷5=1,则方差= [(2﹣1)2+(﹣2﹣1)2+(4﹣1)2+(1﹣1)2+(0﹣1)2]=4.故答案为:4.11.(3分)若关于x的一元二次方程ax2﹣bx+2=0(a≠0)的一个解是x=1,则3﹣a+b的值是5.【解答】解:∵关于x的一元二次方程ax2﹣bx+2=0(a≠0)的一个解是x=1,∴a﹣b+2=0,∴a﹣b=﹣2,∴3﹣a+b=3﹣(a﹣b)=3+2=5.故答案是:5.12.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°.【解答】解:如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.13.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为24πcm2.【解答】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=•8π•6=24π(cm2).故答案为:24π.14.(3分)如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于150°.【解答】解:∵⊙O的内接四边形ABCD中,∠A=105°,∴∠C=75°,∴∠BOD=150°.故答案为:150°.15.(3分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A=.【解答】解:设AD=BC=x,∵∠ACB=90°,CD⊥AB,∴∠A+∠ACD=∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ABC∽△CBD,∴,即,∴BD=x,∴sin∠A=sin∠BCD===,故答案为:.16.(3分)抛物线y=mx2﹣2mx+m﹣3(m>0)在﹣1<x<0位于x轴下方,在3<x<4位于x轴上方,则m的值为.【解答】解:∵抛物线y=mx2﹣2mx+m﹣3(m>0)的对称轴为直线x=1,而在3<x<4位于x轴上方,∴抛物线在﹣2<x<﹣1这一段位于x轴的上方,∵在﹣1<x<0位于x轴下方,∴抛物线过点(﹣1,0),把(﹣1,0)代入y=mx2﹣2mx+m﹣3得m+2m+m﹣3=0,解得m=,故答案为:.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)计算或解方程(1)(﹣)﹣2+|3tan30°﹣1|﹣(π﹣3)°;(2)=﹣3.【解答】解:(1)原式=4+﹣1﹣1=2+;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.18.(8分)近年来,学校对“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题密切关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对这一问题的看法人数统计表看法没有影响影响不大影响很大学生人数(人)4060m(1)求n的值;(2)统计表中的m=100;(3)估计该校1800名学生中认为“影响很大”的学生人数.【解答】解:(1)n=40÷20%=200(人).答:n的值为200;(2)m=200﹣40﹣60=100;(3)1800×=900(人).答:该校1800名学生中认为“影响很大”的学生人数约为900人.故答案为:(2)100.19.(8分)在一个不透明袋子中有1个红球和3个白球,这些球除颜色外都相同.(1)从袋中任意摸出2个球,用树状图或列表求摸出的2个球颜色不同的概率;(2)在袋子中再放入x个白球后,进行如下实验:从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.95左右,求x的值.【解答】解:(1)树状图如下所示:由树形图可知所有可能情况共12种,其中2个球颜色不同的数目有6种,所以2个球颜色不同的概率==;(2)由题意可得:=0.95,解得:x=16,经检验x=16是原方程的解,所有x的值为16.20.(8分)学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.【解答】解:设每套课桌椅的成本x元.则:60×(100﹣x)=72×(100﹣3﹣x).解之得:x=82.答:每套课桌椅成本82元.21.(10分)写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)已知:在△ABC中,AB=AC.求证:∠B=∠C.