解分数应用题的几点诀窍
- 格式:doc
- 大小:22.50 KB
- 文档页数:4
六个技巧解决小学六年级数学难题——分数应用题——分数应用题分数应用题是小学数学应用题中的重点难点,由于抽象程度比较高,很多孩子都难以把握,致使失分率也比较高。
其实,分数应用题的解题是有规律可循的,家长在辅导孩子时,就要教孩子抓住规律,得出解题方法。
总的来说,帮助孩子攻克分数应用题,家长从以下六个解题技巧入手。
一、字斟句酌分数应用题很多时候容易产生“歧义”,所以家长要特别提醒孩子在审题时抓住关键句,找准比较的对象。
分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点。
比如:汽车在公路上行驶,先把速度提高20%,再把速度降低20%,现在的速度是原来的百分之几?分析:设定原来的速度为100%,提高20%后为120%,当再次降低时,是在120%的基础上降低,此时的20%是120%×0.2=24%。
所以降低后是120%-24%=96%。
二、抓不变量有些分数应用题数量变化多,分析难度大,不易列式计算。
但是,仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的不变量。
对于这类分数应用题,家长辅导孩子解答时,要专注“不变量”,以静制动,使问题迎刃而解。
比如:有两桶水,第一桶水的重量是第二桶水的6倍,从第一桶取出12千克水加入第二桶,这时第一桶水的重量是第二桶的4倍,问第一桶原来有水多少千克?分析:两桶水的总重量总是不变的,但又未知,我们把它看作单位“1”的量。
则“取前”第一桶占两桶水总重量的1/(1+6)=1/7,“取后”第一桶占两桶水总重量的1/(1+4)=1/5。
第一桶取前取后差12千克占两桶总重量的1/5-1/7=2/35,故两桶水总重量为12÷2/35=210(千克),由此可求出原来第一桶水的重量为:210÷1/7=30(千克)三、找准单位“1”的量不管是简单分数应用题还是复杂的分数应用题,题中都有关键句,关键句中都有单位“1”的量,准确找出单位“1”的量是解答分数应用题的前提条件。
小学分数应用题解题关键点探析小学分数应用题是小学数学中经常出现的一类题型,解题主要涉及到分数的加减乘除以及与整数之间的转换。
解题关键点如下:1.分数的加法与减法:(1)对于同分母的分数,只需将分子相加或相减,分母保持不变即可。
(2)对于不同分母的分数,需要先找到一个通分的分母,然后将分母相同化后再进行加减法运算。
2.分数的乘法与除法:(1)两个分数相乘,只需将两个分数的分子相乘,分母相乘即可。
(2)一个分数除以另一个分数,只需将前一个分数的分子乘以后一个分数的倒数,即分子乘以倒数的分数。
3.与整数的转换:分数可以与整数相互转换,转换的关键在于找到分子与分母之间的对应关系。
如一个整数可以写成分母为1的分数,一个分母为1的分数可以写成整数。
4.注意单位换算:分数应用题中常涉及到对长度、重量、时间等单位的换算,需要根据题目要求进行相应的换算,以便进行计算。
5.化简分数:在计算过程中,如果分数的分子和分母有公约数,则应将其化简为最简形式。
可以通过找到分子和分母的最大公约数,将分子和分母同时除以最大公约数来实现化简。
6.应用题中的思路:(1)根据题目给出的条件,确定需要求解的量是什么,是一个分数还是一个整数。
(2)分析问题,找到解题的思路和方法,根据题目给出的条件进行加减乘除运算,解决问题。
(3)在计算过程中,要注意单位换算和分数的化简。
小学分数应用题的解题关键点主要在于掌握分数的加减乘除操作,以及与整数之间的转换。
在解题过程中,要注意找到通分的方法,进行单位换算,化简分数等。
在解题过程中,要注意思路的分析和整理,确定解题的思路和方法。
通过反复练习和应用,可以逐渐掌握解题的技巧和方法,提高解题的能力。
