天津市河北区_九年级数学上册24圆章节复习题新人教版【含解析】
- 格式:pdf
- 大小:313.98 KB
- 文档页数:6
人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改)的全部内容。
人教版九年级数学上册第24章圆单元测试题(含答案)一.选择题(共10小题)1.下列说法,正确的是()A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径2.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C. 5cm D.6cm(2题图)(3题图)(4题图) (5题图)(8题图)3.一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O 中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为() A.4 B. 6 C.8 D.94.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是() A.51°B.56°C.68°D.78°5.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为() A.25°B.50°C.60°D.30°6.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定7.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是() A.相离B.相交C.相切D.外切8.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,9.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长() A.2πB.π C.D.10.如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()A.12πB.24πC.6πD.36π二.填空题(共10小题)11.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.(9题图) (10题图)(11题图) (12题图)12.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为.13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=度.(13题图) (14题图) (15题图) (17题图)14.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为.15.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.16.已知一条圆弧所在圆半径为9,弧长为π,则这条弧所对的圆心角是.17.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).18.已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是.19.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是.20.半径为R的圆中,有一弦恰好等于半径,则弦所对的圆心角为.三.解答题(共5小题)21.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.22.已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O 的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22。
人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.如图,一个油桶靠在直立的墙边,量得0.8m,BC =并且,AB BC ⊥则这个油桶的底面半径是( )A .1.6mB .1.2mC .0.8mD .0.4m 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个3.如图,点A 、B 、C 在⊙O 上,且∠ACB=100o ,则∠α度数为( )A .160oB .120oC .100oD .80o4.如图,在⊙O 中,CD 是直径,AB 是弦,AB ⊥CD 于E ,AB =8,OD =5,则CE 的长为( )A .4B .2C 2D .15.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°6.如图,AB 为⊙O 的直径,点 D 是弧 AC 的中点,过点 D 作 DE ⊥AB 于点 E ,延长 DE 交⊙O 于点 F ,若 AC =12,AE =3,则⊙O 的直径长为( )A .7.5B .15C .16D .187.如图,已知AB 、AD 是O 的弦,30B ∠=︒,点C 在弦AB 上,连接CO 并延长CO 交于O 于点D ,20D ∠=︒,则BAD ∠的度数是( )A .30°B .40°C .50°D .60°8.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°9.如图,⊙O 是△ABC 的外接圆,将△ABC 绕点C 顺时针旋转至△EDC ,使点E 在⊙O 上,再将△EDC 沿CD 翻折,点E 恰好与点A 重合,已知∠BAC =36°,则∠DCE 的度数是( )A.24 B.27 C.30 D.3310.下列说法正确的是()①近似数2⨯精确到十分位;32.610--中,最小的是38-;②在2,2,38-,2③如图所示,在数轴上点P所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点.A.1 B.2 C.3 D.4二、填空题11.某圆的周长是12.56米,那么它的半径是______________,面积是__________.OA=,12.如图,A、B、C是O上的点,OC AB⊥,垂足为点D,且D为OC的中点,若7则BC的长为___________.13.如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.14.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.15.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.16.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.三、解答题17.如图,在菱形ABCD 中,90BAD ∠>︒,P 为AC ,BD 的交点,O 经过A ,B ,P 三点.(1)求证:AB 为O 的直径.(2)请用无刻度的直尺在圆上找一点Q ,使得BP =PQ (不写作法,保留作图痕迹).18.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt △ABC 中,∠C =90°.求作:一个⊙O ,使⊙O 与AB 、BC 所在直线都相切,且圆心O 在边AC 上.19.如图所示,AB 为⊙O 的直径,在△ABC 中,AB =BC ,AC 交⊙O 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1)证明DE 是⊙O 的切线;(2)AD =8,P 为⊙O 上一点,P 到弦AD 的最大距离为8.①尺规作图作出此时的P 点,保留作图痕迹;②求DE 的长.20.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线;(2)若9OC =,4AC =,8AE =,求BE 的长.21.如图,点A ,B ,C ,D 在⊙O 上,AB =CD .求证:AC =BD ;<),点E是线段OP的中点.在22.如图,点P是O的直径AB延长线上的一点(PB OB=.求证:PC是O的切线.直径AB上方的圆上作一点C,使得EC EP23.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒24.如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若3AP ,BF=1,求⊙O的半径.25.如图,⊙O是以△ABC的边AC为直径的外接圆,∠ACB=54°,如图所示,D为⊙O上与点B关于AC的对称点,F为劣弧BC上的一点,DF交AC于N点,BD交AC于M点.(1)求∠DBC的度数;(2)若F为弧BC的中点,求MN ON.26.已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ(1)如图1,当∠APQ=45°,AP=1,2⊙O的半径。
第二十四章圆一、选择题1. 已知⊙O的半径为3 cm,OP=4 cm,则点P与⊙O的位置关系是( )A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2. 已知圆锥的底面半径为3 cm,母线长为4 cm,则圆锥的全面积是( )A.15π cm2B.21π cm2C.20π cm2D.24π cm23. 下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等.其中不正确的有( )个.A.1B.2C.3D.44. 如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35∘,则∠CAB的度数为( )A.35∘B.45∘C.55∘D.65∘5. 如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,连接AD,若∠C=22∘,则∠CDA的大小为( )A.112∘B.124∘C.129∘D.136∘6. 如图,在⊙O中,OC⊥AB,∠ADC=32∘,则∠OBA的度数是( )A.64∘B.58∘C.32∘D.26∘7. 在截面为半圆形的水槽内装有一些水,如图,水面宽AB为6分米,如果再注入一些水后,水面上升1分米,此时水面宽变为8分米,则该水槽面半径为( )A.3分米B.4分米C.5分米D.10分米8. 设P为⊙O外一点,若点P到⊙O的最短距离为3,最长距离为7,则⊙O的半径为( )A.3B.2C.4或10D.2或59. 如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若的值为( )QP=QO,则QCQAA.23−1B.23C.3+2D.3+210. 如图,在Rt△AOB中,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ,Q为切点,则线段PQ长度的最小值为( )A.5B.7C.23D.32二、填空题11. 如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠1+∠2=.12. 如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n∘,则∠DCE=.13. 如图,CD是⊙O的直径,弦AB⊥CD于点E,若AB=6,CE:ED=1:9,则⊙O的半径是.14. 如图,菱形OABC的边长为2,且点A,B,C在⊙O上,则劣弧BC的长度为.15. 如图,AB是⊙O的直径,AC与⊙O相切于点A,CE∥AB交⊙O于点D,E,CD=2,AB=8.则AD=.16. 如图,矩形ABCD中,AB=2,BC=2,以B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是.17. 如图所示,边长为2的正方形ABCD的顶点A,B在一个半径为2的圆上,顶点C,D在该圆内,将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C运动的路线长为.18. 在⊙O中,AB是⊙O的直径,AB=8 cm,AC=CD=BD,M是AB上一动点,CM+DM的最小值是cm.三、解答题19. 如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1) 请画出△ABC绕点O逆时针旋转90∘后的△A1B1C1;并写出A1,B1,C1三点的坐标.(2) 求出(1)中C点旋转到C1点所经过的路径长(结果保留π).20. 已知AB是半圆O的直径,OD⊥弦AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F,若AC=2,求OF的长.21. 如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1) 求证:AD平分∠BAC.(2) 若∠BAC=60∘,OA=2,求阴影部分的面积(结果保留π).22. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连接BC.(1) 求证:AE=ED;(2) 若AB=10,∠CBD=36∘,求AC的长.23. 如图,半圆O的直径DE=12 cm,△ABC中,∠ACB=90∘,∠ABC=30∘,BC=12 cm,半圆O以2 cm/s的速度从左向右运动,在运动的过程中,点D,E始终在直线BC上,设运动时间为t(s),当t=0 s时,半圆O在△ABC的左侧,OC=8 cm.(1) 当t=8(s)时,试判断点A与半圆O的位置关系;(2) 当t为何值时,直线AB与半圆O所在的圆相切.24. 如图,点A是半径为12cm的⊙O上的一点,动点P从点A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到A点立即停止运动.(1) 在点P运动过程中,当∠POA=90∘时,求点P的运动时间.(2) 如图,点B是OA延长线上一点,AB=OA,当点P运动的时间为2s时,试判断直线BP与⊙O的位置关系,并说明理由.25. 已知四边形ABCD内接于⊙O,BC=CD,连接AC,BD.(1) 如图①,若∠CBD=36∘,求∠BAD的大小.(2) 如图②,若点E在对角线AC上,且EC=BC,∠EBD=24∘,求∠ABE的大小.答案一、选择题1. C2. B3. D4. C5. B6. D7. C8. B9. D10. B二、填空题11. 90∘12. n13. 514. 23π15. 416. 22−1−π217. 2π318. 8三、解答题19.(1) 如图,△A1B1C1为所作,A1,B1,C1三点的坐标分别为(−4,2),(−1,1),(−3,4);(2) OC=32+42=5,所以C点旋转到C1点所经过的路径长=90×π×5180=52π.20. ∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90∘,∵OE∥AC,∴∠DOE=∠ADO=90∘,∴∠DAO+∠DOA=90∘,∠DOA+∠EOF=90∘,∴∠DAO=∠EOF,在△ADO和△OFE中,{∠DAO=∠EFO,∠DAO=∠FOE,OA=OE,∴△ADO≌△OFE(AAS),∴OF=AD=1.21.(1) ∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB.(2) 设EO与AD交于点M,连接ED.∵∠BAC=60∘,OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60∘,∴AE=AO=OD,又由(1)知,AC∥OD,即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60∘,∴S△AEM=S△DMO,∴S阴影=S扇形EOD=60π×22360=2π3.22.(1) ∵AB是⊙O的直径,∴∠ADB=90∘,∵OC∥BD,∴∠AEO=∠ADB=90∘,即OC⊥AD,∴AE=ED.(2) ∵OC⊥AD,∴AC=CD,∴∠ABC=∠CBD=36∘,∴∠AOC=2∠ABC=2×36∘=72∘,∴AC=72π×5180=2π.23.(1) ∵△ABC中,∠ACB=90∘,∠ABC=30∘,BC=12 cm,∴AC=tan30∘BC=43,当t=8时,如图,此时OC=8,在Rt△ACO中,AC=43,∴AO=AC2+OC2=47,∵半圆O的直径DE=12 cm,47>6,∴点A在半圆外;(2) ①如图1,过C点作CF⊥AB,交AB于F点;∵∠ABC=30∘,BC=12 cm,∴FO=6 cm;当半圆O与△ABC的边AB相切时,又∵圆心O到AB的距离等于6 cm,且圆心O又在直线BC上,∴O与C重合,即当O点运动到C点时,半圆O与△ABC的边AB相切;此时点O运动了8 cm,所求运动时间为t=82=4(s),②当点O运动到B点的右侧,且OB=12 cm时,如图2,过点O作OQ⊥直线AB,垂足为Q.在Rt△QOB中,∠OBQ=30,则OQ=6 cm,即OQ与半圆O所在的圆相切.此时点O运动了32 cm.所求运动时间为:t=32÷2=16 s,综上可知当t=4 s或16 s时,AB与半圆O所在的圆相切.24.(1) 当∠POA=90∘时,根据弧长公式可知点P运动的路程为⊙O周长的14或34,设点P运动的时间为t s,当点P运动的路程为⊙O周长的14时,2π⋅t=14⋅2π⋅12,解得t=3,当点P运动的路程为⊙O周长的34时,2π⋅t=34⋅2π⋅12,解得t=9,∴当∠POA=90∘时,点P运动的时间为3s或9s.(2) 如图,当点P运动的时间为2s时,直线BP与⊙O相切.理由如下:当点P运动的时间为2s时,点P运动的路程为4πcm,连接OP,PA,∵半径AO=12cm,∴⊙O的周长为24πcm,∴AP的长为⊙O周长的16,∴∠POA=60∘,∵OP=OA,∴△OAP是等边三角形,∴OP=OA=AP,∠OAP=60∘,∵AB=OA,∴AP=AB,∵∠OAP=∠APB+∠B,∴∠APB=∠B=30∘,∴∠OPB=∠OPA+∠APB=90∘,∴OP⊥BP,∴直线BP与⊙O相切.25.(1) ∵BC=CD,∴∠BDC=∠CBD=36∘,∴∠BAC=∠BDC=36∘,∵BC=CD,∴BC=CD,∴∠CAD=∠CBD=36∘,∠BAD=∠BAC+∠CAD=36∘+36∘=72∘.(2) ∠CEB=∠EAB+∠ABE(外角的应用),∵CE=CB,∴∠CEB=∠CBE=∠CBD+∠EBD,∴∠EAB+∠ABE=∠CBD+∠EBD,∵BC=CD,∴BC=CD,∴∠EAB=∠CBD,∴∠ABE=∠EBD=24∘.。