证明:【解答】解:已知:在△ABC中,AB=AC,求证:∠B=∠C,证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,∵∴Rt△ABD≌Rt△ACD(HL),∴∠B=∠C.22.(10分)如图,物理实验室有一单摆在左右摆动,摆动过程中选取了两个瞬时状态,从C处测得E、F两点的俯角分别为∠ACE=60°,∠BCF=45°,这时点F 相对于点E升高了4cm.求该摆绳CD的长度.(精确到0.1cm,参考数据:≈1.41,≈1.73)【解答】解:分别过点E、F作EG⊥CD,FH⊥CD,垂足分别为G、H,设摆绳CD的长度为xcm.则CE=CF=xcm.由题意知:HG=4,∠CEG=60°,∠CFH=45°.在Rt△CEG中,sin∠CEG=,∴CG=CE•sin∠CEG=x•sin60°,在Rt△CFH中,sin∠CFH=,∴CH=CF•sin∠CFH=x•sin45°.∵HG=CG﹣CH,∴x•sin60°﹣x•sin45°=4,解得x=8(+)≈25.1.答:摆绳CD的长度为25.1cm.23.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的最高点到路面的距离为6米.(1)按如图所示建立平面直角坐标系,求表示该抛物线的函数表达式;(2)一辆货运卡车高为4m,宽为2m,如果该隧道内设双向车道,那么这辆货车能否安全通过?【解答】解:(1)如图1,由题意得:最高点C(4,6),B(8,2),设抛物线的函数表达式:y=a(x﹣4)2+6,把(8,2)代入得:a(8﹣4)2+6=2,a=﹣,∴y=﹣(x﹣4)2+6;(2)如图2,当DE=2时,AD=AE﹣DE=4﹣2=2,当x=2时,y=﹣(2﹣4)2+6=5>4,∴这辆货车能安全通过.24.(10分)如图,在等边△ABC中,M是边BC延长线上一点,连接AM交△ABC的外接圆于点D,延长BD至N,使得BN=AM,连接CN、MN,(1)求证:△CMN是等边三角形;(2)判断CN与⊙O的位置关系,并说明理由;(3)若AD:AB=3:4,BN=4,求等边△ABC的边长.【解答】解:(1)△CMN是等边三角形,理由:在△BCN与△ACM中,,∴△BCN≌△ACM,∴CN=CM,∠BCN=∠ACM,∴∠BCN﹣∠ACN=∠ACM﹣∠ACN,即∠MCN=∠ACB=60°,∴△CMN是等边三角形;(2)连接OA.OB.OC,在△BOC与△AOC中,,∴△BOC≌△AOC,∴∠ACO=∠BCO=ACB=30°,∵∠ACB=∠MCN=60°,∴∠ACN=60°,∴∠OCN=90°,∴OC⊥CN,∴CN是⊙O的切线;(3)∵∠ADB=∠ACB=60°,∴∠ADB=∠ABC,∵∠BAD=∠MAB,∴△ABD∽△AMB,∴=,∵AM=BN=4,∴AB=3.∴等边△ABC的边长是3.25.(12分)如图1,矩形ABCD中,P是AB边上的一点(不与A,B重合),PE 平分∠APC交射线AD于E,过E作EM⊥PE交直线CP于M,交直线CD于N.(1)求证:CM=CN;(2)若AB:BC=4:3,①当=时,E恰好是AD的中点;②如图2,当△PEM与△PBC相似时,求的值.【解答】(1)证明:延长PE交CD的延长线于F,如图1所示:∵四边形ABCD是矩形,∴AB∥CD,∠A=∠ADC=∠EDF═90°,AB=CD,AD=BC,∴∠APE+∠AEP=90°,∴∠F=∠APE,∵EM⊥EN,∴∠PEN=∠FEN=90°,∴∠CPE+∠PME=90°,∠F+∠N=90°,∵PE平分∠APC,∴∠APE=∠MPE,又∵∠PME=∠CMN,∴∠CMN=∠N,∴CM=CN;(2)解:①若E是AD的中点,则M、N、C三点重合,∵E为AD的中点,∴AE=DE,在△APE和△DFE中,,∴△APE≌△DFE(ASA),∴AP=DF,PE=FE,∵EM⊥EN,∴PC=FC,∵FC=CD+DF,∴AP+CD=PC,设AD=3a,AB=4a,过P作PF⊥CD于F,如图2所示:设AP=DE=x,则PB=CF=4﹣x,PC=4+x,PF=3,由勾股定理得:(4﹣x)2+32=(4+x)2,解得:x=a,4﹣x=a,∴;②分两种情况:1.若△PEM∽△CCBP,则∠EPM=∠BCP,∴PE∥BC,不成立;2.若△PEM∽△PBC,则∠APE=∠EPM=∠BPC=60°,设AB=4a,BC=AD=3a,则PB=a,AP=(4﹣)a,AE=(4﹣3)a,设PE与CD交于点F,如图3所示:∵AB∥CD,∴∠EFN=∠BFC=∠APE=60°,∴∠N=∠M=90°﹣60°=30°,∵EM⊥PE,∴∠NEF=∠PEM=90°,∴△PEM∽△FEN,∴,∵AB∥CD,∴,∴===.26.