六年级数学上应用题分数技巧与方法一、分数应用题的解题方法1. 找单位“1”的量。
在审题时,首先要把问题中涉及的量与分率对应起来,看题目中有几个量,每个量所占的分率是多少,并确定出单位“1”的量。
2. 确定解题方法。
如果题目中单位“1”的量是未知的,就采用除法,进而转化为乘法运算;如果题目中单位“1”的量是已知的,就采用乘法运算。
3. 对应解题。
根据数量关系,把具体数量与分率对应起来,列出算式并计算。
二、分数应用题的解题步骤1. 读懂题意,确定解题方法。
在解答分数应用题时,首先要认真审题,弄清题目中涉及的量和分率,然后根据数量关系列出算式并计算。
2. 找准量与分率的对应关系。
在分数应用题中,量与分率对应是解题的关键。
要分清每个量所占的分率,进而确定出单位“1”的量。
3. 掌握基本数量关系式。
在分数应用题中,常用的数量关系式有:单位“1”的量×分率=部分量等。
4. 逐步解答。
在解答分数应用题时,要按照题目所给的条件,逐步解答。
一般可采用综合算式或分步计算的方法进行解答。
5. 检验答案。
在解答分数应用题时,要检验答案是否正确。
可以采用逆向思维或代入法进行检验。
三、分数应用题的练习方法1. 专项训练。
可以针对某一类型的分数应用题进行专项训练,如工程问题、行程问题等。
通过专项训练,可以加深对某一类型题目的理解和掌握。
2. 多做练习。
熟能生巧,多做练习是提高分数应用题解题能力的有效方法。
可以通过练习册、习题集等途径进行练习。
3. 归纳总结。
在练习过程中,要注意归纳总结解题方法,形成自己的解题思路和技巧。
同时,也可以借鉴他人的经验和技巧,不断提高自己的解题能力。
4. 注重思路。
在练习过程中,不要只关注答案是否正确,更要注重解题思路是否清晰、合理。
只有掌握了正确的解题思路,才能真正提高分数应用题的解题能力。
指导小学生解决分数应用题的技巧小学生在学习数学的过程中,经常会遇到分数应用题,这些题目往往需要学生综合运用分数的加减乘除等知识进行解答,因此对于学生来说,解决分数应用题是一个相对较难的任务。
为了帮助小学生更好地解决分数应用题,我将在以下几个方面提供一些技巧和方法。
一、掌握分数加减法的基本技巧要想解决分数应用题,学生必须要掌握分数的加减法。
在进行分数加减法运算时,学生需要将分数化为相同的分母,然后再进行相应的加减运算。
对于小学生来说,他们可以通过画图或者使用教具等辅助工具来进行分数加减法的运算,这样有助于他们更好地理解分数的加减法规则。
对于一些较为复杂的分数应用题,学生还需要掌握一些分数的化简技巧。
在进行分数加减法运算时,学生可以先将分数化简为最简形式,这样有助于减少计算过程中的错误,提高解题的准确性。
二、注意分数乘除法的特殊性除了加减法之外,分数乘除法也是小学生在解决分数应用题时需要掌握的知识点。
在进行分数乘法时,学生需要掌握分子与分子相乘、分母与分母相乘的原则,并且还需要注意最后的结果是否可以进行化简。
在进行分数除法运算时,学生需要将除数取倒数,然后再进行乘法运算,最后再化简结果。
对于分数乘除法的练习,学生可以通过类比分数对小数的理解来进行,例如将分数化为小数的形式,然后再进行乘除法运算,有助于学生更好地掌握分数乘除法的规则。
三、积极应用于实际生活在学习分数应用题的过程中,学生还需要注意将学到的知识积极运用于实际生活中。
老师可以设计一些与实际生活相关的分数应用题,例如购物、做饭、运动等方面的题目,通过这些题目的练习,可以帮助学生更好地理解分数的实际应用价值,并且对分数应用题的解决方法有更深入的理解。
四、培养学生的逻辑思维能力在解决分数应用题的过程中,学生需要不断培养自己的逻辑思维能力。
通过分析题目的逻辑关系,掌握解题的方法和技巧,培养自己的逻辑思维能力,提高解题的效率和准确性。
对于一些比较难的分数应用题,学生需要培养自己的耐心和细心,仔细分析题目,找出解题的关键点,然后再进行解答。