人教版九年级上册第二十四章圆单元检测(含答案)一、单选题1.下列命题中,不正确的是( )A.圆是轴对称图形B.圆是中心对称图形C.圆既是轴对称图形,又是中心对称图形D.以上都不对2.如图,AB是如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为弧BC的中点,点P是直径AB上一动点,则PC+PD的最小值是()A.13.如图,⊙P与y轴相切于点C(0,3),与x轴相交于点A(1,0),B(9,0).直线y=kx-3恰好平分⊙P的面积,那么k的值是( )A.6 5B.1 2C.5 6D.24.已知⊙O的直径为10,圆心O到弦AB的距离OM为3,则弦AB的长是()A.4 B.6 C.7 D.85.如图,⊙O的半径为4,点A为⊙O上一点,OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.4 B.C.2 D6.下列命题:①长度相等的弧是等弧②半圆既包括圆弧又包括直径③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形其中正确的命题共有()A.0个B.1个C.2个D.3个7.如图,AB,CD是⊙O的直径,若∠AOC=55°,则的度数为()A.55°B.110°C.125°D.135°8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC =∠BOC;③AD=CD=OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个9.如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为()A.57°B.66°C.67°D.44°10.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定11.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB 于点C 、D ,若PA =6,则△PCD 的周长为( )A.8B.6C.12D.1012.边长为2的正方形内接于⊙O ,则⊙O 的半径是( )A .1B C .2 D .二、填空题13.一个正多边形的每一个内角都为144︒,则正多边形的中心角是_____,它是正______边形.14.如图,半圆的直径6AB =,点C 在半圆上,30BAC ∠︒=,则阴影部分的面积为_____(结果保留π).15.如图,正六边形ABCDEF 内接于⊙O ,边长AB =2,则扇形AOB 的面积为_____.16.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO 为_____.三、解答题17.如图,在⊙O 中,已知∠ACB=∠CDB=60°,AC=3,求△ABC 的周长.18.一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:(1)桥拱半径.(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?19.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.20.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.21.如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA ,垂足为G .(1)求证:FG 是⊙O 的切线;(2)已知FG =.22.已知△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,方程20ax bx c +-=是关于x 的一元二次方程.(1)判断方程20ax bx c +-=的根的情况为 (填序号);①方程有两个相等的实数根; ②方程有两个不相等的实数根; ③方程无实数根; ④无法判断(2)如图,若△ABC 内接于半径为2的⊙O ,直径BD ⊥AC 于点E ,且∠DAC=60°,求方程20ax bx c +-=的根;(3)若14x c =是方程20ax bx c +-=的一个根,△ABC 的三边a 、b 、c 的长均为整数,试求a 、b 、c 的值.答案1.D2.B3.A4.D5.C6.B7.C8.A9.A10.B11.C12.B 13.36︒十14.34π-15.23π.16.417.∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°.∴△ABC为等边三角形.AC=3,∴△ABC的周长为9.18.(1)∵拱桥的跨度AB=16m,∴AD=8m,因为拱高CD=4m,利用勾股定理可得:AO2-(OC-CD)2=82,解得OA=10(m).所以桥拱半径为10m;(2)设河水上涨到EF位置(如图所示),这时EF=12m,EF∥AB,有OC⊥EF(垂足为M),∴EM=12EF=6m,连接OE,则有OE=10m,OM2=OE2-EM2=102-62=64,所以OM=8(m)OD=OC-CD=10-4=6(m),OM-OD=8-6=2(m).即水面涨高了2m.19.(1)证明:连接OC,∵D为BC的中点,∴CD=BD,∴∠DOB=12∠BOC,∵∠A=12∠BOC,∴∠A=∠DOB;(2)DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.20.(1)如图人教版九年级上册第二十四章《圆》培优练习卷(含答案)一.选择题1.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π2.如图,AB为⊙O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交⊙O于点D,过点D作DE∥BC交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A.6﹣8 B.3﹣3 C.2 D.12﹣63.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2πB.3πC.4πD.π4.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°6.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C.7D.127.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是()A.4π﹣16 B.8π﹣16 C.16π﹣32 D.32π﹣168.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H.若AE =3,则EG的长为()A.B.C.D.9.小明用图中所示的扇形纸片作一个圆锥的侧面.已知扇形的半径为5cm,弧长是8πcm,那么这个圆锥的高是()A.8cm B.6cm C.3cm D.4cm10.如图,点C为△ABD外接圆上的一点(点C不在上,且不与点B,D重合),且∠ACB=∠ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5 B.5C.4D.11.在△ABC中,∠C=90°,∠A=30°,AB=12,将△ABC绕点B按逆时针方向旋转60°,直角边AC扫过的面积等于()A.24πB.20πC.18πD.6π12.如图,矩形ABCD中,BC=2,CD=1,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.二.填空题13.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.14.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.15.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.16.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.17.半径为6的扇形的面积为12π,则该扇形的圆心角为°.18.在平面直角坐标系中,点A(a,a),以点B(0,4)为圆心,半径为1的圆上有一点C,直线AC与⊙B相切,切点为C,则线段AC的最小值为.三.解答题19.如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.20.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.22.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积是多少?23.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)24.如图,AB是半圆O的直径,C是半圆上一点,=,DH⊥AB于点H,AC分别交BD、DH于E、F.(1)已知AB=10,AD=6,求AH.(2)求证:DF=EF25.如图,已知AB是⊙O的直径,点C是弧AB的中点,点D在弧BC上,BD、AC的延长线交于点K,连接AD,交BC于点E,连接CD(1)求证:∠AKB﹣∠BCD=45°;(2)若DC=DB,求证:BC=2CK.参考答案一.选择题1.解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.2.解:连接OD,交CB于点F,连接BD,∵=,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∴OF=DF,∴BF∥DE,∴OB=BE=6∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.故选:B.3.解:∵ABCDEF为正六边形,∴∠COB=360°×=60°,∴△OBC是等边三角形,∴OB=OC=BC=6,弧BC的长为=2π.故选:A.4.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.5.解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.6.解:连接DO,EO,∵⊙O 是△ABC 的内切圆,切点分别为D ,E ,F ,∴OE ⊥AC ,OD ⊥BC ,CD =CE ,BD =BF =3,AF =AE =4 又∵∠C =90°,∴四边形OECD 是矩形,又∵EO =DO ,∴矩形OECD 是正方形,设EO =x ,则EC =CD =x ,在Rt △ABC 中BC 2+AC 2=AB 2故(x +2)2+(x +3)2=52,解得:x =1,∴BC =3,AC =4,∴S △ABC =×3×4=6,故选:A .7.解:连接OA 、OB ,∵四边形ABCD 是正方形,∴∠AOB =90°,∠O AB =45°,∴OA =AB cos45°=4×=2,所以阴影部分的面积=S ⊙O ﹣S 正方形ABCD =π×(2)2﹣4×4=8π﹣16.8.解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=OA=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,AC⊥EF,EG=EF=∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r=AE=3,∴r=∴OI=,∴CI=OC﹣OI=,∵EF⊥AC,∠BCA=45°∴∠IGC=∠BCI=45°∴CI=GI=∴EG=EI﹣GI=故选:B.9.解:设圆锥底面圆的半径为r,根据题意得2πr=8π,解得r=4,所以这个的圆锥的高==3(cm).10.解:延长CD到E,使得DE=BC,连接AE,如右图所示,∵∠ACB=∠ABD=45°,∠ACB=∠ADB,∴∠ADB=45°,∴∠BAD=90°,AB=AD,∵四边形ABCD是圆内接四边形,∠ADE+∠ADC=180°,∴∠ADC+∠ABC=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∵∠BAC+∠CAD=∠BAD=90°,∴∠DAE+∠CAD=90°,∴∠CAE=90°,∵ACD=45°,BC=DE=8,CD=4,∴∠ACE=45°,CE=12,∴AC=AE=6,故选:D.11.解:∵在△ABC中,∠C=90°,∠A=30°,AB=12,∴BC=AB=6,∠ABC=60°,=﹣=﹣=18π.∴S阴影故选:C.12.解:连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,OA=OD=1,而CD=1,∴四边形ODCE和四边形ABEO都是正方形,∴BE=1,∠DOE=∠BEO=90°∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF =S△EBF,∴阴影部分的面积=S扇形EOD==.故选:C.二.填空题13.解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.14.解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.15.解:连接OC交AB于E.∵C是的中点,∴OC⊥AB,∴∠AEO=90°,∵∠BAO=20°,∴∠AOE=70°,∵OA=OC,∴∠OAC=∠C=55°,∴∠CAB=∠OAC﹣∠OAB=35°,故答案为35°.16.解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB、BC、CD、AD,则四边形ABCD是正方形,连接OB,如图所示:则正方形ABCD的对角线=2OA=4,OA⊥OB,OA=OB=2,∴AB=2,过点O作ON⊥AB于N,则NA=AB=,∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.17.解:设该扇形的圆心角为n2,则=12π,解得:n=120,故答案为:120.18.解:连结AB、BC,如图,∵A点坐标为(a,a),∴点A在直线y=x上,作BH⊥直线y=x于H,∵∠AOB=45°,∴△BOH为等腰直角三角形,∴BH=OB=2,∵直线AC与⊙B相切,切点为C,∴BC⊥AC,∴∠ACB=90°,∴AC==,当AB最小时,AC的值最小,而点A在H点时,AB最小,此时AB=BH=2,∴AC的最小值为==.故答案为.三.解答题(共7小题)19.(1)证明:连接OD、CD,∵CE是⊙O的直径,∴∠EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直平分CD,∴OD=OC,∴OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:连接OD,CD,∵BD是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵CE是⊙O的直径,∴∠CDE=90°,∴∠ODC+∠ODE=90°,∴∠BDE=∠ODC,∵OC=OD,∴∠OCD=∠ODC,∴∠BDE=∠OCD,∵∠B=∠B,∴△BDE∽△BCD,∴∴BD2=BE•BC,设BE=x,∵BD=4,EC=6,∴42=x(x+6),解得x=2或x=﹣8(舍去),∴BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,∴AD=AC,设AD=AC=y,在Rt△ABC中,AB2=AC2+BC2,∴(4+y)2=y2+82,解得y=6,∴AC=6,故AC的长为6.20.解:(1)直线DE与⊙O相切,连结OD.∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AG=OA=1,∴AF=2,∴AF=OD,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EF=DF=1.21.证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴(2)连接AC,∵CE=1,EB=3,∴BC=4∵∴∠CAD=∠ABC,且∠ACB=∠ACB ∴△ACE∽△BCA∴∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB==2∴⊙O的半径为(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA∴△APC∽△CPB∴∴PC=2PA,PC2=PA•PB∴4PA2=PA×(PA+2)∴PA=∴PO=∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴即∴PH=,OH=∴HQ==∴PQ=PH+HQ=22.解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=,∴CD=2,∴图中阴影部分的面积=﹣2×1=﹣23.证明:(1)过O作OF⊥AC,于F,则F为AC的中点,连接CH,取CH中点N,连接FN,MN,则FN∥AD,AH=2FN,MN∥BE,∵AD⊥BC,OM⊥BC,BE⊥AC,OF⊥AC,∴OM∥AD,BE∥OF,∵M为BC中点,N为CH中点,∴MN∥BE,∴OM∥FN,MN∥OF,∴四边形OMNF是平行四边形,∴OM=FN,∵AH=2FN,∴AH=2OM.(2)证明:连接OB,OC,∵∠BAC=60°,∴∠BOC=120°,∴∠BOM=60°,∴∠OBM=30°,∴OB=2OM=AH=AO,即AH=AO.24.(1)解:∵AB是⊙O的直径,∴∠ADB=90°,∵DH⊥AB,∴∠DHA=∠ADB=90°,又∵∠DAB=∠HAD,∴△DAB∽△HAD,∴=即=,∴AH=3.6.(2)证明:∵=,∴∠DAC=∠DBA,∵DH⊥AB,∴∠FDE+∠B=90°,∵∠ADB=90°,∴∠DEF+∠DAC=90°,∴∠DEF=∠FDE,∴DF=EF.25.解:(1)如图1,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵点C是的中点,∴AC=BC,则△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,设∠CBK=∠DAC=α,则∠DAB=∠DCB=45°﹣α,∠AK B=90°﹣α,∴∠AKB﹣∠BCD=(90°﹣α)﹣(45°﹣α)=45°;(2)过点C作CH⊥AD,∵∠CDH=∠CBA=45°,∴则△CHD是等腰直角三角形,∴CD=CH,∵CD=DB,∴CH=DB,在△EBD和△EHC中,∴△EBD≌△EHC(AAS),∴CE=BE=BC,在△ACE和△BCK中,∴△ACE≌△BCK(ASA),∴CK=CE=BE=BC,即BC=2CK.人教版数学九年级上册第24章《圆》培优检测题(含祥细答案)一.选择题1.已知⊙O的半径OA长为,若OB=,则可以得到的正确图形可能是()A.B.C.D.2.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°3.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB.2πC.3πD.6π4.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.C.D.25.如图:已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).若∠COA=60°,∠CDO=70°,∠ACD的度数是()A.60°B.50°C.30°D.10°6.对于以下图形有下列结论,其中正确的是()A.如图①,AC是弦B.如图①,直径AB与组成半圆C.如图②,线段CD是△ABC边AB上的高D.如图②,线段AE是△ABC边AC上的高7.如图,BC为⊙O的直径,AB=OB.则∠C的度数为()A.30°B.45°C.60°D.90°8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点且不与点A、B重合.若OP 的长为整数,则符合条件的点P有()A.2个B.3个C.4个D.5个9.如图,点P、M、N分别是边长为2的正六边形中不相邻三条边的中点,则△PMN的周长为()A.6 B.6C.6D.910.如图,△ABC是半径为1的⊙O的内接正三角形,则圆的内接矩形BCDE的面积为()A.3 B.C.D.11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A.20°B.25°C.30°D.35°12.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A.3 B.C.D.4二.填空题13.在⊙O中,AC为直径,过点O作OD⊥AB于点E,交⊙O于点D,连接BC,若AB=,ED =,则BC=.14.如图,△ABC的周长为16,⊙O与BC相切于点D,与AC的延长线相切于点E,与AB的延长线相切于点F,则AF的长为.15.如图,矩形ABCD中,AB=3,BC=2,E为BC的中点,AF=1,以EF为直径的半圆与DE 交于点G,则劣弧的长为.16.在正六边形ABCDEF中,若边长为3,则正六边形ABCDEF的边心距为.17.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.18.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.三.解答题19.如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.20.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延长线于点P,过点B 的切线交CA的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=,半⊙O的半径为2,求PA的长度.21.