(14分)如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A、B,反比例函数y=经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M 的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y=的图象有唯一公共点M,且OM=,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【解答】解:(1)当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x=,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,则,﹣3x+2=,当x=m时,﹣3m+2=,∴k=﹣3m2+2m(0<m<);(2)由题意得:,ax+2=,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y=有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM=,∴12+(﹣)2=()2,a=±;(3)当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,∴k的取值范围是2≤k≤3.。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.用放大镜将图形放大,应该属于( ) ) A .相似变换B .平移变换C .对称变换D .旋转变换2.主视图为下列图形的( )3.把一个正方形三次对折后沿虚线剪下, 如图所示, 则所得的图形是( )4.如图,已知BE=CF ,且∠B=∠DEF, ∠A=∠D ,那么△ABC 和△DEF 是( ) A .一定全等B .一定不全等C . 无法判定D .不一定全等5.从一副扑克牌中任意抽出一张,可能性相同的的是( ) A .大王与黑桃B .大王与10C .10与红桃D .红桃与梅花6.某市气象预报称:“明天本市的降水概率为70%”,这句话指的是( ) A .明天本市70%的时间下雨,30%的时间不下雨 B .明天本市70%的地区下雨,30%的地区不下雨 C .明天本市一定下雨D .明天本市下雨的可能性是70%7.下面计算中,能用平方差公式的是( ) A .)1)(1(--+a a B .))((c b c b +--- C .)21)(21(-+y xD .)2)(2(n m n m +-8.已知a <0,若-3a n ·a 3的值大于零,则n 的值只能是( ) A .n 为奇数B .n 为偶数C .n 为正整数D .n 为整数9.下面每组图形中的两个图形不是通过相似变换得到的是( )10.某人在平面镜里看到的时间是,此时实际时间是( ) A . 12:01B . 10:51C . 10:21D . 15:1011.下列式子成立的是( )A .(2a -1)2=4a 2-1B .(a+3b )2=a 2+9b 2C .(-a+b )(-a-b )=a 2-b 2D .(-a -b )2=a 2-2ab+b 212.下列多项式中,能用公式法分解因式的是( ) A .x 2-xyB . x 2+xyC . x 2-y 2D . x 2+y 213.若9x 2+kx+16是一个完全平方式,则k 的值等于( ) A.12 B.24 C.-24 D.±2414.如图,∠B=∠C ,BF=CD ,BD=CE ,则∠α 与∠A 的关系是( ) A .2∠α+∠A= 180° B .∠α+∠A= 180° C . ∠α+∠A= 90°D .2∠α+∠A= 90°15.下列各式中,是分式的是( ) A .2-πx B .31x 2 C .312-+x xD .21x 16.若0(2)1x -=,则 x 满足的条件是( ) A .x 可取任何实数 B .0x ≠ C .2x ≠D .2x =17.在1()n m n x x -+⋅=中,括号内应填的代数式是( )A .1m n x++ B .2m x+C .1m x+D .2m n x++18.小王只带2元和 5元两种面值的人民币,他买一件学习用品要支付27元,则付款的方式有( ) A . 1种B . 2种C .3种D .4种19.用科学记数法表示0.000 0907,并保留两个有效数字,得( ) A . 49.110-⨯B .59.110-⨯C .59.010-⨯D .59.0710-⨯20.若关于x 的分式方程311x mx x -=--有增根,则m 的值为( ) A .1m =B .2m =-C .0m =D .无法确定21.小数表示2610-⨯结果为( ) A . 0.06B . -0.006C .-0.06D .0.00622.如图,要使 a ∥b ,则∠2 与∠3 满足条件( ) A .∠2=∠3B .