分数乘除法应用题解题步骤与技巧分数百分数应用题是五、六年级数学中的重点和难点,也是进一步学习初中数学的重要基础。
但是有相当多的学生遇到分数应用题就感到困难。
以下是小编整理的关于分数乘除法应用题解题步骤与技巧,希望大家认真阅读!解答分数应用题的步骤概括的说是:一找、二转、三画、四列、五算、六查这六个环节。
一找:找单位“1”的量。
找单位“1”的量是解答分数应用题的前提,靠“是”谁、“比”谁、“占”谁,“相当于”谁就把谁看做单位“1”的量,靠生搬硬套仅能解决一部分分数应用题。
例如:*的2/5比乙多3/8米,比乙就把乙看作单位“1”是错误的,正确的是要分析2/5是谁的,就把谁看作单位“1”。
分析应用题句子中的分率是分谁就把谁看作单位“1”是最可靠的找单位“1”的方法。
二转:转化单位“1”在分数应用题中,如果题中只有一个单位“1”,那么再难也难不到哪里去了。
只有一个单位“1”的题,可以直接进入下一步,画线段图。
如果题中有多个单位“1”就需要先转化单位“1”再画线段图。
转化单位“1”也是有技巧的,例如:*是乙的3/5可以转化成乙是*的5/3、*比乙少2/5、乙比*多2/3、*是*乙之和的3/8等13种不同的情况,在单位“1”统一后,才能进行下一步,画线段图来解答。
三画:画线段图很多复杂的分数应用题,不画线段图是无法找到数量、分率之间的关系的。
只有学会画线段图,才能找到解答分数应用题的钥匙。
要把线段图画的准,应先画应用题中含有分率的句子,再画既有分率又有数量的句子,第三画含有数量的句子,最后画问题。
把分率画在线段的上方、数量画在线段的下方,可以避免学生把分率和数量相加,也方便清晰的找到数量和分率的对应关系。
四列:看图列式画完线段图,要学会看图,根据分数应用题数量关系列式。
单位“1”的量×所求问题的对应分率=所求问题对应量÷对应分率=单位“1”的量对应量÷单位“1”的量=对应分率五算:准确计算六查:认真检查把计算结果代入到原题中,能够推导回去或者用不同的解题方法得到同一个结果,可以验*,这道题解答正确。
分数和百分数应用题解题技巧分数和百分数是我们在日常生活中经常遇到的数学概念,它们在实际应用中具有广泛的用途。
掌握解题技巧可以帮助我们更好地理解和运用这些概念。
首先,对于分数的应用题,我们需要注意以下几个技巧:1. 将问题转化为分数形式:有些问题可能给出了一个小数或百分数,我们需要将其转化为分数形式进行运算。
例如,如果题目给出了0.5,我们可以将其转化为1/2,这样更有利于计算。
2. 找到最小公倍数:在一些问题中,我们需要进行分数的加减运算,但分母不同。
这时,我们需要找到这些分母的最小公倍数,将分数转化为相同分母后再进行运算。
3. 分数的化简:有些问题中,我们需要将分数化简为最简形式。
这可以通过寻找分子和分母的最大公约数,将其约分得到最简形式。
其次,百分数的应用题也需要我们掌握一些技巧:1. 百分数的转化:有些问题可能给出了一个分数或小数,我们需要将其转化为百分数形式。
例如,如果题目给出了0.75,我们可以将其转化为75%。
2. 百分数的运算:在一些问题中,我们需要进行百分数的加减乘除运算。
对于加减运算,我们可以先将百分数转化为分数或小数,然后进行运算;对于乘除运算,我们可以直接将百分数转化为分数或小数后进行运算。
3. 百分数的应用:在实际应用中,百分数常常用于描述比例、增长率、减少率等。
因此,我们需要理解百分数与实际问题的关联,将其运用到解题过程中。
除了上述技巧,我们还需要注意解题过程中的细节。
例如,在进行运算时,要注意保留足够的有效数字;在解答问题时,要理解题目中的条件和要求,将其与分数和百分数的概念相结合。
总之,掌握分数和百分数应用题解题技巧,可以帮助我们更加灵活地运用这些概念解决实际问题。
通过不断练习和实践,我们可以在解题过程中更加熟练地应用这些技巧,提高数学解题的能力。