如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC交A C于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.22.如图,AB是⊙O的直径,D是弦AC延长线上一点,且AB=BD,DB的延长线交⊙O于点E,过点C作CF⊥BD,垂足为点F.(1)CF与⊙O有怎样的位置关系?请说明理由;(2)若BF+CF=6,⊙O的半径为5,求BE的长度.23.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O 于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求劣弧的长.(结果保留π)24.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.25.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.26.如图,已知AB为⊙O的直径,C为⊙O上异于A、B的一点,过C点的切线于BA的延长线交于D点,E为CD上一点,连EA并延长交⊙O于H,F为EH上一点,且EF=CE,CF 交延长线交⊙O于G.(1)求证:弧AG=弧GH;(2)若E为DC的中点,sim∠CDO=,AH=2,求⊙O的半径.参考答案一.选择题1.解:∵⊙O的半径OA长为,若OB=,∴OA<OB,∴点B在圆外,故选:A.2.解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.3.解:该扇形的弧长==3π.故选:C.4.解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=×2=.故选:C.5.解:∵OA=OC,∠COA=60°,∴△ACO为等边三角形,∴∠CAD=60°,又∵∠CDO=70°,∴∠ACD=∠CDO﹣∠CAD=10°.故选:D.6.解:A、AC不是弦,故错误;B、半圆是弧,不包括弧所对的弦,故错误;C、线段CD是△ABC边AB上的高,正确;D、线段AE不是△ABC边AC上的高,故错误,故选:C.7.解:∵BC为⊙O的直径,∴∠BAC=90°,∵AB=OB,∴BC=2AB,∴sin C==,∴∠C=30°.故选:A.8.解:连接OA,作OC⊥AB于C,则AC=AB=4,由勾股定理得,OC==3,则3≤OP<5,OP=3有一种情况,OP=4有两种情况,则符合条件的点P有3个,故选:B.9.解:分别过正六边形的顶点A,B作AE⊥MN于E,BF⊥MN于F,则∠EAM=∠NBF=30°,EF=AB=2,∵AM=BN=2=1,∴EM=FN=1=,∴MN=++2=3,∴△PMN的周长3×3=9,故选:D.10.解:连接BD,如图所示:∵△ABC是等边三角形,∴∠BAC=60°,∴∠BDC=∠BAC=60°,∵四边形BCDE是矩形,∴∠BCD=90°,∴BD是⊙O的直径,∠CBD=90°﹣60°=30°,∴BD=2,CD=BD=1,∴BC==,∴矩形BCDE的面积=BC•CD=×1=;故选:C.11.【解答】解:∵四边形ABCD是菱形,∠D=80°,∴∠ACB=∠DCB=(180°﹣∠D)=50°,∵四边形AECD 是圆内接四边形,∴∠AEB =∠D =80°,∴∠EAC =∠AEB ﹣∠ACE =30°,故选:C .12.解:连接BP ,如图,当y =0时, x 2﹣4=0,解得x 1=4,x 2=﹣4,则A (﹣4,0),B (4,0), ∵Q 是线段PA 的中点,∴OQ 为△ABP 的中位线,∴OQ =BP ,当BP 最大时,OQ 最大,而BP 过圆心C 时,PB 最大,如图,点P 运动到P ′位置时,BP 最大, ∵BC ==5,∴BP ′=5+2=7,∴线段OQ 的最大值是.故选:C .二.填空题(共6小题)13.解:∵OD ⊥AB ,∴AE =EB =AB =,设OA =OD =r ,在Rt △AOE 中,∵AO 2=OE 2+AE 2,∴r 2=()2+(r ﹣)2,∴r=,∴OE=﹣=,∵OA=OC,AE=EB,∴BC=2OE=,故答案为.14.解:∵AB、AC的延长线与圆分别相切于点F、E,∴AF=AE,∵圆O与BC相切于点D,∴CE=CD,BF=BD,∴BC=DC+BD=CE+BF,∵△AB C的周长等于16,∴AB+AC+BC=16,∴AB+AC+CE+BF=16,∴AF+AE=16,∴AF=8.故答案为:8.15.解:连接OG,DF,∵BC=2,E为BC的中点,∴BE=EC=1,∵AB=3,AF=1,∴BF=2,由勾股定理得,DF==,EF==,∴DF=EF,在Rt△DAF和Rt△FBE中,,∴Rt△DAF≌Rt△FBE(HL)∴∠ADF=∠BFE,∵∠ADF+∠AFD=90°,∴∠BFE+∠AFD=90°,即∠DFE=90°,∵FD=FE,∴∠FED=45°,∵OG=OE,∴∠GOE=90°,∴劣弧的长==π,故答案为:π.16.解:如图,设正六边形ABCDEF的中心为O,连接OA,OB,则△OAB是等边三角形,过O作OH⊥AB于H,∴∠AOH=30°,∴OH=AO=,故答案为:.17.解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故答案为18.解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.三.解答题(共8小题)19.(1)证明:连接OC,∵D为的中点,∴=,∴∠BOD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.20.(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠FAO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=,即,∴PB=,∵∠PAE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠PAE=∠AEB,∠P=∠P,∴△APB∽△CPA,∴,即PA2=PB•PC,∴,解得PA=.21.解:(1)连接OA、OC,过O作OH⊥AC于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O的半径为2.(2)证明:在BM上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.22.解:(1)CF与⊙O相切.连接BC,OC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=BD,∴∠A=∠D,又∵OA=OB,∴OC是△ABD的中位线.∴OC∥BD,∴∠OCF=∠CFD=90°,即CF⊥OC.∴CF与⊙O相切;(2)过点O作OH⊥BE于点H,则∠OCF=∠CFH=∠OHB=90°,∴四边形OCFH是矩形,∴OC=FH,OH=CF,设BH=x,∵OC=5,BF+CF=6,∴BF=5﹣x,OH=CF=6﹣(5﹣x)=x+1,在Rt△BOH中,由勾股定理知:BH 2+OH 2=OB 2,即x 2+(x +1)2=52,解得x 1=3,x 2=﹣4(不合题意,舍去).∴BH =3,∵OH ⊥BE ,∴BH =EH =BE ,∴BE =2BH =2×3=6.23.(1)证明:∵四边形ABCD 是正方形,AB 为⊙O 的直径, ∴∠ABE =∠BCG =∠AFB =90°,∴∠BAF +∠ABF =90°,∠ABF +∠EBF =90°,∴∠EBF =∠BAF ,在△ABE 与△BCG 中,,∴△ABE ≌△BCG (ASA );(2)解:连接OF ,∵∠ABE =∠AFB =90°,∠AEB =55°,∴∠BAE =90°﹣55°=35°,∴∠BOF =2∠BAE =70°,∵OA =3,∴的长==.24.(1)证明:连接OA ,则∠COA =2∠B ,∵AD =AB ,∴∠B =∠D =30°,∴∠COA =60°,∴∠OAD =180°﹣60°﹣30°=90°, ∴OA ⊥AD ,即CD 是⊙O 的切线;(2)解:∵BC =4,∴OA =OC =2,在Rt △OAD 中,OA =2,∠D =30°, ∴OD =2OA =4,AD =2,所以S △OAD =OA •AD =×2×2=2, 因为∠COA =60°,所以S 扇形COA ==π, 所以S 阴影=S △OAD ﹣S 扇形COA =2﹣.25.证明(1)∵AB =AC ,AC =CD ∴∠ABC =∠ACB ,∠CAD =∠D ∵∠ACB =∠CAD +∠D =2∠CAD ∴∠ABC =∠ACB =2∠CAD∵∠CAD =∠EBC ,且∠ABC =∠ABE +∠EBC ∴∠ABE =∠EBC =∠CA D ,∵∠ABE =∠ACE∴∠CAD =∠ACE∴CE =AE。
人教版九年级数学上册第24章圆专题复习练习题专题1 与圆的基本性质有关的辅助线作法1.如图,点A,B,C,D分别是⊙O上的四点,∠BAC=50°,BD是直径,则∠DBC的度数是(A)A.40° B.50° C.20° D.35°6.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是(D) A.50° B.60° C.80° D.100°2.如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D.若⊙O的半径为2,则CD3.如图,在⊙O中,∠OAB=20°,则∠C的度数为110°.4.如图,在⊙O中,AB为直径,∠ACB的平分线交⊙O于点D,AB=6,则BD7.如图,已知A ,B ,C ,D 是⊙O 上的四个点,⊙O 的直径AB =2 3.若∠ACD =120°,则线段AD 的长为3.5.如图,⊙A 过点O ,C ,D ,点C 的坐标为(3,0),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,已知∠OBD =30°,则⊙A 的半径等于1.8.如图,A ,B ,C ,D 是⊙O 上的四个点,AB ︵=BC ︵.若∠AOB =58°,则∠D =29°.9.如图,⊙O 的弦AB =8,N 是AB ︵的中点,AN =25,则⊙O 的半径为5.10.如图,在⊙O 中,半径OA ⊥OB ,C ,D 为AB ︵的三等分点.弦AB 分别交OC ,OD 于点E ,F ,下列结论:①∠AOC =30°;②CE =DF ;③∠AEO =105°;④AE =CD =FB.其中正确的有①②③④.专题2 教材P90习题T14的变式与应用1.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.判断△ABC的形状,并证明你的结论.解:△ABC为等边三角形.证明:∵∠APC=∠ABC,∠CPB=∠BAC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°.∴∠ACB=60°.∴△ABC为等边三角形.【问题延伸1】求证:PA+PB=PC.证明:在PC上截取PD=AP,连接AD,如图.∵∠APC=60°,∴△APD 是等边三角形.∴AD =AP =PD ,∠ADP =60°,∠ADC =120°. ∵∠APB =∠APC +∠BPC =120°, ∴∠ADC =∠APB.在△APB 和△ADC 中,⎩⎪⎨⎪⎧∠ABP =∠ACD ,∠APB =∠ADC ,AP =AD ,∴△APB ≌△ADC(AAS). ∴BP =CD.又∵PD =AP ,∴PA +PB =PD +CD =PC.【问题延伸2】 若BC =23,点P 是AB ︵上一动点(异于点A ,B),求PA +PB 的最大值.解:由上题知PA +PB =PC ,要使PA +PB 最大,则PC 为直径,作直径BG ,连接CG.∴∠G =∠BAC =60°,∠BCG =90°.∵BC =23,∴BG =4.即PA +PB 的最大值为4. 2.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC =∠APC =60°.(1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD.解:(1)证明:∵∠ABC =∠APC =60°,∠BAC =∠APC =60°,∴∠ABC =∠BAC =60°. ∴△ABC 是等边三角形. (2)连接OB ,OC.可得∠BOC =2∠BAC =2×60°=120°. ∵OB =OC ,∴∠OBD =∠OCD =12×(180°-120°)=30°.∵∠ODB =90°,∴OD =12OB =4.3.如图,点A ,B ,C ,D 在同一个圆上,且C 点为一动点(点C 不在BAD ︵上,且不与点B ,D 重合),∠ACB =∠ABD =45°.(1)求证:BD 是该圆的直径; (2)连接CD ,求证:2AC =BC +CD.证明:(1)∵∠ACB =45°, ∴∠ADB =∠ACB =45°. ∵∠ABD =45°, ∴∠BAD =90°. ∴BD 是该圆的直径.(2)在CD 的延长线上截取DE =BC ,连接EA. ∵∠ABD =∠ADB ,∴AB =AD.∵∠ADE +∠ADC =180°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE. 在△ABC 和△ADE 中, ⎩⎪⎨⎪⎧AB =AD ,∠ABC =∠ADE ,BC =DE ,∴△ABC ≌△ADE(SAS). ∴∠BAC =∠DAE ,AC =AE. ∴∠BAC +∠CAD =∠DAE +∠CAD. ∴∠BAD =∠CAE =90°.∴CE 2=AC 2+AE 2=2AC 2,即CE =2AC. ∴2AC =DE +CD =BC +CD.专题3 切线的判定和性质综合1.如图,已知点O 为正方形ABCD 对角线上一点,以O 为圆心,OA 的长为半径的⊙O 与BC 相切于点M ,与AB ,AD 分别相交于点E ,F.求证:CD 与⊙O 相切.证明:连接OM ,过点O 作ON ⊥CD ,垂足为N. ∵⊙O 与BC 相切于点M , ∴OM ⊥BC.∵正方形ABCD 中,CA 平分∠BCD , ∴OM =ON.∴ON为⊙O的半径,∴CD与⊙O相切.2.如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE.(1)求证:CD是⊙O的切线;(2)若AB=4,BD=3,求CD的长.解:(1)证明:连接OC,∵DE⊥AE,∴∠E=90°.∴∠CDE+∠DCE=90°.∵∠A=∠CDE,∴∠A+∠DCE=90°.∵OC=OA,∴∠A=∠ACO.∴∠ACO+∠DCE=90°.∴∠OCD=90°.∴OC⊥CD.又∵OC为⊙O的半径,∴CD是⊙O的切线.(2)∵AB=4,BD=3,∴OC =OB =12AB =2.∴OD =2+3=5.∴CD =OD 2-OC 2=52-22=21.3.如图,已知AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,OE ∥AC 交BC 于点E ,过点B 作⊙O 的切线交OE 的延长线于点D ,连接DC 并延长交BA 的延长线于点F.(1)求证:DC 是⊙O 的切线;(2)若∠ABC =30°,AB =8,求线段CF 的长.解:(1)证明:连接OC , ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵OE ∥AC ,∴∠OEB =∠ACB.∴OD ⊥BC ,由垂径定理,得OD 垂直平分BC. ∴DB =DC. ∴∠DBE =∠DCE.又∵OC =OB ,∴∠OBE =∠OCE. ∴∠DBO =∠OCD.∵DB 为⊙O 的切线,OB 是半径,∴∠OCD=∠DBO=90°,即OC⊥DC.∵OC是⊙O的半径,∴DC是⊙O的切线.(2)在Rt△ABC中,∠ABC=30°,∴∠CAB=60°.又∵OA=OC,∴△AOC是等边三角形.∴∠COF=60°.∴∠F=30°.∵AB=8,∴OC=4.∴OF=2OC=8.在Rt△COF中,CF=OF2-OC2=4 3.4.如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E,若⊙O的半径为3,PC=4,求弦CE的长.解:(1)证明:连接OC,过点O作OD⊥BP于点D.∵PA与⊙O相切,∴OC⊥PA.又∵∠APO=∠BPO,∴OC =OD.∴OD 为⊙O 的半径. ∴直线PB 与⊙O 相切. (2)过点C 作CH ⊥PE 于点H. ∵OC =3,PC =4, ∴OP =OC 2+PC 2=5. ∵S △OCP =12CH ·OP =12OC ·PC ,∴CH =OC ·PC OP =125.∴OH =OC 2-CH 2=95.∴EH =EO +OH =245.∴CE =EH 2+CH 2=1255.5.如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点O 作OD ⊥AB ,交BC 的延长线于点D ,交AC 于点E ,F 是DE 的中点,连接CF.(1)求证:CF 是⊙O 的切线; (2)若∠A =22.5°,求证:AC =DC.证明:(1)∵AB 是⊙O 的直径, ∴∠ACB =∠ACD =90°.∵F是ED的中点,∴CF=EF=DF.∴∠AEO=∠FEC=∠FCE.∵OA=OC,∴∠OCA=∠OAC.∵OD⊥AB,∴∠OAC+∠AEO=90°.∴∠OCA+∠FCE=90°,即OC⊥FC.又∵OC是⊙O的半径,∴CF是⊙O的切线.(2)连接AD.∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°.∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°.∵AO=BO,∴AD=BD.∴∠ADO=∠BDO=22.5°.∴∠ADB=45°.∴∠CAD=∠ADC=45°.∴AC=CD.6.如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及AC的长.解:(1)直线CD与⊙O相切.理由:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD(SSS).∴∠ODC=∠OBC=90°.∴OD⊥DC.又∵OD为⊙O的半径,∴直线CD与⊙O相切.(2)设⊙O的半径为r,CD=CB=x.在Rt△OBE中,∵OE2=EB2+OB2,∴(4-r)2=r2+22.∴r=1.5.在Rt△EDC中,∵DE2+DC2=EC2,∴x2+42=(2+x)2.∴x=3.在Rt△ABC中,AC=AB2+BC2=32+32=3 2.∴圆的半径为1.5,AC的长为3 2.7.如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD∥AB 交AF于点D,连接BC.(1)连接DO,若BC∥OD,求证:CD是半圆的切线;(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断∠AED和∠ACD的数量关系,并证明你的结论.解:(1)证明:连接OC,∵CD∥AB,BC∥OD,∴四边形BODC是平行四边形.∴OB=CD.∵OA=OB,∴CD=OA.∴四边形ADCO是平行四边形.∵AF为半圆的切线,AB为半圆的直径,∴AB⊥AD.∴四边形ADCO是矩形.∴OC⊥CD.又∵OC为半圆的半径,∴CD是半圆的切线.(2)∠AED+∠ACD=90°.证明:连接BE,∵AB为半圆的直径,∴∠AEB=90°.∴∠EBA+∠BAE=90°. ∵CD∥AB,∴∠AED=∠BAE.又∵∠ACD=∠EBA,∴∠AED+∠ACD=90°.。