∠2+∠3=90°C .∠2+∠3=180°D .无法确定23. 如图,AB ∥CD ,∠1=110°, ∠ECD =70°,∠E 等于( ) A .30°B . 40°C . 50°D . 60°24.将一副直角三角尺如图放置,已知AE BC ∥,则AFD ∠的度数是( ) A .45B .50C .60D .7525.下列图形:①线段;②角;③数字7;④圆;⑤等腰三角形;⑥直角三角形.其中轴对称图形是( ) A .①②③④B .①③④⑤⑥C .①②④⑤D .①②⑤ 26. 在数①-32;②5. 8;③3178;④-0. 31;⑤0;⑥ 48;⑦2;⑧35-中,负分数的个数有( ) A .0 个B .1 个C .2 个D .3 个27.一个三角形的两条边分别为1和2,若要使这个三角形成为直角三角形,则应满足下列各个条件中的( ) A .第三边长为3B .第三边的平方为3C .第三边的平方为5D .第三边的平方为3或528.由6个大小相同的小正方体组合而成的立方体图形如图所示,则关于它的三视图说法正确的是( ) A .主视图的面积最大 B .左视图的面积最大 C .俯视图的面积最大 D .三个视图的面积一样大29.若关于x 的方程1011--=--m xx x 有增根,则m 的值是( )30.用x -代替各式中的x ,分式的值不变的是( ) A .32x B .3x-C .21xx + D .211x -+ 31.下列语句中正确的是( ) A .自然数是正数 B .0 是自然数C .带“-”号的数是负数D .一个数不是正数就是负数32. 在 0.25,14-,13-,0,3,+4,-3 这几个数中,互为相反数的有( ) A .0 对B .1 对C .2 对D . 3 对33.下列各组数中,互为相反数的是( ) A .7||8-和78-B .7||8-和87-C .7||8-和78D .7||8-和8734.如果两个数的积为零,那么这两个数( ) A . 都为0B .至多有一个为 0C .不都为0D .至少有一个为035. 下列说法正确的是( ) A .两个负数相加,绝对值相减B. 正数加负数,和为正数;负数加正数,和为负数 C .两正数相加,和为正数;两负数相加,和为负数 D .两个有理数相加等于它们的绝对值相加 36.下面计算正确的是( )A .-5 ×(-4)×(-2) )×(-2) = 5 ×4×2×2=80B .(-12)×(11134--)=-4+3+1=0 C .(- 9)×5 ×(-4 )×0 = 9×5×4 = 180 D .-2×5 -2×(-1)-(-2)×2 =-2(5+1-2)=-8 37.用计算器求0.35×15时,按键顺序正确的是 ( ) A . B . C .D .以上都不正确38.若-2 减去一个有理数的差等于-7,则-2乘以这个有理数的积等于( )39.下面结论中,错误的是( ) A .一个数的平方不可能是负数 B .一个数的平方一定是正数 C .一个非 0有理数的偶数次方是正数 D .一个负数的奇数次方还是负数 40.下列各组数中,互为倒数的是( ) A . -1与-1B . 0.1与 1C .-2与 0.5D .-43与4341.计算|2|3+-的值是( )A .1B .-1C . 5-D .542.9的算术平方根是( ) A . ±3B . 3C . -3D . 343.下列6组长度的线段中,可以首尾相接组成三角形的是( )①3,4,5;②1,1,3;③1,2,3;④5,5,5;⑤2,2,5;⑥3,7,4 A .①②③④⑤⑥B .①④⑤C .①③④D .①②③④44.下列计算中,正确的是( ) A .23a b ab +=B .770ab ba -+=C .22245x y xy x y -=-D .235x x x +=45.下列说法中,错误的是( ) A .等边三角形是特殊的等腰三角形B .等腰三角形底边上的中线是等腰三角形的对称铀C . 有一个角为 45°的直角三角形是等腰直角三角形D .等腰三角形的顶角可以是锐角、直角或钝角 46.下列说法中,正确的是( ) A .b 的指数是0B .b 没有系数C .-3是一次单项式D .-3是单项式47.下列方程的变形是移项的是( ) A .由723x =,得67x = B .由x=-5+2x, x =2x-5 C .由2x-3=x+5, 得2x+x=5-3 D .由111223y y -=+,得112123y y -=+ 48.要清楚地表明病人的体温变化情况,应选用的统计图是( ) A .扇形统计图B .折线统计图C .条形统计图D .以上都可以49.下列各几何体的表面中,没有曲面的是( ) A .圆柱B .圆锥C .棱柱D .球50.如图,C、D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm51.