分数乘除法应用题的解题技巧和策略分数乘除法是数学学习中的重要知识点,也是日常生活中经常会用到的数学运算。
在实际应用中,我们可能会遇到各种各样的分数乘除法应用题,有时候可能需要一些技巧和策略来解题。
本文将介绍一些分数乘除法应用题的解题技巧和策略,希望能够帮助大家更好地应对这类题目。
分数乘法是指两个分数相乘的运算,其解题技巧和策略主要包括以下几点:1. 化简分数在进行分数乘法的时候,我们可以先化简分数,然后再进行乘法运算。
化简分数可以让计算更加简便,也可以避免最后得到的结果过于复杂。
计算2/3乘以4/5,我们可以先将2/3和4/5分别化简为最简分数,然后再进行乘法运算,即2/3=2/3,4/5=4/5,所以2/3乘以4/5=2/3乘以4/5=8/15。
2. 使用分数乘法的性质分数乘法有一个很重要的性质,即乘法的交换律,也就是乘法顺序可以交换。
这个性质在解题的时候非常有用,可以帮助我们简化计算。
计算3/4乘以5/6,我们可以先交换乘法的顺序,即3/4乘以5/6=5/6乘以3/4,这样就可以更简便地进行计算。
最后得到的结果还是一样的。
3. 小数转化为分数再进行计算在实际应用中,我们可能会遇到需要计算小数乘以分数的题目。
这时,我们可以先将小数转化为分数,然后再进行分数乘法的运算。
二、分数除法的解题技巧和策略1. 将除法转化为乘法3. 计算得到的结果化简计算9/4除以5/6,得到的结果是27/20,我们可以将27/20化简为最简分数,即27/20=9/5。
1. 明确题目要求在解决综合应用题时,首先需要明确题目要求,对题目进行分析和理解。
明确题目要求可以帮助我们更好地制定解题策略,也可以避免在解题过程中走弯路。
2. 适时转化问题在解决综合应用题时,我们可以适时地将问题转化为分数乘除法的计算。
有时,问题本身可能并不是分数乘除法的题目,但是我们可以通过转化,将问题简化为分数乘除法的计算,从而更容易解决问题。
3. 注重实际意义在解决综合应用题时,我们需要注重问题的实际意义,将抽象的运算转化为具体的实际问题。
指导小学生解决分数应用题的技巧
分数是小学数学中的基础知识之一,也是较为复杂的数学概念之一。
小学生面对分数应用题时,有时会感到头疼。
然而,只要使用正确的方法和技巧,小学生便能够迅速地解决分数应用题。
以下是指导小学生解决分数应用题的技巧:
1.将分数化为相同的分母
在计算分数的加减乘除应用题时,通常需要将分数化为相同的分母。
例如,计算
1/2+2/3,首先需要将分数化为相同的分母,可以将1/2化为3/6,将2/3化为4/6,然后就可以将它们相加为7/6。
2.使用分数乘法
在计算带分数相乘时,可以先将带分数转换为假分数,然后再进行乘法。
例如,计算2 1/2*3 2/3,可以将2 1/2转换为5/2,将3 2/3转换为11/3,然后将它们相乘为
(5/2)*(11/3) = 55/6,最后将结果化为带分数为9 1/6。
3.使用分数的倒数
在涉及到分数的除法时,可以使用分数的倒数来解决问题。
例如,计算2/3÷1/4,可以将1/4转换为4/1,然后将2/3乘以4/1,得到结果为8/3。
4.将分数转换为百分数
有时候需要将分数转换为百分数,例如,将2/5转换为百分数,可以将分数的分子乘以100,再除以分母,得到百分数为40%。
5.注意分数的大小
在分数的比较中,需要注意分母的大小。
分母越大的分数,它的值越小。
例如,1/2和1/3相比,1/2比1/3大,因为1/2的分母2比1/3的分母3大。
总之,小学生在解决分数应用题时,要首先理解问题,并将问题转换为相应的数学运算,掌握分数的运算法则和性质,特别是将分数化为相同的分母等技巧,才能准确地解决问题。
分数应用题解题方法一、解题技巧:一抓,二找,三确定,四对应。