人教版九年级上册第24章数学圆单元测试卷(含答案)(7)一.选择题1.如图,在⊙O中,AC为⊙O直径,B为圆上一点,若∠OBC=26°,则∠AOB的度数为()A.26°B.52°C.54°D.56°2.如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A.22°B.26°C.32°D.34°3.已知⊙O的半径为5cm,若点A到圆心O的距离为3cm,则点A()A.在⊙O内B.在⊙O上C.在⊙O外D.与⊙O的位置关系无法确定4.如图,点A,B,P是⊙O上的三点,若∠AOB=40°,则∠APB的度数为()A.80°B.140°C.20°D.50°5.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆6.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是cm,则这个正六边形的周长是()A. cm B.12cm C. cm D.36 cm7.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A.2πB.πC.D.4π8.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是()A.55°B.30°C.35°D.40°9.如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是()A.点M B.点N C.点P D.点Q10.如图,AB为半圆O的直径,BC⊥AB且BC=AB,射线BD交半圆O的切线于点E,DF⊥CD 交AB于F,若AE=2BF,DF=2,则⊙O的半径长为()A.B.4C.D.二.填空题11.如图,AB是⊙O的直径,CD切⊙O于点C,若∠BCD=26°,则∠ABC的度数为.12.如图所示,AB是⊙O的直径.PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P =40°,则∠B等于.13.如图,在直角坐标系中,点A(0,3)、点B(4,3)、C(0,﹣1),则△ABC外接圆的半径为.14.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为.15.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是.16.如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.17.已知点A是圆心为坐标原点O且半径为3的圆上的动点,经过点B(4,0)作直线l⊥x 轴,点P是直线l上的动点,若∠OPA=45°,则△BOP的面积的最大值为.18.如图,已知⊙O的半径为m,点C为直径AB延长线上一点,BC=m.过点C任作一直线l,若l上总存在点P,使过P所作的⊙O的两切线互相垂直,则∠ACP的最大值等于.三.解答题19.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延长线于点P,过点B 的切线交CA的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=,半⊙O的半径为2,求PA的长度.20.如图,点P是⊙O的直径AB延长线上的一点,点C,D在⊙O上,且PD是⊙O的切线,PC=PD.(1)求证:PC是⊙O的切线;(2)若⊙O的半径为2,DO=PO,求图中阴影部分的面积.21.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连结AE交⊙O 于点F,连结BF并延长交CD于点G.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,OA=3,求劣弧的长.(结果保留π)22.如图,已知AB是⊙O的直径,点P是⊙O上一点,连接OP,点A关于OP的对称点C恰好落在⊙O上.(1)求证:OP∥BC;(2)过点C作⊙O的切线CD,交A P的延长线于点D.如果∠D=90°,DP=1,求⊙O 的直径.23.如图:AB是⊙O的直径,AC交⊙O于G,E是AG上一点,D为△BCE内心,BE交AD于F,且∠DBE=∠BAD.(1)求证:BC是⊙O的切线;(2)求证:DF=DG.24.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.25.【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ是⊙O的直径,PQ ⊥ON.(1)求∠POB的度数;(2)已知OP=6400km,求这两个观测点之间的距离即⊙O上的长.(π取3.1)参考答案一.选择题1.解:∵OB=OC,∴∠C=∠OBC,∵∠OBC=26°,∴∠AOB=2∠C=52°,故选:B.2.解:连接CO,∵∠A=68°,∴∠BOC=136°,∴∠OBC=∠OCB=(180°﹣136°)=22°.故选:A.3.解:∵OA=3cm<5cm,∴点A在⊙O内.故选:A.4.解:∠APB=∠AOB=×40°=20°.故选:C.5.解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.6.解:设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2cm,∴△AOB是等边三角形,∴AB=OA=2cm,∴正六边形ABCDEF的周长=6AB=12cm.故选:C.7.解:连接OA、OC,如图.∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则劣弧AC的长==2π.故选:A.8.解:在优弧AB上取点D,连接BD,AD,OB,OA,∵∠ACB=110°,∴∠D=180°﹣∠ACB=70°,∴∠AOB=2∠D=140°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠P=360°﹣∠OAP﹣∠AOB﹣∠OBP=40°.故选:D.9.解:连接OM,ON,OQ, OP,∵MN、MQ的垂直平分线交于点O,∴OM=ON=OQ,∴M、N、Q再以点O为圆心的圆上,OP与ON的大小不能确定,∴点P不一定在圆上.故选:C.10.解:连接AD,CF,作CH⊥BD于H,如图所示:∵AB是直径,∴∠ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠BDF+∠BDC=90°,∠CBD+∠DBA=90°,∴∠ADF=∠BDC,∠DAB=∠CBD,∴△ADF∽△BDC,∴==,∵∠DAE+∠DAB=90°,∠E+∠DAE=90°,∴∠E=∠DAB,∴△ADE∽△BDA,∴=,∴=,即=,∵AB=BC,∴AE=AF,∵AE=2BF,∴BC=AB=3BF,设BF=x,则AE=2x,AB=BC=3x,∴BE==x,CF==,由切割线定理得:AE2=ED×BE,∴ED===x,∴BD=BE﹣ED=,∵CH⊥BD,∴∠BHC=90°,∠CBH+∠BCH=∠CBH+∠ABE,∴∠CBH=∠ABE,∵∠BAE=90°=∠BHC,∴△BCH∽△EBA,∴==,即==,解得:BH=x,CH=x,∴DH=BD﹣BH=x,∴CD2=CH2+DH2=x2,∵DF⊥CD,∴CD2+DF2=CF2,即x2+(2)2=()2,解得:x=,∴AB=3,∴⊙O的半径长为;故选:A.二.填空题11.解:连接CO,∵CD切⊙O于点C,∴CO⊥CD,∴∠OCD=90°,∵∠BCD=26°,∴∠OCB=90°﹣26°=64°,∵CO=BO,∴∠ABC=∠OCB=64°.故答案为:64°.12.解:∵PA切⊙O于点A,∴∠PAB=90°,∵∠P=40°,∴∠POA=90°﹣40°=50°,∵OC=OB,∴∠B=∠BCO=25°,故答案为:25°.13.解:连接AB,分别作AC、AB的垂直平分线,两直线交于点H,由垂径定理得,点H为△ABC的外接圆的圆心,∵A(0,3)、点B(4,3)、C(0,﹣1),∴点H的坐标为(2,1),则△ABC外接圆的半径==2,故答案为:2.14.解:由题意:BA=BC=1,∠ABC=90°,∴S==.扇形BAC故答案为.15.解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.16.解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.17.解:当PA是⊙O的切线时,OP最长,则PB最长,故△BOP的面积的最大,连接OA,∵PA是⊙O的切线,∴OA⊥PA,∵∠OPA=45°,∴△OPA是等腰直角三角形,∴OA=PA=3,∴OP=3,在Rt△BOP中, PB===,∴△BOP的面积的最大值为×4×=2,故答案为2.18.解:∵PM、PN是过P所作的⊙O的两切线且互相垂直,∴∠MON=90°,∴四边形PMON是正方形,根据勾股定理求得OP=m,∴P点在以O为圆心,以m长为半径作大圆⊙O上,以O为圆心,以m长为半径作大圆⊙O,然后过C点作大⊙O的切线,切点即为P点,此时∠ACP有最大值,如图所示,∵PC是大圆⊙O的切线,∴OP⊥PC,∵OC=2m,OP=m,∴PC==m,∴OP=PC,∴∠ACP=45°,∴∠ACP的最大值等于45°,.故答案为45°.三.解答题19.(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠FAO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=,即,∴PB=,∵∠PAE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠PAE=∠AEB,∠P=∠P,∴△APB∽△CPA,∴,即PA2=PB•PC,∴,解得PA=.20.(1)证明:连接OC,在△PDO与△PCO中,,∴△PDO≌△PCO(SSS),∴∠PCO=∠PDO,∵PD是⊙O的切线,∴∠PDO=90°,∴∠PCO=90°,∴PC是⊙O的切线;(2)解:∵∠PDO=90°,DO=PO,∴∠POD=60°,∴∠DOC=120°,∵⊙O的半径为2,∴PD=OD=2,∴图中阴影部分的面积=S四边形PDOC ﹣S扇形DOC=2××2×2﹣=4﹣.21.(1)证明:∵四边形ABCD是正方形,AB为⊙O的直径,∴∠ABE=∠BCG=∠AFB=90°,∴∠BAF+∠ABF=90°,∠ABF+∠EBF=90°,∴∠EBF=∠BAF,在△ABE与△BCG中,,∴△ABE≌△BCG(ASA);(2)解:连接OF,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°﹣55°=35°,∴∠BOF=2∠BAE=70°,∵OA=3,∴的长==.22.(1)证明:∵A关于OP的对称点C恰好落在⊙O上.∴=∴∠AOP=∠COP,∴∠AOP=∠AOC,又∵∠ABC=∠AOC,∴∠AOP=∠ABC,∴PO∥BC;(2)解:连接PC,∵CD为圆O的切线,∴OC⊥CD,又AD⊥CD,∴OC∥AD,∴∠APO=∠COP,∵∠AOP=∠COP,∴∠APO=∠AOP,∴OA=AP,∵OA=OP,∴△APO为等边三角形,∴∠AOP=60°,又∵OP∥BC,∴∠OBC=∠AOP=60°,又OC=OB,∴△BCO为等边三角形,∴∠COB=60°,∴∠POC=180°﹣(∠AOP+∠COB)=60°,又OP=OC,∴△POC也为等边三角形,∴∠PCO=60°,PC=OP=OC,又∵∠OCD=90°,∴∠PCD=30°,在Rt△PCD中,PD=PC,又∵PC=OP=AB,∴PD=AB,∴AB=4PD=4.23.证明:(1)∵点D为△BCE的内心,∴BD平分∠EBC.∴∠EBD=∠CBD.又∵∠DBE=∠BAD,∴∠CBD=∠BAD.又∵AB是〇O直径,∴∠BDA=90°.在Rt△BAD中,∠BAD+∠ABD=90°,∴∠CBD+∠ABD=90°,即∠ABC=90°.∴BC⊥AB.又∵AB为直径,∴BC是〇O的切线;(2)连接ED,如图,则ED平分∠BEC,∴∠BED=∠CED.∵∠EFD为△BFD的外角∴∠EFD=∠ADB+∠EBD=90°+∠EBD,又∵四边形ABDG为圆的内接四边形,∴∠EGD=180°﹣∠ABD=180°﹣(90°﹣∠CDB)=90°+∠CDB 又∵∠EBD=∠CBD,∴∠EFD=∠EGD又∵ED=ED,∴△DFE≌△DGE(AAS).∴DF=DG.24.解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD∥CE,∴∠AOD=∠COE=40°,∴∠ACD=AOD=20°.25.解:(1)设点B的切线CB交ON延长线于点E,HD⊥BC于D,CH⊥BH交BC于点C,如图所示:则∠DHC=67°,∵∠HBD+∠BHD=∠BHD+∠DHC=90°,∴∠HBD=∠DHC=67°,∵ON∥BH,∴∠BEO=∠HBD=67°,∴∠BOE=90°﹣67°=23°,∵PQ⊥ON,∴∠POE=90°,∴∠POB=90°﹣23°=67°;(2)同(1)可证∠POA=31°,∴∠AOB=∠POB﹣∠POA=67°﹣31°=36°,∴==3968(km).人教版九年级上册第24章数学圆单元测试卷(含答案)一、选择题1.下列语句中,正确的是( )A.长度相等的弧是等弧;等弧对等弦B.在同一平面上的三点确定一个圆C.直径是弦;半圆是劣弧D.三角形的外心到三角形三个顶点的距离相等答案 D 选项A中,长度相等的弧不一定是等弧,故A错误;选项B中,不在同一直线上的三点确定一个圆,故B错误;选项C中,直径是圆中最长的弦,半圆既不是优弧也不是劣弧,故C 错误;选项D中,三角形的外心到三角形三个顶点的距离相等,故D正确.故选D.2.如图,已知☉O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6B.5C.4D.3答案 B 过O作OC⊥AB于C,由垂径定理得AC=BC=AB=12,在Rt△AOC中,由勾股定理得OC=-=5.故选B.3.如图,△ABC内接于☉O,∠OBC=40°,则∠A的度数为( )答案 D 连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°.∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选D.4.如图,四边形ABCD内接于☉O,已知∠ADC=140°,则∠AOC的大小是( )A.80°B.100°C.60°D.40°答案 A 因为∠ADC=140°,所以∠ABC=180°-∠ADC=40°,所以∠AOC=2∠ABC=80°.5.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,☉O2的半径为1,O1O2⊥AB于点P,O1O2=6,若☉O2绕点P按顺时针方向旋转360°,则在旋转过程中,☉O2与矩形的边只有一个公共点的情况一共出现( )A.3次B.4次C.5次D.6次答案 B 当☉O2与AD相切且位于AD上方时,有一个交点;当☉O2与AD相切且位于AD下方时,有一个交点;与BC相切时与AD情况相同,所以共出现4次,故选B.6.如图,直径AB为12的半圆绕点A逆时针旋转60°,此时点B旋转到点B',则图中阴影部分的面积是( )A.12πB.24πC.6πD.36π答案 B 因为以AB为直径的半圆绕点A逆时针旋转60°得到以AB'为直径的半圆,故S半圆AB'=S半圆AB,则S阴影=S扇形BAB'+S半圆AB'-S半圆AB=S扇形BAB'===24π,故选B.7.如图,已知线段OA交☉O于点B,且OB=AB,点P是☉O上的一个动点,那么∠OAP的最大值是( )答案A连接OP,根据题意知,当OP⊥AP时,∠OAP的取值最大.在Rt△AOP 中,∵OP=OB,OB=AB,∴AO=2OP,∴∠OAP=30°.故选A.8.如图,直线AB与☉O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若☉O的半径为,CD=4,则弦EF的长为( )A.4B.2C.5D.6答案 B 连接OA,并反向延长交CD于点H,连接OC,∵直线AB与☉O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴OH⊥CD,∴CH=CD=×4=2,∵☉O的半径为,∴OA=OC=,∴OH=-=,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.9.如图,在平面直角坐标系xOy中,☉P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被☉P截得的弦AB的长为4,则a的值是( )A.4B.3+C.3D.3+答案B作如图所示的辅助线,易得OC=CD=3,AP=3,AE=2,故PE=DE=-=1,PD=,故a=PC=DC+PD=3+.10.如图,已知直线y=x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA、PB,则△PAB面积的最大值是( )A.8B.12C.D.答案 C 如图,平移AB使其与☉C相切于P,此时P点距离AB最远,即△PAB的面积最大,连接AC,连接PC并延长交AB于H.因为PC是☉C的半径,MN∥AB,所以PH⊥AB.∵直线y=x-3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,-3),则AB=5.∵S△ABC=·BC·AO=·AB·CH,∴CH=,∴PH=1+=,∴△PAB面积的最大值是×5×=,故选C.二、填空题11.“三角形中至少有一个内角大于或等于60°”,这个命题用反证法证明应假设.答案三角形中三个内角都小于60°解析第一步应假设结论不成立,即三角形中三个内角都小于60°.12.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°,弧AB的长为12πcm,则该圆锥的侧面积为cm2.答案108π解析圆锥的侧面积就是所给扇形的面积,设扇形的半径为r cm,∵弧AB的长为12πcm,∴πr=12π,解得r=18,∴S=πr2=π×182=108π(cm2).另解:S=rl=×18×12π=108π(cm2).13.如图,将长为8cm的铁丝AB首尾相接围成半径为2cm的扇形.则S扇形= cm2.答案4解析由题意可知扇形的周长为8cm.因为半径r=2cm,所以弧长l=8-2×2=4(cm),所以S扇形=l·r=×4×2=4(cm2).14.如图,点A、B、C、D都在☉O上,∠ABC=90°,AD=3,CD=2,则☉O的直径的长是.答案解析连接AC,∵点A、B、C、D都在☉O上,∠ABC=90°,∴∠ADC=180°-∠ABC=90°,AC是直径,∵AD=3,CD=2,∴AC==,即☉O直径的长是.15.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,外圆的半径OC⊥AB于D,测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.答案50cm解析如图,连接OA,设半径为r cm,∵CD=10cm,AB=60cm,∴AD=AB=30cm,OD=(r-10)cm,∴r2=(r-10)2+302,解得r=50.∴这个车轮的外圆半径是50cm.16.如图,两个同心圆,大圆的半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.答案8<AB≤10解析如图,当AB经过圆心时最长,此时AB=2×5=10.当AB与小圆相切于D时,利用勾股定理可得AD=4.利用垂径定理可得AB=8.根据直线与圆的位置关系可得,若大圆的弦AB与小圆相交,则8<AB≤10.17.如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x 轴上,☉M半径为2,☉M与直线l相交于A、B两点,若△ABM为等腰直角三角形,则点M的坐标为.答案(2,0)或(-2,0)解析过点M作MC⊥l,垂足为C,∵△MAB是等腰直角三角形,∴MA=MB,且∠BAM=∠ABM=45°.∵MC⊥l,∴∠BAM=∠CMA=45°,∴AC=CM.在Rt△ACM中,∵AC2+CM2=AM2,即2CM2=4,∴CM=.在Rt△OCM中,∠COM=30°,∴CM=OM,∴OM=2CM=2,∴M(2,0).根据对称性知,若点M在x轴负半轴上,则点M(-2,0)也满足条件.18.如图24-5-16,在☉O中,AB是直径,点D是☉O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q.连接AC.关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中正确结论是(只需填写序号).答案②③解析如图,连接OD,∵DG是☉O的切线,∴∠GDO=90°.