如图,点P是直线MN外一点,PD⊥MN,垂足为D,A、B是直线MN上的两点,连结PA、PB,已知PA=4cm,PB=5cm,PD=3cm,则点P到直线MN的距离是()A.4cm B.5cm C.3cm D.无法确定52.一副三角板不能拼出的角的度数是(拼接要求:既不重叠又不留空隙)()A.75°B.105°C.120°D.125°53.某商场为促销将一种商品 A 按标价的九析出售,仍可获利润 10%. 若商品A 的标价是33元,那么该商品的进价为()A.31元B.30.2元C.29.7元D.27元54.如图所示,△ABC平移至△DEF,下列关于平移的方向和移动距离叙述正确的是()A.方向是沿BC方向,大小等于BC的长B.方向是沿BC方向,大小等于CF的长C.方向是沿BA方向,大小等于BE的长D.方向是沿AD方向,大小等于BF的长55.将如图所示的图形按照顺时针方向旋转90°后所得的图形是()56.下面四个图中,在旋转180°后还和原来一样的是()57.计算32()x的结果是()A.5x B.6x C.8x D.9x58.下列各组代数式中,不是同类项的一组是()A.12-和0 B.213ab c-和2cab C.2xy和2x y D.3xy和xy-59.如图,小亮要测量一电线杆 AB 的高度,他站在该电线杆的影子上前后移动,直到他本身影子的顶端正好与电线杆影子的顶端重叠,此时同伴测量出小亮距离电线杆9m,小亮的影子长 5m,若小亮的身高为 1.7m,则电线杆AB 的高度是( ) A .4.7mB .4.76mC .3.6mD .2.9m60.下列各图中,是正方体展开图的是( )A .B .C .D .61. 如图,某反比例函数的图像过点M (2-,1),则此反比例函数表达式为( ) A .y=2x B .y=-2x C .y=12x D .y=-12x 62.根据下列条件,能判断△ABC 是等腰三角形的是( ) A .∠A=50°,∠B=70° B .∠A=48°,∠B=84° C .∠A=30°,∠B=90°D .∠A=80°,∠B=60°63.二次函数28y x x c =-+的最小值是( ) A .4B .8C .-4D .1664.抛物线22y x x c =-+与x 轴无公共点,则c 的取值范围是( ) A .18c <B .18c >C .18c ≤D .c 为任何实数65.把抛物线226y x =-+平移后所得的新抛物线在 x 轴上截得的线段长为 2,则原抛物线应( ) A . 向上平移 4 个单位 B .向下平移4个单位 C . 向左平移 4 个单位 D .向右平移4 个单位66.如图,在直角三角形AOB 中,AB ⊥OB ,且OB=AB=3,设直线l :x =t ,截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为 ( ) 67.下列说法正确的是( ) A .弦是直径B .弧是半圆C .过圆心的线段是直径D .平分弦的直径平分弦所对的弧68.过⊙O 内一点M 的最长的弦长为6 cm ,最短的弦长为 4 cm ,则OM 的长为( )A cmB cmC .2 cmD .3 cm69.如图,Rt △ACB 中,∠C= 90°,以A 、B 分别为圆心,lcm 为半径画图,则图中阴影部分面积是( )A .14πB .1:8πC .38πD .12π70.如图,AB 是⊙O 的直径,点 C .D 在半圆,且∠BAC=20°,则∠ADC 的度数是( ) A .110°B .l00°C .120°D .90°71.下列各式中,正确的是( ) A .16 =±4B . ±16 =4C .(-5 )2=-5D .-(-5)2 =-572.在一张由复印机复印出来的纸上,一个多边形的一条边由原来的1 crn 变成了 4 cm ,那么这次复印的多边形的面积变为原来的( ) A . 不变B .2 倍C .4 倍D . 16 倍73.下列说法正确的是( )A .平行四边形面积公式s ab =(a 、b 分别是一条边长和这条边上的高),S 与a 成反比例B .功率P UI =中,当 P 是非零常数时,U 与I 成反比例C .11y x =-中,y 与x 成反比例 D .12x y -=中,y 与x 成正比例 74.某商店举办有奖销售活动,购物满100元者发对奖券一张.在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物刚好满100元,那么他中一等奖的概率是( ) A .1001 B .10001C .100001D .1000011175.若⊙O 的半径为6,如果一条直线和圆相切,P 为直线上的一点,则OP 的长度( ) A .OP=6B .OP >6C .OP ≥6D .OP <676.