1.一抓:抓住关键句----含有分率的句子(不带单位的分数)2.二找:找准单位1的量:单位1一般都是在“的”前面,或是在“比、是、占、相当于”的后面。
看分率是谁的几分之几,谁就是单位1的量。
3.三确定:确定单位1是已知还是未知,单位1已知用乘法计算,单位1未知用除法或方程计算。
4.四对应:找出相对于的数量与分率。
乘法:单位1×对应分率=对应数量除法:对应数量÷对应分率=单位1二、解题方法:借助线段图帮助我们来分析数量关系,画图时先画单位1的量。
第一类:乘法一条公路:男生:女生:第二类:除法一条公路:男生:女生:三、分数应用题主要讨论的是以下三者之间的关系。
1.分率:表示一个数是另一个数的几分之几。
2.标准量:我们把单位1的量称为标准量。
3.比较量:我们把同标准量比较的量称之为比较量,也叫分率对应的数量。
四、分数应用题的分类。
第一类:已知两个数量,比较它们之间的倍数关系,应该用除法计算。
A求分率即就是求一个数是另一个数的几分之几。
(五下)基本关系式:比较量÷标准量=分率(几分之几)学校的果园里有梨树15棵,桃树20棵。
梨树是桃树的几分之几?B求一个数比另一个数多几分之几。
(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。
桃树比梨树多几分之几?C秋一个数比另一个数少几分之几。
(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。
梨树比桃树少几分之几?第二类:单位1已知,用乘法计算。
A求一个数的几分之几是多少。
(五下)把已知数量看多单位1,就是求它的几分之几是多少,它反映的是部分与整体之间的关系。
基本关系式:单位1的量×对应分率=对应数量1.一条公路全长1200米,已经修了全长的13,修了多少米?2.一支钢笔单价是30元,圆珠笔的单价是钢笔的16。
分数应用题的方法和技巧
在解答分数应用题时,以下是一些常用的方法和技巧:
1. 确定未知数:首先明确问题中的未知数,并用一个变量来表示。
例如,如果问题涉及到某个人的年龄,可以用x来表示这个人的年龄。
2. 变量的分数表达式:根据问题描述,将变量表示为一个分数表达式。
例如,如果问题中提到某个人年龄的1/3等于15岁,则可以表示为x/3 = 15。
3. 解方程:将问题转化为一个方程,并求解这个方程来得到未知数的值。
在上述例子中,通过乘以3,可以得到x = 45。
4. 确认答案的合理性:将未知数的值代入原方程中,确认答案的合理性。
在上述例子中,将x = 45代入x/3 = 15,可以验证
等式成立。
5. 注意化简:在解题过程中,可能需要对分数进行化简。
例如,将2/4简化为1/2,便于计算。
6. 注意单位转换:问题中可能涉及到单位的转换。
在解题过程中,需要注意将单位转换为一致的形式,以便计算。
7. 图形辅助:对于某些问题,可以用图形进行辅助。
例如,在解决比例问题时,可以用图形表示比例关系,帮助理解和解决问题。
8. 相关知识点:对于一些特定的类型的分数应用题,掌握相关的数学知识点会有帮助。
例如,理解分数的基本运算法则、比例关系的性质等。
以上是一些常用的方法和技巧,希望对解答分数应用题有所帮助。
解分数应用题的几点诀窍
游战春数学是一门抽象性很强的学科,而小学生的思维是以形象性为主。
因此小学数学应用题是每个小学生头疼的事。
尤其是六年级的分数应用题。
学生如不掌握规律,将无从下手,直接影响教学质量。
如何将学生怕学、厌学的应用题转化为易学、好学的呢?根据我的教学实践,我认为,教师首先要吃透教学大纲和教材,做到心中有数。
其次对教材中出现的应用题要进行归类,通过有的放矢的讲授和学生大量的练习、讨论、总结、归类,掌握应用题的解题规律、步骤,从而形成解分数应用题的思路。
下面就我个人在教学实践中得出的一点不成熟的经验推广给大家。
1.抓住关键句