∴∠GDP+∠ADO=90°.在Rt△APE中,∠OAD+∠APE=90°,∵AO=DO,∴∠OAD=∠ADO.∴∠APE=∠GPD=∠GDP,∴GP=GD.结论②正确.∵AB是☉O的直径,∴∠ACB=90°,∴∠CAQ+∠AQC=90°.∵点C是的中点,∴∠CAQ=∠ABC.又∵∠ABC+∠BCE=90°.∴∠AQC=∠BCE,∴PC=PQ.∵∠ACP+∠BCE=90°,∠AQC+∠CAP=90°,∴∠CAP=∠ACP,∴AP=CP,∴AP=CP=PQ,∴点P是△ACQ的外心.所以结论③正确.由于不能确定∠BAD与∠ABC的关系,所以结论①不一定正确.故答案是②③.三、解答题19.如图,AB是☉O的直径,弦CD⊥AB于点E.点M在☉O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求☉O的直径;(2)若∠M=∠D,求∠D的度数.答案(1)∵AB是☉O的直径,弦CD⊥AB,CD=16,∴DE=CD=8.∵BE=4,∴OE=OB-BE=OD-4.在Rt△OED中,OE2+ED2=OD2,∴(OD-4)2+82=OD2,解得OD=10.∴☉O的直径是20.(2)∵弦CD⊥AB,∴∠OED=90°.∴∠EOD+∠D=90°.∵∠M=∠D,∠EOD=2∠M,∴∠BOD+∠D=2∠M+∠D=90°.∴∠D=30°.20.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的☉O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).答案(1)证明:连接OD.∵BC是☉O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∠OED=∠AOE=60°,∵OE=OD,∴△ODE为等边三角形,∴∠DOE=60°,∴阴影部分的面积=S扇形ODE==π.21.如图,AB是☉O的直径,BD是☉O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为☉O的切线;(3)若☉O的半径为5,∠BAC=60°,求DE的长.答案 (1)证明:连接AD,∵AB 是☉O 的直径, ∴∠ADB=90°,又BD=CD,人教版九年级上册第24章数学圆单元测试卷(含答案)(2)一、选择题1.已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8 cm ,则AC 的长为( )A .2 5cmB .4 5cmC .2 5cm 或4 5cmD .2 3cm 或4 3cm2.在△ABC 中,若O 为BC 边的中点,则必有AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图1,在矩形DEFG 中,已知DE =4,EF =3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为( )A.10B.192C .34D .10图1 图23.如图2,在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 逆时针旋转40°得到△ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积为( )A.143π-6 B.259π C.338π-3 D.33+π 4.如图3,在平面直角坐标系xOy 中,已知A (4,0),B (0,3),C (4,3),I 是△ABC 的内心,将△ABC 绕原点逆时针旋转90°后,点I 的对应点I ′的坐标为( )图3A.(-2,3) B.(-3,2) C.(3,-2) D.(2,-3) 5.在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=3x+2 3上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为( ) A.3 B.2 C.3 D. 26.如图4,在矩形ABCD中,G是BC的中点,过A,D,G三点的⊙O与边AB,CD分别交于点E,F,给出下列说法:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O 的圆心;(3)BC与⊙O相切,其中正确说法的个数是( )图4A.0 B.1 C.2 D.3二、填空题7.如图5,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=________°.图5 图68.如图6,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为________.9.如图7,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________.图7 图810.如图8,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A ′B ′CD ′的边A ′B ′与⊙O 相切,切点为E ,边CD ′与⊙O 相交于点F ,则CF 的长为________.三.解答题11.如图9,AB 为⊙O 的直径,点C 在⊙O 外,∠ABC 的平分线与⊙O 交于点D ,∠C =90°.(1)CD 与⊙O 有怎样的位置关系?请说明理由; (2)若∠CDB =60°,AB =6,求AD ︵的长.图912.如图10,在△ABC 中,AB =AC ,以AB 为直径的半圆交AC 于点D ,交BC 于点E ,延长AE 至点F ,使EF =AE ,连接FB ,FC .(1)求证:四边形ABFC 是菱形;(2)若AD =7,BE =2,求半圆和菱形ABFC 的面积.图1013.如图11,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE 为半径作半圆,交AO于点F.(1)求证:AC是半圆O的切线;(2)若F是AO的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.图1114.如图12,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形;(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.图12答案1.[解析]C 如图,连接AC ,AO .∵⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm , ∴AM =12AB =12×8=4 cm ,OD =OC =5 cm.当点C 位置如图①所示时, ∵OA =5 cm ,AM =4 cm ,CD ⊥AB , ∴OM =OA 2-AM 2=52-42=3(cm), ∴CM =OC +OM =5+3=8(cm),∴AC =AM 2+CM 2=42+82=4 5(cm);人教新版九年级上学期第24章《圆》单元测试卷(含详解)一.选择题1.下随有关圆的一些结论: ①任意三点确定一个圆; ②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦;并且平分弦所对的弧, ④圆内接四边形对角互补 其中错误的结论有( ) A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 直径,若∠AOC =140°,则∠D 的度数是( )A .20°B .30°C .40°D .70°3.一个点到圆的最小距离为3cm ,最大距离为8cm ,则该圆的半径是( ) A .5cm 或11cmB .2.5cmC.5.5cm D.2.5cm或5.5cm4.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=65°,则∠DAO+∠DCO =()A.90°B.110°C. 120°D.165°5.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.πB. +C.D. +6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值为()A.1 B.C.D.7.如图所示,已知AB为⊙O的弦,且AB⊥OP于D,PA为⊙O的切线,A为切点,AP=6cm,OP=4cm,则BD的长为()A. cm B.3cm C. cm D.2cm8.如图,在菱形ABCD中,以AB为直径画弧分别交BC于点F,交对角线AC于点E,若AB =4,F为BC的中点,则图中阴影部分的面积为()A.B.C.D.9.如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°10.如图,AB是⊙O的弦,作OC⊥OA交⊙O的切线BC于点C,交AB于点D.已知∠OAB=20°,则∠OCB的度数为()A.20°B.30°C.40°D.50°11.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为()A.B.πC.D.312.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定二.填空题13.把一个半径为12,圆心角为150°的扇形围成一个圆锥(按缝处不重叠),那么这个圆锥的高是.14.(1)已知一个直角三角形的面积为12cm2,周长为12cm,那么这个直角三角形外接圆的半径是cm,内切圆半径是cm.(2)等边△ABC的边长为10cm,则它的外接圆的半径是cm,内切圆半径是cm.15.在圆内接四边形ABCD中,弦AB=AD,AC=2016,∠ACD=60°,则四边形ABCD的面积为.16.已知⊙O的半径为1cm,弦AB=cm,AC=cm,则∠BAC=.17.如图,CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,P点为直线CD 上的一个动点,当CD=6时,AP+BP的最小值为.三.解答题18.AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC,若∠P=30°.(1)求∠B的度数;(2)若PC=2,求BC的长.19.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D 作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为2,CF=1,求的长(结果保留π).20.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.21.某隧道施工单位准备在双向道路中间全程增加一个宽为1米的隔离带,已知隧道截面是一个半径为4米的半圆形,点O是其圆心,AE是隔离带截面,问一辆高3米,宽1.9米的卡车ABCD能通过这个隧道吗?请说明理由.22.如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.(1)求证:CE为⊙O的切线;(2)若OF⊥AE,OF=1,∠OAF=30°,求图中阴影部分的面积.(结果保留π)23.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2.(1)求直径AB的长;(2)求阴影部分图形的周长和面积.24.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点,CE交AB于点H,且AH=AC,AF平分线∠CAH.(1)求证:BE∥AF;(2)若AC=6,BC=8,求EH的长.25.如图所示,△ABC内接于⊙O,AC是直径,D在⊙O上,且AC平分∠BCD,AE∥BC,交CD于E,F在CD的延长线上,且AE=EF.连接AF.(1)求证:AF是⊙O的切线;(2)连接BF交AE于G,若AB=12,AE=13,求AG的长.参考答案一.选择题1.解:①任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆;②相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;③平分弦的直径垂直于弦;并且平分弦所对的弧,错误,此弦不是直径;④圆内接四边形对角互补;正确;故选:C.2.解:∵∠AOC=140°,∴∠BOC=40°,∵∠BOC与∠BDC都对,∴∠D=∠BOC=20°,故选:A.3.解:当点P在圆内时,最近点的距离为3cm,最远点的距离为8cm,则直径是11cm,因而半径是5.5cm;当点P在圆外时,最近点的距离为3cm,最远点的距离为8m,则直径是5cm,因而半径是2.5cm.故选:D.4.解:∵OA=OB=OC,∴∠ABO=∠BAO,∠OBC=∠OCB,∵∠ABC=65°=∠ABO+∠OBC,∴∠BAO+∠BCO=65°,∵∠ADC=65°,∴∠DAO+∠DCO=360°﹣(∠ADC+∠BAO+∠BCO+∠ABC)=360°﹣(65°+65°+65°)=165°,故选:D.5.解:∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC =S△BOC,OA=,∴S阴影部分=S扇形OAC==π.故选:A.6.解:∵正六边形的任一内角为120°,∴∠1=30°(如图),∴a=2cos∠1=,∴a=2.故选:D.7.解:∵PA为⊙O的切线,A为切点,∴∠PAO=90°,在直角△APO中,OA==2,∵AB⊥OP,∴AD=BD,∠ADO=90°,∴∠ADO=∠PAO=90°,∵∠AOP=∠DOA,∴△APO∽△DAO,∴=,即=,解得:AD=3(cm),∴BD=3cm.故选:B.8.解:如图,取AB的中点O,连接AF,OF.∵AB是直径,∴∠AFB=90°,∴AF⊥BF,∵CF=BF,∴AC=AB,∵四边形ABCD是菱形,∴AB=BC=AC,∴△ABC是等边三角形,∴AE=EC,易证△CEF≌△BOF,∴S阴=S扇形OBF==,故选:D.9.解:连接AC,如图,∵BC是⊙O的直径,∴∠BAC=90°,∵∠ACB=∠ADB=70°,∴∠ABC=90°﹣70°=20°.故答案为20°.故选:A.10.解:连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∵OA=OB,∴∠OAB=∠OBA=20°,∴∠DBC=70°,∵∠AOC=90°,∴∠ODA=∠BDC=70°,∴∠OCB=40°,故选:C.11.解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=3,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴的弧长为=π,故选:B.12.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.二.填空题(共5小题)13.解:设这个圆锥的底面圆的半径为r,根据题意得2πr=,解得r=5,所以圆锥的高==.故答案为.14.解:(1)如果设这个直角三角形的直角边是a,b,斜边是c,那么由题意得:S=ab=12,a+b+c=12,△∴ab=24,a+b=12﹣c,根据勾股定理得a2+b2=c2,(a+b)2﹣2ab=c2,(12﹣c)2﹣48=c2,解得c=,所以直角三角形外接圆的半径是cm;设内切圆的半径是r,则×12r=12,解得:r=cm.故答案是:,;(2)连接OC和OD,如图:由等边三角形的内心即为中线,底边高,角平分线的交点所以OD⊥BC,∠OCD=30°,OD即为圆的半径.又由BC=10cm,则CD=5cm在直角三角形OCD中:=tan30°代入解得:OD=CD=,则CO=×10=;故答案为:,.15.解:过A作AE⊥BC于E,AF⊥CD于F.∵∠ADF+∠ABC=180(圆的内接四边形对角之和为180),∠ABE+∠ABC=180,∴∠ADF=∠ABE.∵∠ABE=∠ADF,AB=AD,∠AEB=∠AFD,∴△AEB≌△AFD,∴四边形ABCD的面积=四边形AECF的面积,AE=AF.又∵∠E=∠AFC=90°,AC=AC,∴Rt△AEC≌Rt△AFC(HL).∵∠ACD=60°,∠AFC=90°,∴∠CAF=30°,∴CF=1008,AF=,=2×CF×AF=88144.∴四边形ABCD的面积=2S△ACF故答案为:88144.16.解:当圆心O在弦AC与AB之间时,如图(1)所示,过O作OD⊥AC,OE⊥AB,连接OA,由垂径定理得到:D为AB中点,E为AC中点,∴AE=AC=cm,AD=AB=cm,∴cos∠CAO=,cos∠BAO==,∴∠CAO=45°,∠BAO=30°,此时∠BAC=∠CAO+∠BAO=45°+30°=75°;当圆心在弦AC与AB一侧时,如图(2)所示,同理得:∠BAC=∠CAO﹣∠BAO=45°﹣30°=15°,综上,∠BAC=15°或75°.故答案为:15°或75°.17.解:作点A关于CD的对称点A′,连接A′B,交CD于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于CD对称,点A是半圆上的一个三等分点,∴∠A′OD=∠AOD=60°,PA=PA′,∵点B是弧AD的中点,∴∠BOD=30°,∴∠A′OB=∠A′OD+∠BOD=90°,又∵OA=OA′=3,∴A′B=.∴PA+PB=PA′+PB=A′B=3.故答案为:3.三.解答题(共8小题)18.解:(1)∵PA是⊙O的切线,∴OA⊥PA,∴∠P=30°,∴∠POA=60°,∴∠B=∠POA=×60°=30°,(2)如图,连接AC,∵AB是⊙O的直径,∴∠ACB=90°且∠B=30°,∴BC=AC,设OA=OB=OC=x,在Rt△AOP中,∠P=30°,∴PO=2OA,∴2+x=2x,x=2.即OA=OB=2.又在Rt△ABC中,∠B=30°,∴AC=AB=×4=2,∴BC=tan60°•AC=AC=2.。
《圆》章节知识点复习和练习附参考答案一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