已知Rt ΔABC 中,∠C=90︒,BC=a 、AC=b ,以斜边AB 上一点O 为圆心,作⊙O 使⊙O 与直角边AC 、BC 都相切,则⊙O 的半径r 等于( )A B .2ab C .aba b+ D .a bab+ 77.设有 10 个型号相同的杯子,其中一等品 7个、二等品 2个、三等品 1 个,从中任取一个杯子是一等品的概率等于( ) A .310B .70l C .37D .1778.福彩“五位数”玩法规定所购彩票的 5 位数与开奖结果的 5 位数顺序与大小均相同,则中一等奖,问购一张彩票中一等奖的概率是()A.15B.5110C.6110D.101579.已知⊙O的半径为r,圆心O到直线l的距离为d.若直线l与⊙O有交点,则下列结论正确的是()A.d=r B.d≤r C.d≥r D.d<r80.人走在路灯下的影子的变化是()A.长→短→长B.短→长→短C.长→长→短D.短→短→长下列一组几何体的俯视图是()82.电影院里阶梯的形状成下坡的原理是()A.减少盲区B.盲区不变 C.增大盲区 D.为了美观而设计的83.下列投影不是中心投影的是()A.B.C.D.84.平行光照在竖立地面的两标杆上,产生影子,标杆 CD 长为 lm,其影子长为 2m,若标杆 AB 的影子长为4m,则 AB 长为()A.O.5m B.lm C.2m D.8m85.如图,是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是()86.已知线段a=4,b=8,则a、b钓比例中项是()A.B.±C.32 D.2±87.一次函数的图象如图所示,这个一次函数的解析式是()A.1y x=-+B.1y x=-C.1y x=--D.1y x=+88.某射击运动员连续射靶10次,其中2次命中10.2环,2次命中10.1环,6次命中10环,则下列说法中,正确的是()A .命中环数的平均数是l0.1环B .命中环数的中位数是l0.1环C .命中环数的众数是l0.1环D .命中环数的中位数和众数都是l0环89.为筹备班级里的晚会,班干部对全班同学爱吃哪几种水果作了民意调查,决定最终买什 么水果,最终决定应该根据调查数据的( ) A .平均数B .中位数C .众数D .以上都可以90.有两组数据,第一组有4个数据,它们的平均数为x ,第二组有6个数据,他们的平均数为y ,则这两组数据的平均数为( ) A .2x y+ B .46x y + C .235x y+ D .10x y+ 91.下列调查工作需采用普查方式的是( ) A .环保部门对淮河某段水域的水污染情况的调查 B .电视台对正在播出的某电视节目收视率的调查 C .质检部门对各厂家生产的电池使用寿命的调查 D .企业在给职工做工作服前进行的尺寸大小的调查92.要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( ) A.个体 B.总体 C .样本容量 D .总体的一个样本 93.反比例函数xky =(k >0)的部分图象如图所示,A 、B 是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2 的大小关系为( ) A . S 1> S 2B . S 1= S 2C . S 1 <S 2D . 无法确定94. 已知三角形的两边长分别为 3,5,则第三边上的中线 m 的取值范围是( ) A .1m >B .14m ≤≤C .14m <<D .4m <95.若k 满足23153k k +≥⎧⎪⎨-≤⎪⎩,则化简|2||1|||k k k +--+得( )A .3k +B .3k -C .31k +D .1k +96.不等式组0260x ≤-≤的解是( ) A .3x ≥ B .3x ≤C .3x =D .无解97.在方程组221x y my x -=⎧⎨-=⎩中,x 、y 满足0x y +>,则m 的取值范围在数轴上表示为( )A .B .C .D .98.已知a b <,则下列不等式一定成立的是( )A .33a b +>+B .22a b >C .a b -<-D .0a b -<99.若等腰三角形底角为72°,则顶角为( )A .108°B .72°C .54°D .36°100.如图,下列条件中能得到△ABC ≌△FED 的有( )①AB ∥EF ,AC ∥FD ,BD=CE ;②AC=DF ,BC=DE ,AB=EF ;③∠A=∠F ,BD=CE ,AB=EF ;④BD=CE ,BA+AC=EF+FD ,BA=EF .A .1个B .2个C .3个D .4个101.如图,梯形ABCD 中,AD ∥BC,AD=AB,BC=BD,∠A=100°,则∠C=( )A .80°B .70°C .75°D .60°102. 