分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点、是关键句。
所以在分数应用题的课堂教学中,首先要培养学生找准关键句。
如第十一册分数乘法应用题例2“小亮的储蓄箱中有18元,小华储蓄的钱是小亮的5/6,小新储蓄的钱是小华的2/3,小新储蓄了多少元?”题中“小华储蓄的钱是小亮的
5/6,小新储蓄的钱是小华的2/3,”第一句把小华的存钱和小亮的存钱关系交待清楚了,第二句又说明了小新和小华存钱的关系,这两句在题中缺一不可,所以它们是本题的关键句。
在平时的课堂训练中,不但要培养学生找出关键句,还要在关键句下面画上线,让他们在动
脑、动手的同时能进一步理解题意。
但在实际问题中,会遇到关键句叙述不清楚的情况,我叫这种为隐含关系。
如十一册练习十第2题,“六(1)班有学生45人,女生占
4/9,女生有多少人?”关键句“女生占4/9”中只有一个量:女生,而另一个量不清楚,是什么呢?引导学生用多读、熟读到快读的方法去理解,应该是“女生占全班学生(45人)的4/9.”从而学会分析这一类题。
再如十一册练习十七第7题关键句“现降价2/7”,叙述简单,根据前面的经验,很快让学生明确,“现价是降低了原价的2/7”。
这样培养了学生抓住关键句的能力,也能将不完整的关键句补充完整,为下一步正确找准标准量打了好基础。
2.找准标准量
不管是简单分数应用题还是稍复杂的分数应用题,题中都有关键句,关键句中都有标准量,准确找出标准量是解答分数应用题的前提条件。
我在教学实践中,总结出了找标准量的规律就是抓关键字,经运用于课堂教学,效果明显,学生容易掌握,且适用于各种分数、百分数应用题。
(1),分数前面有个“的”,“的”字前面的量就是标准量。
如十一册练习十第1题“甲的6/7是乙”,标准量是“的”字前的“甲”;“乙是甲的4/5”,标准量是“的”字前的“甲”,“乙的9/10相当于甲,标准量是“的”字前的“乙”,
(2)关键句中“比”字后面的量是标准量。
如十一册分数应用题例8中关键句“篮球比足球多1/4”,标准量是比字后面的量足球;“足球比
篮球少1/5”,标准量是篮球。
掌握了找标准量的方法和规律,学生在实际做题中就避免了无从下手或猜测。
3.画线段图
通过再造想象把题意转化为图形,再靠图形感知,把握数量关系,明确解题思路。
画线段图先画标准量,部总关系的画一条线段图;比较关系的画二条线段图。
并强调画图时,要满足四个条件:有标准量“1”、有分率、有已知量、有问号。
总之,分数应用题画线段图,一方面有利于进一步认识已知分数的意义;另一方面有利于求出隐蔽分数。
大家不要怕画线段图,不要怕画错线段图,要学会画线段图,养成画线段图的习惯。
4.多想几步
分数应用题来自生活实践,每一道题都有具体的内容,解题的第四步就是熟悉并弄懂应用题内容。
直到这个题目所叙述的内容深深地印入你的脑海中。
即使不看它,也不会忘掉时,就可以剖析问题了。
这个题目讲的是一件什么事?有哪些已知条件?所求的问题是什么?联想与问题有关的知识。
如:一堆煤,第一次运出这堆煤的1/5,第二次运出这堆煤的2/5。
要求学生想到:两次共运这堆煤的3/5,第二次比第一次多运这堆煤的1/5,还余下这堆2/5。
5.抓住对应。
分数应用题,虽然变化多,数量关系复杂,但只要紧紧抓住数量间的“对应关系”就不难解答。
如何寻找对应关系呢?首先要学会看线段图,能从图中发现解答问题需要的对应关系。
值得注意的是:对应数量与它的对应分率在线段图中所表示的是等长的线段;其次,掌握分数应用题的特点,抓住其中的对应关系。
如分数乘法应用题的特点:标准量已知。
解题关键是找出要求问题的对应分率。
并用标准量乘以要求问题的对应分率,从而得出要求问题。
分数除法应用题的特点是:标准量未知,就是要求标准量。
解题的关键是找出标准量的几分之几正好是多少这一对应关系。
并用已知量除以已知量的对应分率等于标准量。