人教版数学九年级上册第24 章《圆》单元培优练习卷(含分析)一.选择题1.面积为6π,圆心角为60°的扇形的半径为()A. 2B. 3C. 6D.92.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD= 40°,则∠ABD的大小为()A. 60°B. 50°C. 40°D.20°3.如图:已知AB是⊙ O的直径,点C在⊙ O上,点D在半径OA上(不与点O,A 重合).若∠ COA=60°,∠ CDO=70°,∠ACD的度数是()A. 60°B. 50°C. 30°D.10°4.如图,四边形ABCD是⊙ O的内接四边形,⊙O的半径为4,∠B= 135°,则劣弧AC的长是()A. 4πB. 2πC.πD.5.如图,直角三角形ABC的内切圆分别与AB、 BC相切于 D点、 E 点,依据图中标示的长度与角度,求AD的长度为何?()A.B.C.D.6.如图物体由两个圆锥构成.其主视图中,∠A=90°,∠ ABC=105°,若上边圆锥的侧面积为 1,则下边圆锥的侧面积为()A.2B.C.D.7.如图,AB是⊙O的直径,弦CD交 AB 于点 E,且 AE=CD=16,∠ BAC=∠ BOD,则⊙ O 的半径为()A. 4B. 8C.10D.6 8.如图,CD是⊙O的切线,点C在直径的延伸线上,若BD=AD, AC=3,CD=()A. 1B. 1.5C. 2D.2.59.如图,四边形ABCD为⊙ O的内接四边形,∠AOC=110°,则∠ ADC=()A. 55°B. 110°C. 125°D.70°10.如图,在菱形ABCD中,AC与BD交于点O,BD=CD,以点D为圆心,BD长为半径作,若 AC=6,则图中暗影部分的面积是()A. 2π﹣ 3B. 2π+3C.π﹣D.π +11.如图,AB是⊙O的弦,作O C⊥ OA交⊙ O 的切线 BC于点 C,交 AB于点 D.已知∠ OAB=20°,则∠OCB的度数为()A. 20°B. 30°C. 40°D.50°12.如图,四边形ABCD中, CD∥ AB, E 是对角线 AC上一点, DE=EC,以 AE为直径的⊙ O 与边 CD相切于点 D,点 B在⊙ O上,连结 BD,若 DE=4,则 BD的长为()A. 4B. 4C.8D.8二.填空题13.在正六边形中,若边长为 3,则正六边形的边心距为 .ABCDEFABCDEF14. Rt △中,∠= 90°,为边上的高, P 为的中点,连结,=6,DPABCACBCD ABACP D BC= 4. O 为边 BA 上一点,以O 为圆心,为半径作⊙,当⊙ O 与△ 的一边所在直线OBOPDC相切时,⊙ O 的半径等于.15.如图, AB 为⊙ O 的直径, C , D 为⊙ O 上的点, =.若∠ CAB = 42°,则∠ CAD =16.如图,在 Rt △ABC 中,∠ C =90°,∠ B = 30°,此中 AC = 2,以 AC 为直径的⊙ O 交 AB于点 D ,则圆周角∠ A 所对的弧长为(用含 π 的代数式表示)17.如图,在△ ABC 中,∠ ABC =90°,∠ ACB = 30°, BC = 2, BC 是半圆 O 的直径,则图中暗影部分的面积为.18.如图,在边长为2的菱形 ABCD 中,∠ B = 45°,以点A 为圆心的扇形FAG 与菱形的边 BC 相切于点E ,则图中的弧长是.三.解答题19.如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB= 6,AD均分∠BAC,交BC于点E,交⊙ O于点 D,连结 BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保存π).20.如图,点I 是△ ABC的心里, BI 的延伸线与△ ABC的外接圆⊙ O交于点 D,与 AC交于点E,延伸 CD、 BA订交于点 F,∠ ADF的均分线交 AF于点 G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE= 4,BE= 5,求BI的长.21.如图,在矩形ABCD中,以 BC边为直径作半圆O,OE⊥ OA交 CD边于点 E,对角线 AC与半圆 O的另一个交点为P,连结 AE.(1)求证:AE是半圆O的切线;(2)若PA= 2,PC= 4,求AE的长.22.如图,AB为⊙O的直径,且AB=4,点 C是上的一动点(不与A, B 重合),过点B 作⊙O的切线交的延伸线于点,点E是的中点,连结.AC D BD EC(1)求证:EC是⊙O的切线;(2)当∠D= 30°时,求暗影部分面积.23.已知是⊙的直径,,D 是⊙O上同侧的两点,∠= 25°AB O C AB BAC(Ⅰ)如图①,若⊥,求∠和∠的大小;OD AB ABC ODC(Ⅱ)如图②,过点 C作⊙ O的切线,交 AB延伸线于点E,若 OD∥EC,求∠ ACD的大小.24.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点 E,弦 DM与 AB垂直,垂足为 H.( 1)求证:E为BC的中点;( 2)若⊙O的面积为12π,两个三角形△AHD和△ BMH的外接圆面积之比为3,求△DEC 的内切圆面积S1和四边形 OBED的外接圆面积S2的比.参照答案一.选择题1.解:设扇形的半径为r .由题意:= 6π,∴r 2=36,∵ r >0,∴r =6,应选: C.2.解:连结AD,∵ AB为⊙ O的直径,∴∠ ADB=90°.∵∠ BCD=40°,∴∠ A=∠ BCD=40°,∴∠ ABD=90°﹣40°=50°.应选: B.3.解:∵OA=OC,∠COA= 60°,∴△ ACO为等边三角形,∴∠ CAD=60°,又∵∠ CDO=70°,∴∠ ACD=∠ CDO﹣∠ CAD=10°.应选: D.4.解:∵四边形ABCD为圆 O的内接四边形,∴∠ B+∠ D=180°,∵∠ B=135°,∴∠ D=45°,∵∠ AOC=2∠ D,∴∠ AOC=90°,则 l==2π,应选: B.5.解:设AD= x,∵直角三角形ABC的内切圆分别与AB、 BC相切于 D点、 E 点,∴BD=BE=1,∴AB=x+1, AC = AD+CE= x+4,在 Rt △ABC中,(x+1)2+52=(x+4)2,解得x=,即 AD的长度为.应选: D.6.解:∵∠A= 90°,AB=AD,∴△ ABD为等腰直角三角形,∴∠ ABD=45°, BD=AB,∵∠ ABC=105°,∴∠ CBD=60°,而 CB=CD,∴△ CBD为等边三角形,∴BC=BD= AB,∵上边圆锥与下边圆锥的底面同样,∴上边圆锥的侧面积与下边圆锥的侧面积的比等于AB: CB,∴下边圆锥的侧面积=×1=.应选: D.7.解:∵∠BAC=∠ BOD,∴,∴AB⊥CD,∵AE=CD=16,∴ DE= CD=8,设 OD=r ,则 OE= AE﹣ r =16﹣ r ,在 Rt △ODE中,OD=r,DE= 8,OE= 16﹣r,∵2=2+ 2,即2= 82+( 16﹣)2,解得r =10.OD DE OEr r应选: C.8.解:∵CD是⊙O的切线,∴∠ CDB=∠ CAD,又∠ C=∠ C,∴△ CDB∽△ CAD,∴==,即=,解得, CD=2,应选: C.9.解:由圆周角定理得,∠B=∠ AOC=55°,∵四边形 ABCD为⊙ O的内接四边形,∴∠ ADC=180°﹣∠ B=125°,应选: C.10.解:∵在菱形ABCD中, AC与 BD交于点 O,BD= CD,AC=6,∴AC⊥BD, OC=3, BD= CD= BC, BD=2OB,∴△ BCD是等边三角形,∴∠ BDC=60°, OB=,∴BD=2,∴图中暗影部分的面积是:S阴= S扇形CDB﹣S△CDB=﹣× 2× 3= 2π﹣ 3,应选: A.11.解:连结OB,∵ BC是⊙ O的切线,∴∠ OBC=90°,∵OA=OB,∴∠ OAB=∠ OBA=20°,∴∠ DBC=70°,∵∠ AOC=90°,∴∠ ODA=∠ BDC=70°,∴∠ OCB=40°,应选: C.12.解:如图,连结,设⊙O 的半径为r,OD∵⊙ O与边 CD相切于点 D,∴OD⊥CD,∴∠ ODC=90°,即∠3+∠ODE=90°,∵AE为直径,∴∠ ADE=90°,∴∠ ODA+∠ ODE=90°,∴∠ ODA=∠3,而∠ ODA=∠1,∴∠ 1=∠ 3,∵ED=EC=4,∴∠ 2=∠ 3,∴∠ 1=∠ 2,∵AB∥CD,∴∠ 2=∠CAB,∴∠ 1=∠CAB∴=,∵∠ 1=∠ 2,DF⊥AC,∴AF=CF,∴CF=﹣4=r﹣2,∵∠ DEF=∠ AED,∠ DFE=∠ ADE,∴△ EDF∽△ EAD,∴ DE:EA= EF:DE,即4:2r =( r ﹣2):4,整理得 r 2﹣2r ﹣8=0,解得 r =﹣2(舍去)或r =4,∴ EF=r ﹣2=2,在 Rt △DEF中,DF==2,∴DB=2DF=4.应选: B.二.填空题(共 6 小题)13.解:如图,设正六边形ABCDEF的中心为 O,连结 OA, OB,则△ OAB是等边三角形,过 O作 OH⊥ AB于 H,∴∠ AOH=30°,∴ OH=AO=,故答案为:.14.解:∵∠ADC= 90°,P是AC中点,∴AC=2DP=8,又∵ BC=6,AB则CD===,∴BD==,如图 1,若⊙O与CD相切,则⊙ O的半径 r =BD=;如图 2,若⊙O与CP相切,则 BO=OE= r , AO=10﹣r ,由OE⊥AC知OE∥BC,∴△ AOE∽△ ABC,∴=,即=,解得 r =;如图 3,若⊙O与DP所在直线相切,切点F,则 OF⊥DP,即∠ OFD=∠ ACB=90°, OB= OF = r ,∴ OD=BD﹣ BO=﹣ r ,ODF ADP A∴△ ODF∽△ BAC,∴=,即=,解得 r =;综上,当⊙ O与△ PDC的一边所在直线相切时,⊙O的半径等于或或,故答案为:或或.15.解:连结OC, OD,以下图.∵∠ CAB=42°,∴∠ COB=84°.∵=,∴∠ COD=(180°﹣∠ COB)=48°,∴∠ CAD=∠COD=24°.故答案为: 24°.16.解:连结OD,在 Rt △ABC中,∠C= 90°,∠B=30°,∴∠ A=60°,∴∠ COD=2∠ A=120°,∵ AC=2,∴圆周角∠ A所对的弧长为:=,故答案为:.S阴=( S扇形﹣S△)+(S△﹣S△﹣S扇形)OFC OFC ABC OFC OBF=﹣?×+×2×﹣××﹣=﹣=+故答案为:18.解:连结+﹣,+.AE,如图,∵以点 A 为圆心的扇形FAG与菱形的边BC相切于点 E,∴AE⊥BC,在 Rt △ABE中,∵AB= 2 ∴∠ BAE=45°, AE=,∠ B=45°,AB=×2=2,∵四边形 ABCD为菱形,∴AD∥BC ,∴∠ DAE=∠ BEA=90°,∴的弧长==π.故答案为π.三.解答题(共 6 小题)19.( 1)证明:∵AD均分∠BAC,∴∠ CAD=∠ BAD,∵∠ CAD=∠ CBD,( 2)解:连结OD,∵∠ AEB=125°,∴∠ AEC=55°,∵AB为⊙O直径,∴∠ ACE=90°,∴∠ CAE=35°,∴∠ DAB=∠ CAE=35°,∴∠ BOD=2∠ BAD=70°,∴的长==π.20.( 1)证明:∵点I 是△ ABC的心里,∴∠ 2=∠ 7,∵DG均分∠ ADF,∴∠ 1=∠ADF,∵∠ ADF=∠ ABC,∴∠ 1=∠ 2,∵∠ 3=∠ 2,∴∠ 1=∠ 3,∴DG∥AC;(2)证明:∵点I是△ABC的心里,∴∠ 5=∠ 6,∵∠ 4=∠ 7+∠ 5=∠3+∠6,即∠ 4=∠DAI,∴ DA=DI;(3)解:∵∠ 3=∠ 7,∠AED=∠BAD,∴△ DAE∽△ DBA,∴AD:DB= DE:DA,即 AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣ DI=9﹣6=3.21.( 1)证明:∵在矩形ABCD中,∠ ABO=∠ OCE=90°,∵OE⊥OA,∴∠ AOE=90°,∴∠ BAO+∠ AOB=∠ AOB+∠COE=90°,∴∠ BAO=∠ COE,∴△ ABO∽△ OCE,∴=,∵OB=OC,∴,∵∠ ABO=∠ AOE=90°,∴△ ABO∽△ AOE,∴∠ BAO=∠ OAE,过 O作 OF⊥ AE于 F,∴∠ ABO=∠ AFO=90°,在△ ABO与△ AFO中,,∴△ ABO≌△ AFO( AAS),∴OF=OB,∴AE是半圆 O的切线;则∠ G =∠ ACF,∠ G+∠PFG=90°,∵AF是⊙ O的切线,∴∠AFG+∠ PFG=90°,∴∠AFP=∠ G=∠ ACF,∵∠ FAP=∠ A CF,∴△ AFP∽△ ACF,∴=,∴AF2= AP?AC,∴AF==2,∴ AB=AF=2,∵AC=6,∴BC==2,∴AO==3,∵△ ABO∽△ AOE,∴,∴=,∴AE=3.22.解:( 1)如图,连结BC,OC, OE,∵AB为⊙O的直径,∴∠ ACB=90°,在 Rt △BDC中,∵BE=ED,∴DE=EC= BE,∵OC=OB, OE=OE,∴△ OCE≌△ OBE( SSS),∴∠ OCE=∠ OBE,∵BD是⊙O的切线,∴∠ ABD=90°,∴∠ OCE=∠ ABD=90°,∵OC为半径,∴ EC是⊙ O的切线;(2)∵OA=OB,BE=DE,∴ AD∥OE,∴∠ D=∠ OEB,∵∠ D=30°,∴∠ OEB=30°,∠ EOB=60°,∴∠ BOC=120°,∵AB=4,∴ OB=2,∴.∴四边形 OBEC的面积为2S=2×=12,△ OBE∴暗影部分面积为 S 四边形OBEC﹣ S 扇形BOC=12﹣= 12 ﹣ 4π.23.解:(Ⅰ)连结OC,∵AB是⊙O的直径,∴∠ ACB=90°,∵∠ BAC=25°,∴∠ ABC=65°,∵OD⊥AB,∴∠ AOD=90°,∴∠=∠== 45°,ACD AOD∴∠ OAC=∠ OCA=25°,∴∠ OCD=∠ OCA+∠ ACD=70°,∵OD=OC,∴∠ ODC=∠ OCD=70°;(Ⅱ)连结OC,∵EC是⊙O的切线,∴ OC⊥EC,∴∠ OCE=90°,∵∠ BAC=25°,∴∠ COE=2∠ BAC=50°,∴∠ OEC=40°,∵OD∥CE,∴∠ AOD=∠ COE=40°,∴∠ ACD=AOD=20°.24.解:( 1)连结BD、OE,∵AB是直径,则∠ ADB=90°=∠ A DO+∠ODB,∵DE是切线,∴∠ ODE=90°=∠ EDB+∠BDO,∴∠ EDB=∠ ADO=∠ CAB,∵∠ ABC=90°,即 BC是圆的切线,∴∠ DBC=∠ CAB,∴∠ EDB=∠ EBD,则∠ BDC=90°,∴ E 为 BC的中点;(2)△AHD和△BMH的外接圆面积之比为 3,则两个三角形的外接圆的直径分别为 AD、 BM,∴ AD:BM=,而△ ADH∽△ MBH,∴ DH:BH=,则 DH=HM,∴ HM:BH=,∴∠ BMH=30°=∠ BAC,∴∠ C=60°, E 是直角三角形的中线,∴ DE=CE,∴△ DEC为等边三角形,⊙ O 的面积:12π=( AB)2π,则 AB=4,∠ CAB=30°,∴ BD=2, BC=4, AC=8,而 OE= AC=4,四边形 OBED的外接圆面积 S2=π(2)2=4π,2,则其内切圆的半径为:,面积为,等边三角形△DEC边长为故△ DEC的内切圆面积S1和四边形O BED的外接圆面积S2的比为:.人教版九年级上册第二十四章圆单元检测(含答案)一、单项选择题1.以下命题中,不正确的选项是()A.圆是轴对称图形B.圆是中心对称图形C.圆既是轴对称图形,又是中心对称图形D.以上都不对2.如图, AB 是如图, AB 是⊙ O 的直径, AB=2,点 C 在⊙ O 上,∠ CAB=30°, D 为弧 BC的中点,点P 是直径 AB 上一动点,则PC+PD的最小值是()A.1B.2C.3D.53.如图,⊙ P 与 y 轴相切于点C(0, 3),与 x 轴订交于点 A(1, 0), B(9,0).直线 y=kx-3 恰巧均分⊙ P 的面积,那么k 的值是()6A.51B.25C.6D. 24.已知⊙ O 的直径为 10,圆心 O 到弦 AB 的距离 OM 为 3,则弦 AB 的长是()A.4B.6C.7D.85.如图,⊙ O 的半径为4,点 A 为⊙ O 上一点,OD⊥弦 BC于 D,假如∠ BAC=60°,那么OD 的长是()A.4B.23C.2D.36.以下命题:①长度相等的弧是等弧② 半圆既包含圆弧又包含直径③ 相等的圆心角所对的弦相等A.0 个7.如图,④ 外心在三角形的一条边上的三角形是直角三角形此中正确的命题共有()B.1 个C.2 个D.3 个AB, CD 是⊙ O 的直径,若∠ AOC=55°,则的度数为()A.55°B.110°C.125 °D.135 °8.如图,C、 D 为半圆上三均分点,则以下说法:① AD= CD= BC;②∠ AOD=∠ DOC =∠ BOC;③AD= CD= OC;④ △AOD 沿 OD 翻折与△COD重合.正确的有()A.4 个9.如图,B.3 个A、D 是⊙ O 上的两个点,若∠C.2 个ADC= 33°,则∠D.1 个ACO的大小为()A.57°B. 66°C. 67°D. 44°10.⊙ O 的半径为5cm ,点 A 到圆心O 的距离 OA=3cm,则点 A 与圆 O 的地点关系为()A.点 A 在圆上B.点 A 在圆内C.点 A 在圆外D.没法确立11.如图, P 为⊙ O 外一点, PA、 PB 分别切⊙ O 于点 A、 B, CD切⊙ O 于点 E,分别交 PA、PB 于点 C、 D,若 PA= 6,则△PCD的周长为()A.8B.6C.12D.1012.边长为 2 的正方形内接于⊙O,则⊙O 的半径是()A.1B.2C.2D.22二、填空题13.一个正多边形的每一个内角都为144 ,则正多边形的中心角是_____,它是正 ______边形 .14.如图,半圆的直径点C 在半圆上,BAC=30,则暗影部分的面积为 _____AB=6,(结果保存).15.如图,正六边形ABCDEF内接于⊙ O,边长 AB= 2,则扇形AOB的面积为 _____.16.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO 为_____.三、解答题17.如图,在⊙ O 中,已知∠ ACB=∠ CDB=60°, AC=3,求△ABC 的周长.18.一跨河桥,桥拱是圆弧形,跨度(AB)为 16 米,拱高( CD)为 4 米,求:(1)桥拱半径.(2)若大雨事后,桥下河面宽度(EF)为 12 米,求水面涨高了多少?19.如图, AB 为⊙ O 的直径, C 为⊙ O 上一点, D 为 BC 的中点.过点 D 作直线 AC的垂线,垂足为 E,连结 OD.(1)求证:∠ A=∠ DOB;(2) DE 与⊙ O 有如何的地点关系?请说明原因.20.已知:如图,⊙O 是 Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm, BC=9cm,求⊙O 的半径r;(2)若AC=b, BC=a,AB=c,求⊙O 的半径r.O, BE 是⊙ O 的直径,连结BF,延伸BA,过 F 作FG 21.如图,正六边形ABCDEF内接于⊙⊥BA,垂足为G.(1)求证:FG是⊙ O 的切线;(2)已知FG= 2 3 ,求图中暗影部分的面积.22.已知△ABC中, a、 b、c 分别为∠ A、∠ B、∠ C 的对边,方程ax2bx c0 是对于x 的一元二次方程.(1)判断方程ax2bx c0 的根的状况为(填序号);① 方程有两个相等的实数根;② 方程有两个不相等的实数根;③ 方程无实数根;④ 没法判断(2)如图,若△ABC 内接于半径为 2 的⊙ O,直径 BD⊥ AC 于点 E,且∠ DAC=60°,求方程ax 2bx c0 的根;1 c 是方程ax2bx c 0的一个根,△ABC的三边a、b、c的长均为整数,试(3)若x4求 a、 b、 c 的值.答案1.D2.B3.A4.D5.C6.B7.C8.A9.A10. B11. C12. B13.36十14.3934215..316. 417.∠ A=∠ BDC,而∠ ACB=∠ CDB=60°,∠ A=∠ ACB=60°.△ABC为等边三角形 .AC=3,△ABC的周长为 9.18.( 1)∵拱桥的跨度AB=16m,∴ AD=8m,由于拱高CD=4m,利用勾股定理可得:222 AO-( OC-CD)=8 ,解得 OA=10( m).因此桥拱半径为10m;(2)设河水上升到EF 地点(以下图),这时 EF=12m, EF∥ AB,有 OC⊥ EF(垂足为 M),∴EM= 1EF=6m,2连结 OE,则有 OE=10m,222 2 2OM =OE -EM =10 -6 =64,因此 OM=8 ( m) OD=OC-CD=10-4=6( m), OM-OD=8-6=2( m).即水面涨高了2m .19.( 1)证明:连结OC,∵D 为BC的中点,∴CD =BD,∴∠ DOB=1∠ BOC,2∵∠ A=1∠ BOC,2∴∠ A=∠ DOB;(2) DE 与⊙ O 相切,原因:∵∠ A=∠ DOB,∴AE∥ OD,∵DE⊥AE,∴OD⊥DE,∴DE 与⊙ O 相切.20.( 1)如图人教版九年级上册第24 章数学圆单元测试卷 ( 含答案 )(3)一、填空题(每题 3 分,共 30 分)1.如图 1 所示 AB 是⊙ O的弦, OC⊥ AB于 C,若 OA=2cm,OC=1cm,则 AB长为 ______.?图1图2图32.如图 2 所示,⊙O的直径CD过弦EF中点G,∠ EOD=40°,则∠DCF=______.3.如图 3 所示,点M, N分别是正八边形相邻两边AB, BC上的点,且AM=BN,则∠MON=度.4.假如半径分别为 2 和 3 的两个圆外切,那么这两个圆的圆心距是_______.5.如图 4 所示,宽为2cm 的刻度尺在圆上挪动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰巧为“2”和“ 8”(单位: cm) ?则该圆的半径为______cm.图 4图5图66.如图 5 所示,⊙ A 的圆心坐标为(0,4),若⊙ A 的半径为3,则直线y=x与⊙ A?的地点关系是 ________.7.如图 6 所示, O是△ ABC的心里,∠ BOC=100°,则∠ A=______.8.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为________.(用含的式子表示)9.已知圆锥的底面半径为40cm,?母线长为90cm,?则它的侧面睁开图的圆心角为_______.10.矩形 ABCD中, AB=5,BC=12,假如分别以A,C 为圆心的两圆相切,点D在⊙ C内,点 B 在⊙ C外,那么⊙ A 的半径 r 的取值范围为________.二、选择题(每题 4 分,共 40 分)11.