一个矩形的长比宽多 4m ,面积是100 m 2.若设矩形的长为 x (m ),根据题意列出下列方程,正确的是( )A . 241000x x +-=B .241000x x --=C .241000x x ++=D .241000x x -+=103.我们知道矩形、菱形和正方形都是特殊的平行四边形,图中的椭圆和两个圆及它们的公共部分(即图中阴影部分)分别表示以上的四种四边形之间的关系,则图中的阴影部分所表示的四边形是( )A .平行四边形B .矩形C .菱形D .正方形104.在10,20,40,30,80,90,50,40,40,50这10个数据中,极差是 ( )A .40B .70C .80D .90105.2b ≥ ) A .2 个 B .3 个 C .4 D .5 个106.将一个有40个数据的样本经统计分成6组,若某一组的频率为0.15,则该组的频数为 ( )A .6B .0.9C .6D .1107.如图,DE 是△ABC 的中位线,F 是DE 的中点,BF 的延长线交AC 于点H ,则AH :HE 等于( )108.不等式组475(1)22463x x x x-<-⎧⎨->-⎩的解在数轴上表示为( )A .B .C .D . 109.把长为 6个单位长度的木条的左端放在数轴上表示-10 和-11 的两点之间,则木条的右端会落在( )A . -4~3之间B . -6~5之间C .-5~4之间D .-7~6之间110.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A .13B .12C .23D .34 111.已知整式22x 3()(21)ax x b x +-=+-,则b a 的值是( )A . 125B . -125C .15D .-15112.若2540x y z ++=,370x y z +-=,则x y z +-的值是( )A . 0B . 2C . 1D . 不能确定 113.由表格中信息可知,若使2y ax bx c =++,则下列 y 与x 之间的函数关系式正确的是( )A .243y x x =-+B .234y x x -=+C .233y x x =--D .248y x x =-+114.正方形 ABCD 的边长为 1,对角线 AC 、BD 相交于点O ,若以 O 为圆心作圆,要使点A 在⊙O 外,则所选取的半径可能是( )A .12BCD .2115.下列说法正确的是( )A .相等的弦所对的圆心角相等B .相等的圆心角所对的弧相等C .同圆中,相等的弧所对的弦相等D .相等的弧所对的圆心角相等116.已知△ABC 如右图,则下列4个三角形中,与△ABC 相似的是( )117.用两个全等的三角形拼成四边形,可拼成平行四边形的个数是( )A .2个B .3个C .4个D .5个118.在四边形中,钝角最多能有( )A .1个B .2个C .3个D .4个119.如图,已知矩形ABCD 中,E ,F 分别是AP ,RP 的中点,当 P 在BC 上从B 向C 移动而R 不动时,那么下列结论正确的是( )A .线段EF 的长不断增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定120.在△ABC 中,∠C = 90°,a 、b 分别是∠A 、∠B 的对边,若a :b=2:5,则 sinA : sinB 的值是 ( )A .25B .52C .425D .254【参考答案】***试卷处理标记,请不要删除一、选择题1.A2.B3.C4.A5.D6.D7.B8.B9.D10.B14.A 15.C 16.C 17.C 18.C 19.B 20.B 21.A 22.C 23.B 24.D 25.C 26.C 27.D 28.C 29.B 30.D 31.B 32.C 33.A 34.D 35.C 36.A 37.B 38.A 39.B 40.A 41.A 42.B 43.D 44.B48.B 49.C 50.B 51.C 52.D 53.D 54.B 55.C 56.C 57.B 58.C 59.B 60.C 61.B 62.B 63.D 64.B 65.B 66.D 67.D 68.B 69.A 70.A 71.D 72.D 73.B 74.B 75.C 76.C 77.B 78.B82.A 83.D 84.C 85.B 86.B 87.D 88.D 89.C 90.C 91.D 92.C 93.B 94.C 95.A 96.C 97.B 98.D 99.D 100.C 101.B 102.B 103.D 104.C 105.B 106.C 107.C 108.A 109.C 110.C 111.A 112.A116.C 117.B 118.C 119.C 120.A。