如图 7 所示, AB是直径,点 E 是 AB 中点,弦CD∥ AB且均分 OE,连 AD,∠ BAD度数为()A.45°B.30°C.15°D.10°图7图8图912.以下命题中,真命题是()A .圆周角等于圆心角的一半B.等弧所对的圆周角相等C.垂直于半径的直线是圆的切线D.过弦的中点的直线必经过圆心13.(易错题)半径分别为 5 和 8 的两个圆的圆心距为d,若 3<d≤ 13, ?则这两个圆的地点关系必定是()A .订交B.相切C.内切或订交D.外切或订交14.过⊙ O内一点 M的最长弦长为10cm,最短弦长为8cm,那么 OM长为()A . 3cm B.6cm C.41 cm D.9cm15.半径相等的圆的内接正三角形,正方形边长之比为()A.1:2B .:2C .3:2 D .1:216.如图 8,已知⊙ O的直径 AB与弦 AC的夹角为35°,过 C点的切线 PC与 AB?的延伸线交于点 P,则∠ P 等于()A.15° B .20° C .25° D .30°17.如图 9 所示,在直角坐标系中, A 点坐标为( -3 , -2 ),⊙ A 的半径为1,P 为 x?轴上一动点, PQ切⊙ A 于点 Q,则当 PQ最小时, P点的坐标为()A .(-4,0)B.( -2 ,0)C.( -4 , 0)或( -2,0) D.(-3,0)18.在半径为 3 的圆中, 150°的圆心角所对的弧长是()A .15B. 15C.5D.5 424219.如图 10 所示, AE切⊙ D 于点 E, AC=CD=DB=10,则线段AE 的长为()A.102B.15C.103D.2020.如图 11 所示,在齐心圆中,两圆半径分别是 2 和 1,∠ AOB=120°, ?则暗影部分的面积为()A . 4B.2C.3D .4三、解答题(共50 分)21.(8 分)以下图, CE是⊙ O的直径,弦 AB⊥ CE于 D,若 CD=2,AB=6,求⊙ O?半径的长.22.( 8 分)以下图,AB 是⊙ O的直径, BC切⊙ O于 B, AC交⊙ O于 P, E 是 BC?边上的中点,连结 PE, PE与⊙ O相切吗?若相切,请加以证明,若不相切,请说明原因.23.( 12 分)已知:以下图,直线PA交⊙ O于 A,E 两点, PA的垂线 DC切⊙ O于点 C,过A 点作⊙ O的直径 AB.( 1)求证: AC均分∠ DAB;( 2)若 AC=4, DA=2,求⊙ O的直径.24.( 12 分)“五一”节,小雯和同学一同到游玩场玩大型摩天轮,?摩天轮的半径为20m,匀速转动一周需要 12min,小雯所坐最底部的车厢(离地面0.5m).( 1)经过 2min 后小雯抵达点Q以下图,此时他离地面的高度是多少.( 2)在摩天轮转动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m的空中.25.( 10 分)以下图,⊙O 半径为 2,弦 BD=2 3, A 为弧 BD的中点, E 为弦 AC 的中点,且在 BD上,求四边形ABCD的面积.人教版九年级上册第24 章数学圆单元测试卷 ( 含答案 )(8)一、选择题 (本大题 10 小题,每题 3 分,共 30 分)1. 以下说法错误的选项是 ( C )A. 半圆是弧B. 半径相等的圆是等圆C. 过圆心的线段是直径D. 直径是弦2.如图 24-1,在⊙ O 中, AC ∥OB,∠ BAO =25°,则∠ BOC 的度数为(B)A.25 °B.50 °C.60 °D.80 °图 24-1图24-2图24-33.如图 24-2,AB 是⊙ O 的直径,点 C 在⊙ O 上,若∠ B=50°,则∠A 的度数为 ( C )A.80 °B.60 °C.40 °D.50 °4.如图 24-3,四边形 ABCD 为圆内接四边形,∠ A=85°,∠B=105°,则∠ C 的度数为 ( C )A. 115 °B. 75 °C. 95 °D. 没法确立5.一个扇形的圆心角为 60°,它所对的弧长为 2πcm,则这个扇形的半径为 ( A )A. 6 cmB. 12 cmC. 2 cmD. 6 cm6.已知⊙ O 的直径为 12 cm,圆心到直线 l 的距离 5 cm,则直线l 与⊙ O 的公共点的个数为 ( A )A.2个B.1个C.0个D. 不确立7.如图 24-4,AC 是⊙ O 的直径, AB ,CD 是⊙ O 的两条弦,且 AB ∥CD,若∠ BAC =44°,则∠ AOD 等于 ( D )A.22 °B.44 °C.66 °D.88 °图 24-4图24-5图24-6图 24-78.如图 24-5,AB 是⊙ O 的弦, OC⊥AB 于点 H,∠ AOC =60°,OH=1,则⊙ O 的半径为 ( B )A. 3B. 2C. 3D. 49.如图 24-6,P 是⊙ O 外一点, PA,PB分别交⊙ O 于 C,D 两点,⌒已知AB,错误!的度数别为88°,32°,则∠ P的度数为( B )A.26 °B.28 °C.30 °D.32 °10.如图 24-7,在 ABCD 中, AD =2,AB =4,∠ A=60°,以点 A 为圆心, AD 的长为半径画弧交 AB 于点 E,连结 CE,则暗影部分的面积是 ( A )2ππ2ππA.3 3-3B. 3 3-3C. 4 3-3D. 4 3-3二、填空题 (本大题 6 小题,每题 4 分,共 24 分)11.已知点 P 与⊙ O 在同一平面内,⊙O 的半径为 4 cm,OP=5 cm,则点 P 与⊙ O 的地点关系为点 P 在⊙ O 外 .12.一个正 n 边形的中心角等于 18°,那么 n= 20 .13.如图 24-8,在⊙ O 中,AB=DC,∠AOB=35°,则∠ COD =35°.图 24-8图24-9图24-1014. 如图 24-9,在△ABC 中,AB =6,AC=8,BC=10,D,E 分别是 AC,AB 的中点,则以 DE 为直径的圆与 BC 的地点关系是订交 .15.已知如图 24-10,PA,PB 切⊙ O 于 A,B 两点, MN 切⊙O 于点 C,交 PB 于点 N.若 PA=7.5 cm,则△PMN 的周长是15 cm.16.圆锥的底面半径是 4 cm,母线长是 5 cm,则圆锥的侧面积等于 20π cm2.三、解答题 (一)(本大题 3 小题,每题 6 分,共 18 分)17.如图 24-11,点 A,B,C,D,E,F 分别在⊙ O 上, AC=BD,CE=DF,连结 AE,BF.△ACE 与△BDF 全等吗?为何?图 24-11解:△ACE 与△BDF 全等 .原因以下 .∵AC=BD,CE=DF,∴错误 !=错误 !,错误 !=错误 !,错误!=错误!.∴AE=BF.在△ACE 和△BDF 中,AC BD,∴△ ACE≌△ BDF(SSS).CE DF ,AE BF ,18.如图 24-12,在⊙ O 中,弦 AB 与弦 AC 相等, AD 是⊙ O 的直径 . 求证: BD=CD.图 24-12⌒证明:∵AB=AC,∴AB=错误!. ∴∠ ADB =∠ADC.∵ AD 是⊙O 的直径,∴∠ B=∠C=90°.∴∠ BAD=∠DAC. ∴错误!=错误!. ∴BD=CD.19.如图 24-13,在⊙ O 中,半径 OC⊥弦 AB ,垂足为点 D,AB =12,CD=2. 求⊙ O 的半径长 .图 24-13解:如答图 24-1,连结 AO.∵半径 OC⊥弦 AB ,∴AD =BD.∵AB =12,人教版九年级上册第24 章数学圆单元测试卷 ( 含答案 )(4)一.选择题1.以下相关圆的一些结论,此中正确的选项是()A.随意三点能够确立一个圆B.相等的圆心角所对的弧相等C.均分弦的直径垂直于弦,而且均分弦所对的弧D.圆内接四边形对角互补2.用直角三角板检查半圆形的工件,以下工件哪个是合格的()A.B.C.D.3.已知⊙O的半径为 2,点P在⊙O内,则OP的长可能是()A. 1B. 2C. 3D.44.如图.是⊙的直径,点、D 在⊙O上,若∠=48°,则∠等于()度.BCO A ADC ACBA. 42B. 48C. 46D.505.今年寒假时期,小明观光了中国扇博物馆,如图是她看到的纸扇和团扇.已知纸扇的骨柄长为 30cm,扇面有纸部分的宽度为18cm,折扇张开的角度为150°,若这两把扇子的扇面面积相等,则团扇的半径为()A.B.C.D.6.已知正六边形的边心距是,则正六边形的边长是()A. 4B.C.D.7.如图,AB是圆O的直径,点C在BA的延伸线上,直线CD与圆O相切于点D,弦DF⊥ AB于点E,连结BD, CD= BD=4,则OE的长度为()A.B. 2C. 2D.48.如图,四边形ABCD是菱形,点 B,C在扇形AEF的弧EF上,若扇形ABC的面积为,则菱形ABCD的边长为()A. 1B. 1.5C.D.29.如图,AB是半圆的直径,O为圆心,C 是半圆上的点,D是上的点.若∠BOC=50°,则∠ D的度数()A. 105°B. 115°C. 125°D.85°10.如图,在Rt △中,∠= 90°,以点C 为圆心的圆与边AB相切于点.交边BCABC ACB D 于点,若=4,= 3,则的长为()E BC AC BEA. 0.6B. 1.6C. 2.4D.511.如图,在平行四边形中,= 4,=2,分别以、B 为圆心,、为半径画ABCD AB AD A AD BC弧,交AB 于点,交于点,则图中暗影部分图形的周长之和为()E CD FA. 2+πB. 4+πC. 4+2πD.4+4π12.如图,AB为半圆O的直径,BC⊥AB且BC= AB,射线BD交半圆O的切线于点E,DF⊥ CD交 AB于F,若AE=2BF,DF=2,则⊙O的半径长为()A.B.4C.D.二.填空题13.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.如图,点O是△ ABC的内切圆的圆心,若∠A=80°,则∠BOC为.15.一条弦把圆分红1: 2 两部分,那么这条弦所对的圆周角的度数为.16.如图,⊙O的直径AB垂直于弦CD,垂足为E,假如∠ B=60°,AO=4,那么CD的长为.17.如图点A是半圆上一个三均分点(凑近点N这一侧),点 B是弧 AN的中点,点 P 是直径MN上的一个动点,若⊙O半径为3,则 AP+BP的最小值为.三.解答题18.如图,E是 Rt △ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边 AC 于点 F,连结 AD.(1)求证:AD均分∠BAC.(2)若AE= 2,∠CAD=25°,求的长.19.如图,四边形ABCD是平行四边形,点D在以 AB为直径的 QO上.(1)若直线CD是⊙O的切线,求∠BAD的度数;(2)在( 1)的条件下,若⊙O的半径为 1,求图中暗影部分的周长.20.如图,在平面直角坐标系xOy 中,(﹣ 8, 0),( 0, 6),∠的角均分线交△ABOA B ABO的外接圆⊙ M于点 D,连结 OD, C为 x 正半轴上一点.(1)求⊙M的半径;(2)若OC=,求证:∠OBC=∠ODB;(3)若I为△ABO的心里,求点D到点I的距离.21.如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高 CD为4m.( 1)求拱桥的半径;( 2)有一艘宽为5m的货船,船舱顶部为长方形,并超出水面 3.4 m,则此货船能否能顺利经过此圆弧形拱桥,并说明原因;22.已知:AB是⊙O的直径,BD是⊙O的弦,延伸BD到点 C,使 AB= AC,连结 AC,过点 D作 DE⊥AC,垂足为E.(1)求证:DC=BD;(2)求证:DE为⊙O的切线;(3)若AB= 12,AD= 6 ,连结OD,求扇形BOD的面积.23.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E.(1)求证:BD=CD;(2)若AB= 4,∠BAC=45°,求暗影部分的面积.24.如图,AB是⊙O的直径,点C、D 是⊙ O上的点,且OD∥ BC, AC分别与 BD、 OD订交于点 E、F.(1)求证:点D为的中点;(2)若CB= 6,AB= 10,求DF的长;PC+PD的最( 3)若⊙O的半径为5,∠DOA= 80°,点P 是线段AB上随意一点,试求出小值.25.如图,在△ABC中,∠C= 90°,∠ABC的均分线交AC于点 E,过点 E 作 BE的垂线交 AB 于点 F,⊙ O是△ BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;( 3)若= 1,=,求AF 长.CD EF参照答案一.选择题1.解:A、不共线的三点确立一个圆,故本选项不切合题意;B、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项不切合题意;C、均分弦(不是直径)的直径垂直于弦,故本选项不切合题意;D、圆内接四边形对角互补,故本选项切合题意.应选: D.2.解:依据90°的圆周角所对的弦是直径获得只有C选项正确,其余均不正确;应选: C.3.解:∵⊙O的半径为6,点P在⊙O内,∴OP<2.应选: A.4.解:连结AB,以下图:∵ BC是⊙ O的直径,∴∠ BAC=90°,∵∠ B=∠ ADC=48°,∴∠ ACB=90°﹣∠ B=42°;应选: A.5.解:纸扇的扇面面积=﹣=315π,则团扇的半径== 3(cm),应选: D.6.解:∵正六边形的边心距为2,∴ OB=2,∠ OAB=60°,∴AB===2,∴AC=2AB=4.应选: A.7.解:连结OD,如图,∵直线 CD与⊙ O相切于点 D,∴OD⊥CD,∴∠ ODC=90°,∵ CD=BD=4,∴∠ C=∠ B,∵ OD=OB,∴∠ B=∠ ODB,∴∠ DOE=∠ B+∠ ODB=2∠B,∴∠ DOE=2∠ C,在 Rt △OCD中,∠DOE= 2∠C,则∠DOE= 60°,∠C=30°,∴ OD=cot∠ EOD?CD=×4 =4,∵DF⊥AB,∴∠ DEO=90°,在 Rt △ODE中,OE= cos ∠EOD?OD=× 4=2,应选: B.8.解:∵四边形ABCD是菱形,∴AB=CB,∵AB=AC,∴AB=BC= AC,∴∠ BAC=60°,∵=,∴AB=1.5,应选: B.9.解:连结BD,如图,∵AB是半圆的直径,∴∠ ADB=90°,∵∠ BDC=∠BOC=×50°=25°,∴∠ ADC=90°+25°=115°.应选: B.10.解:在 Rt △ACB中,AB== 5,∵以点 C为圆心的圆与边AB相切于点 D∴CD⊥AB,∵CD?AB= AC?BC,∴ CD==2.4,∵CE=CD=2.4,∴BE=BC﹣ CE=4﹣2.4=1.6.应选: B.11.解:设∠A=n°,∵四边形 ABCD是平行四边形,∴∠ B=180°﹣ n°, BC=AD=2,由题意得, AE=AD=2, BE= BC=2,∴图中暗影部分图形的周长之和=的长 +的长+CD=+4+=4+2π,应选: C.12.解:连结AD, CF,作 CH⊥ BD于 H,以下图:∵AB是直径,∴∠ ADB=90°,∴∠ADF+∠BDF=90°,∠DAB+∠DBA=90°,∵∠ BDF+∠ BDC=90°,∠ CBD+∠ DBA=90°,∴∠ ADF=∠ BDC,∠ DAB=∠ CBD,∴△ ADF∽△ BDC,∴==,∵∠ DAE+∠ DAB=90°,∠ E+∠ DAE=90°,∴∠ E=∠ DAB,∴△ ADE∽△ BDA,∴=,∴=,即=,∵AB=BC,∴ AE=AF,∵AE=2BF,∴BC=AB=3BF,设 BF=x,则 AE=2x, AB= BC=3x,∴ BE==x, CF==,2由切割线定理得:AE= ED× BE,∴ ED===x,∴ BD=BE﹣ ED=,∵CH⊥BD,∴∠ BHC=90°,∠ CBH+∠BCH=∠ CBH+∠ ABE,∴∠ CBH=∠ ABE,∵∠ BAE=90°=∠ BHC,∴△ BCH∽△ EBA,∴==,即==,解得: B H=x, CH=x,∴ DH=BD﹣ BH=x,222x 2∴ CD= CH+DH=,∵DF⊥CD,2222+( 222,∴ CD+DF= CF,即x)=()解得: x=,∴AB=3,∴⊙ O的半径长为;应选: A.二.填空题(共 5 小题)13.解:圆锥的侧面积=×2π× 3×7=21π.故答案为21π.14.解:∵∠BAC= 80°,∴∠ ABC+∠ ACB=180°﹣80°=100°,∵点 O是△ ABC的内切圆的圆心,∴BO,CO分别为∠ ABC,∠ BCA的角均分线,∴∠ OBC+∠ OCB=50°,∴∠ BOC=130°.故答案为: 130°.15.解:如图,连结OA、 OB.弦AB将⊙O分为1:2两部分,则∠ AOB=×360°=120°;∴∠ ACB=∠AOB=60°,∠ADB=180°﹣∠60=120°;故这条弦所对的圆周角的度数为 60°或 120°.故答案是: 60°或 120°16.解:连结OC,∵AB是⊙O的直径,∴∠ ACB=90°,∵∠ B=60°,∴∠A=30°,∴∠EOC=60°,∴∠OCE=30°∵AO=OC=4,∴OE= OC=2,∴CE==2,∵直径 AB垂直于弦 CD,∴CE=DE,∴CD=2CE=4,故答案为: 4 .17.解:作 B 点对于 MN的对称点 B′,连结 OA、 OB′、 AB′, AB′交 MN于 P′,如图,∵ P′ B= P′ B′,∴P′ A+P′ B= P′ A+P′ B′=AB′,∴此时 P′ A+P′B 的值最小,∵点 A是半圆上一个三均分点,∴∠ AON=60°,∵点 B是弧 AN的中点,∴∠ BPN=∠ B′ON=30°,∴∠ AOB′=∠ AON+∠ B′ON=60°+30°=90°,∴△ AOB′为等腰直角三角形,∴AB′= OA=3,∴AP+BP的最小值为3.故答案为3.三.解答题(共8 小题)18.( 1)证明:连结OD,如图,∵ BC为切线,。
人教版九年级上册第24 章数学圆单元测试卷 ( 含答案 )(2)一、选择题1.已知⊙O的直径CD=10 cm, AB是⊙ O的弦, AB⊥ CD,垂足为 M,且 AB=8 cm,则的长为 ()ACA. 25cm B. 45cmC. 25cm 或 4 5cm D.23cm或 43cm2.在△ABC中,若O为BC边的中点,则必有2222AB+ AC=2AO+2BO建立.依照以上结论,解决以下问题:如图1,在矩形DEFG中,已知DE= 4,EF= 3,点P在以DE为直径的半圆上运动,则22) PF+ PG的最小值为(A. 1019C. 34D.10 B.2图1图23.如图 2,在△ABC中,AB= 5,AC= 3,BC= 4,将△ABC绕点A逆时针旋转40°获得︵()△ADE,点 B 经过的路径为 BD,则图中暗影部分的面积为142533A.9πC.8π - 3 D.33+π3π -6B.4.如图 3,在平面直角坐标系xOy中,已知 A(4,0), B(0,3), C(4,3),I 是△ ABC的心里,将△ ABC绕原点逆时针旋转90°后,点I的对应点I′的坐标为 ()图 3A.( -2,3)B.( - 3,2)C.(3 ,- 2)D.(2 ,- 3)5.在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P 在直线y=3x+2 3 上运动,过点P 作该圆的一条切线,切点为A,则 PA的最小值为() A. 3B. 2 C.3 D. 26.如图 4,在矩形中,G 是的中点,过,,三点的⊙O与边,分别ABCD BC A D G AB CD交于点 E,F,给出以下说法:(1) AC与BD的交点是⊙O的圆心; (2) AF与DE的交点是⊙O的圆心; (3)与⊙O 相切,此中正确说法的个数是 ()BC图 4A.0B.1C.2D.3二、填空题7.如图 5,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠ OCB=________°.图 5图 68.如图 6,在平面直角坐标系中,点 A 的坐标是(20,0),点 B 的坐标是(16,0),点 C,D在以 OA为直径的半圆 M上,且四边形OCDB是平行四边形,则点 C的坐标为________.9.如图 7,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P 为圆心,长为半径作⊙. 当⊙P与正方形的边相切时,BP的长为 ________ .PM P ABCD图7图810.如图 8,在矩形ABCD中,AB= 5,BC= 4,以CD为直径作⊙O. 将矩形ABCD绕点C旋转,使所得矩形 A′ B′ CD′的边 A′ B′与⊙ O相切,切点为 E,边 CD′与⊙ O订交于点 F,则 CF的长为________.三.解答题11.如图 9,AB为⊙O的直径,点C在⊙ O外,∠ ABC的均分线与⊙ O交于点 D,∠ C=90° .(1)CD与⊙ O有如何的地点关系?请说明原因;︵(2)若∠ CDB=60°, AB=6,求 AD的长.图 912.如图 10,在△ABC中,AB=AC,以AB为直径的半圆交AC于点 D,交 BC于点 E,延长 AE至点 F,使 EF= AE,连结 FB, FC.(1)求证:四边形 ABFC是菱形;(2)若 AD=7, BE=2,求半圆和菱形 ABFC的面积.图 1013.如图 11,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE 为半径作半圆,交AO于点 F.(1) 求证:AC是半圆O的切线;(2)若 F 是 AO的中点, OE=3,求图中暗影部分的面积;(3) 在 (2) 的条件下,P 是边上的动点,当+PF取最小值时,直接写出的长.BC PE BP图 1114.如图 12,在△ABC中,AD是边BC上的中线,∠BAD=∠ CAD, CE∥ AD, CE交 BA的延伸线于点E, BC=8, AD=3.(1)求 CE的长;(2)求证:△ ABC为等腰三角形;(3)求△ ABC的外接圆圆心 P 与内切圆圆心 Q之间的距离.图 12答案1. [ 分析 ]C如图,连结AC, AO.∵⊙ O的直径 CD=10 cm, AB⊥ CD, AB=8 cm,1 1∴AM=2AB=2×8=4 cm, OD= OC=5 cm.当点 C地点如图①所示时,∵OA=5 cm, AM=4 cm,CD⊥ AB,∴ OM=2222,OA- AM= 5 - 4= 3(cm)∴CM=OC+ OM=5+3=8(cm),∴ AC=22225(cm) ;AM+ CM= 4 + 8= 4人教版数学九年级上册第24 章《圆》培优检测题(含祥细答案)一.选择题1.已知⊙O的半径OA长为,若OB=,则能够获得的正确图形可能是()A.B.C.D.2.如图,PA是⊙O的切线,切点为A, PO的延伸线交⊙ O于点 B,若∠ P=40°,则∠ B 的度数为()A. 20°B. 25°C. 40°D.50°3.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB. 2πC. 3πD.6π4.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为 2 的正六边形.则本来的纸带宽为()A. 1B.C.D.25.如图:已知是⊙的直径,点C 在⊙上,点D在半径上(不与点,重合).若AB O O OA O A ∠=60°,∠= 70°,∠的度数是()COA CDO ACDA. 60°B. 50°C. 30°D.10°6.关于以以下图形有以下结论,此中正确的选项是()A.如图①,AC是弦B.如图①,直径AB与构成半圆C.如图②,线段CD是△ ABC边 AB上的高D.如图②,线段AE是△ ABC边 AC上的高7.如图,BC为⊙O的直径,AB=OB.则∠C的度数为()A. 30°B. 45°C. 60°D.90°8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB 上一点且不与点A、 B 重合.若OP的长为整数,则切合条件的点P 有()A.2个B.3个C.4 个D.5 个9.如图,点P、 M、 N分别是边长为 2 的正六边形中不相邻三条边的中点,则△PMN的周长为()A. 6B. 6C. 6D.910.如图,△ABC是半径为1 的⊙O的内接正三角形,则圆的内接矩形BCDE的面积为()A. 3B.C.D.11.如图,四边形ABCD是菱形,⊙O经过点A、 C、D,与BC订交于点E,连结AC、AE.若∠ D=80°,则∠EAC的度数为()A. 20°B. 25°C. 30°D.35°12.如图,抛物线y=x2﹣4与 x 轴交于 A、B 两点, P 是以点 C(0,3)为圆心,2为半径的圆上的动点,Q是线段 PA的中点,连结OQ.则线段 OQ的最大值是()A. 3B.C.D.4二.填空题13.在⊙O 中,为直径,过点O作⊥于点,交⊙O于点,连结,若=,AC OD AB E D BC ABED=,则 BC=.14.如图,△ABC的周长为 16,⊙O与BC相切于点D,与AC的延伸线相切于点E,与 AB的延伸线相切于点,则AF 的长为.F15.如图,矩形ABCD中, AB=3,BC=2,E 为 BC的中点, AF=1,以 EF为直径的半圆与DE 交于点 G,则劣弧的长为.16.在正六边形ABCDEF中,若边长为3,则正六边形ABCDEF的边心距为.17.如图,已知⊙O为四边形 ABCD的外接圆, O为圆心,若∠ BCD=120°, AB= AD=2,则⊙ O的半径长为.18.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连结DE,过点 D作 DF⊥ AC于点 F.若 AB=6,∠ CDF=15°,则暗影部分的面积是.三.解答题19.如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线 AC的垂线,垂足为 E,连结 OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有如何的地点关系?请说明原因.20.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延伸线于点P,过点 B 的切线交 CA的延伸线于点E, AP与 BE订交于点 F.( 1)求证:BF=EF;( 2)若AF=,半⊙ O的半径为2,求PA的长度.21.如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦 AC=2,弦BM均分∠ ABC交A C于点 D,连结 MA, MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.22.如图,AB是⊙O的直径,D是弦AC延伸线上一点,且AB= BD, DB的延伸线交⊙O于点E,过点C作CF⊥ BD,垂足为点F.( 1)CF与⊙O有如何的地点关系?请说明原因;( 2)若BF+CF=6,⊙ O的半径为5,求BE的长度.23.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点 E 在BC边上,连结AE交⊙ O于点F,连结BF并延伸交CD于点G.( 1)求证:△ABE≌△BCG;( 2)若∠AEB=55°,OA= 3,求劣弧的长.(结果保存π)24.如图,以△ABC的边 BC为直径作⊙ O,点 A 在⊙ O上,点 D 在线段 BC的延伸线上, AD = AB,∠ D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC= 4,求图中暗影部分的面积.25.以下图,⊙O是等腰三角形ABC的外接圆, AB= AC,延伸 BC至点 D,使 CD=AC,连接 AD交⊙ O于点 E,连结 BE、 CE,BE交 AC于点F.( 1)求证:CE=AE;( 2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.26.如图,已知AB为⊙ O的直径, C为⊙ O上异于 A、 B的一点,过 C点的切线于 BA的延伸线交于 D点, E 为 CD上一点,连 EA并延伸交⊙ O于 H, F 为 EH上一点,且 EF=CE, CF 交延伸线交⊙ O于 G.( 1)求证:弧AG=弧 GH;( 2)若E 为的中点,sim∠=,= 2,求⊙O的半径.DC CDO AH参照答案一.选择题1.解:∵⊙O的半径OA长为,若OB=,∴OA<OB,∴点 B在圆外,应选: A.2.解:连结OA,如图,∵PA是⊙O的切线,∴ OA⊥AP,∴∠ PAO=90°,∵∠ P=40°,∴∠ AOP=50°,∵OA=OB,∴∠ B=∠ OAB,∵∠ AOP=∠ B+∠ OAB,∴∠ B=∠ AOP=× 50°=25°.应选: B.3.解:该扇形的弧长==3π.应选: C.4.解:边长为 2 的正六边形由 6 个边长为 2 的等边三角形构成,此中等边三角形的高为原来的纸带宽度,因此本来的纸带宽度=×2=.应选: C.5.解:∵OA=OC,∠COA= 60°,∴△ ACO为等边三角形,∴∠ CAD=60°,又∵∠ CDO=70°,∴∠ ACD=∠ CDO﹣∠ CAD=10°.应选: D.6.解:A、AC不是弦,故错误;B、半圆是弧,不包含弧所对的弦,故错误;C、线段 CD是△ ABC边 AB上的高,正确;D、线段 AE不是△ ABC边 AC上的高,故错误,应选: C.7.解:∵BC为⊙O的直径,∴∠ BAC=90°,∵AB=OB,∴ BC=2AB,∴ sin C==,∴∠ C=30°.应选: A.8.解:连结OA,作 OC⊥ AB于 C,则 AC=AB=4,由勾股定理得, OC== 3,则 3≤OP< 5,OP=3有一种状况, OP=4有两种状况,则切合条件的点P有3个,应选: B.9.解:分别过正六边形的极点A, B 作 AE⊥ MN于 E, BF⊥MN于 F,则∠ EAM=∠ NBF=30°, EF= AB=2,∵AM=BN=2= 1,∴ EM=FN=1=,∴MN=+ +2=3,∴△ PMN的周长3×3=9,应选: D.10.解:连结BD,以下图:∵△ ABC是等边三角形,∴∠ BAC=60°,∴∠ BDC=∠ BAC=60°,∵四边形 BCDE是矩形,∴∠ BCD=90°,∴BD是⊙ O的直径,∠ CBD=90°﹣60°=30°,∴BD=2, CD= BD=1,∴BC==,∴矩形 BCDE的面积= BC?CD=× 1=;应选: C.11.【解答】解:∵四边形ABCD是菱形,∠ D=80°,∴ ∠ ACB=∠ DCB=(180°﹣∠ D)=50°,∵四边形 AECD是圆内接四边形,∴∠ AEB=∠ D=80°,∴∠ EAC=∠ AEB﹣∠ ACE=30°,应选: C.12.解:连结BP,如图,当y =0 时,x2﹣ 4= 0,解得x1=4,x2=﹣ 4,则(﹣ 4, 0),( 4, 0),A B∵Q是线段 PA的中点,∴ OQ为△ ABP的中位线,∴ OQ= BP,当 BP最大时, OQ最大,而 BP过圆心 C时, PB最大,如图,点P 运动到 P′地点时, BP最大,∵ BC==5,∴BP′=5+2=7,∴线段 OQ的最大值是.应选: C.二.填空题(共 6 小题)13.解:∵OD⊥AB,∴AE=EB= AB=,设 OA=OD= r ,222在 Rt △AOE中,∵AO=OE+AE,222∴ r =()+(r﹣),∴r =,∴OE=﹣=,∵ OA=OC, AE=EB,∴BC=2OE=,故答案为.14.解:∵AB、AC的延伸线与圆分别相切于点F、 E,∴AF=AE,∵圆 O与 BC相切于点 D,∴CE=CD, BF=BD,∴BC=DC+BD= CE+BF,∵△ AB C的周长等于16,∴AB+AC+BC=16,∴AB+AC+CE+BF=16,∴AF+AE=16,∴AF=8.故答案为: 8.15.解:连结OG, DF,∵BC=2, E 为 BC的中点,∴ BE=EC=1,∵AB=3, AF=1,∴BF=2,由勾股定理得,DF==,EF==,∴DF=EF,在 Rt △DAF和 Rt△FBE中,,∴Rt △DAF≌ Rt△FBE(HL)∴∠ADF=∠BFE,∵∠ ADF+∠ AFD=90°,∴∠ BFE+∠ AFD=90°,即∠ DFE=90°,∵FD=FE,∴∠ FED=45°,∵OG=OE,∴∠ GOE=90°,∴劣弧的长==π,故答案为:π.16.解:如图,设正六边形ABCDEF的中心为 O,连结 OA, OB,则△ OAB是等边三角形,过 O作 OH⊥ AB于 H,∴∠ AOH=30°,∴ OH=AO=,故答案为:.17.解:连结BD,作 OE⊥ AD,连结 OD,∵⊙ O为四边形 ABCD的外接圆,∠ BCD=120°,∴∠ BAD=60°.∵AD=AB=2,∴△ ABD是等边三角形.∴DE= AD=1,∠ ODE=∠ ADB=30°,∴OD==.故答案为18.解:连结OE,∵∠ CDF=15°,∠ C=75°,∴∠ OAE=30°=∠ OEA,∴∠ AOE=120°,AE× OE sin∠ OEA=× 2×OE× cos∠OEA×OE sin∠OEA=,S△=OAES 暗影部分=扇形﹣S△=×π×32﹣= 3π﹣.SOAEOAE故答案3π﹣.三.解答题(共8 小题)19.( 1)证明:连结OC,∵D为的中点,∴ =,∴∠ BOD=BOC,∵∠ BAC=BOC,∴∠ A=∠ DOB;(2)解:DE与⊙O相切,原因:∵∠ A=∠ DOB,∴ AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙ O相切.20.( 1)证明:连结OA,∵ AF、BF为半⊙ O的切线,∴AF=BF,∠ FAO=∠ EBC=90°,∴∠ E+∠ C=∠ EAF+∠ OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠ E=∠ EAF,∴ AF=EF,∴ BF=EF;( 2)解:连结AB,∵AF、BF为半⊙ O的切线,∴∠ OAP=∠ OBE=90°,且 BF= AF=1.5,又∵ tan ∠P=,即,∴PB=,∵∠ PAE+∠ OAC=∠ AEB+∠OCA=90°,且∠ OAC=∠ OCA,∴∠ PAE=∠ AEB,∠ P=∠ P,∴△ APB∽△ CPA,∴2,即 PA= PB?PC,∴,解得 PA=.21.解:( 1)连结OA、OC,过O作OH⊥AC于点H,如图 1,∵∠ ABC=120°,∴∠ AMC=180°﹣∠ ABC=60°,∴∠ AOC=2∠ AMC=120°,∴∠ AOH=∠AOC=60°,∵AH= AC=,∴OA=,故⊙ O的半径为2.( 2)证明:在BM上截取 BE= BC,连结 CE,如图2,∵∠ MBC=60°, BE= BC,∴△ EBC是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠ BCD+∠ DCE=60°,∵∠ ACM=60°,∴∠ ECM+∠ DCE=60°,∴∠ ECM=∠ BCD,∵∠ ABC=120°, BM均分∠ ABC,∴∠ ABM=∠ CBM=60°,∴∠ CAM=∠ CBM=60°,∠ ACM=∠ ABM=60°,∴△ ACM是等边三角形,∴AC=CM,∴△ ACB≌△ MCE,∴AB=ME,∵ME+EB= BM,∴AB+BC= BM.22.解:( 1)CF与⊙O相切.连结BC, OC,∵AB是⊙O的直径,∴∠ ACB=90°,∵AB=BD,∴∠ A=∠ D,又∵ OA= OB,∴OC是△ ABD的中位线.∴OC∥BD,∴∠ OCF=∠ CFD=90°,即 CF⊥OC.∴ CF与⊙ O相切;(2)过点O作OH⊥BE于点H,则∠OCF=∠CFH=∠OHB=90°,∴四边形 OCFH是矩形,∴ OC=FH, OH=CF,设 BH=x,∵ OC=5, BF+CF=6,∴ BF=5﹣ x, OH= CF=6﹣(5﹣ x)=x+1,在 Rt △BOH中,由勾股定理知:222222BH+OH= OB,即 x +( x+1)= 5 ,解得 x1=3,x2=﹣4(不合题意,舍去).∴BH=3,∵ OH⊥BE,∴BH=EH= BE,∴BE=2BH=2×3=6.23.( 1)证明:∵四边形ABCD是正方形, AB为⊙ O的直径,∴∠ ABE=∠ BCG=∠ AFB=90°,∴∠ BAF+∠ ABF=90°,∠ ABF+∠ EBF=90°,∴∠ EBF=∠ BAF,在△ ABE与△ BCG中,,∴△ ABE≌△ BCG( ASA);( 2)解:连结OF,∵∠ ABE=∠ AFB=90°,∠ AEB=55°,∴∠ BAE=90°﹣55°=35°,∴∠ BOF=2∠ BAE=70°,∵OA=3,∴的长==.24.( 1)证明:连结OA,则∠ COA=2∠B,∵AD=AB,∴∠ B=∠ D=30°,∴∠ COA=60°,∴∠ OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即 CD是⊙ O的切线;(2)解:∵BC= 4,∴ OA=OC=2,在 Rt △OAD中,OA= 2,∠D=30°,∴ OD=2OA=4,AD=2,因此 S△OAD=OA?AD=× 2× 2=2,由于∠ COA=6 0°,因此 S 扇形==π,COA因此S 暗影= S△OAD﹣ S 扇形COA=2﹣.25.证明( 1)∵AB=AC,AC=CD∴∠ ABC=∠ ACB,∠ CAD=∠ D∵∠ ACB=∠ CAD+∠ D=2∠CAD∴∠ ABC=∠ ACB=2∠ CAD∵∠ CAD=∠ EBC,且∠ ABC=∠ ABE+∠ EBC∴∠ ABE=∠ EBC=∠ CAD,∵∠ ABE=∠ ACE∴∠ CAD=∠ ACE∴CE=AE(2)①当∠ABC=60°时,四边形AOCE是菱形;原因以下:如图,连结 OE∵OA=OE, OE=OC, AE=CE∴△ AOE≌△ EOC( SSS)∴∠ AOE=∠ COE,∵∠ ABC=60°∴∠ AOC=120°∴∠ AOE=∠ COE=60°,且 OA= OE= OC∴△ AOE,△ COE都是等边三角形∴AO=AE= OE=OC= CE,∴四边形 AOCE是菱形故答案为: 60°②如图,过点 C作 CN⊥ AD于 N,∵AE=,AB=,∴ AC=CD=2,CE=AE=,且CN⊥AD∴ AN=DN222在 Rt △ACN中,AC=AN+CN,①222在 Rt △ECN中,CE=EN+CN,②2222∴①﹣②得: AC﹣ CE= AN﹣ EN,2 2∴8﹣ 3=(+EN)﹣EN,∴EN=∴ AN=AE+EN==DN∴DE=DN+EN=故答案为:26.( 1)证明:如图,连结AC, BC,∵ AB为⊙ O的直径,∴∠ ACB=90°,∴∠ B+∠ CAO=90°,∵CD为⊙ O的切线,∴∠ ECA+∠ ACO=90°,∵OC=OA,∴∠ ACO=∠ OAC,∴∠ ECA=∠ B,∵EF=CE,∴∠ ECF=∠ EFC,∵∠ ECF=∠ ECA+∠ ACG,∠ EFC=∠ GAF+∠ G,∵∠ ECA=∠ B=∠ G,∴∠ ACG=∠ GAF=∠ GCH,∴;(2)解:∵CH是⊙O的直径,∴∠ CAH=90°,∵ CD是⊙ O的切线,∴∠ ECO=90°,设 CO=2x,∵sim∠ CDO==,∴DO=6x,∴CD==4,∵ E 为 DC的中点,∴CE==2,EH==2,∵∠ ECH=∠ CAH,∠ CHA=∠ EHC,∴△ CAH∽△ ECH,∴,2∴ CH= AH?EH,∴AH=,∵ AH=2,∴,∴ x=3,∴⊙ O的半径 CO=2x=6.人教版九年级上册第24 章数学圆单元测试卷( 含答案 )(3)一、填空题(每题 3 分,共30 分)1.如图 1 所示 AB 是⊙ O的弦, OC⊥ AB于 C,若 OA=2cm,OC=1cm,则 AB长为 ______.?图1图2图32.如图 2 所示,⊙O的直径CD过弦EF中点G,∠ EOD=40°,则∠DCF=______.3.如图 3 所示,点M, N分别是正八边形相邻两边AB, BC上的点,且AM=BN,则∠MON=度.4.假如半径分别为 2 和3 的两个圆外切,那么这两个圆的圆心距是_______.5.如图 4 所示,宽为 2cm 的刻度尺在圆上挪动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰巧为“ 2”和“ 8”(单位: cm) ?则该圆的半径为 ______cm.图 4图5图66.如图 5 所示,⊙ A 的圆心坐标为(0,4),若⊙ A 的半径为3,则直线y=x与⊙ A?的地点关系是 ________.BOC=100°,则∠A=______.7.如图 6 所示,O是△ ABC的心里,∠8.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为________.(用含的式子表示)9.已知圆锥的底面半径为40cm,?母线长为90cm,?则它的侧面睁开图的圆心角为_______.10.矩形 ABCD中, AB=5,BC=12,假如分别以A,C 为圆心的两圆相切,点D在⊙ C内,点 B 在⊙ C外,那么⊙ A 的半径 r 的取值范围为________.二、选择题(每题 4 分,共 40 分)11.如图 7 所示, AB是直径,点 E 是 AB 中点,弦CD∥ AB且均分 OE,连 AD,∠ BAD度数为()A.45°B.30°C.15°D.10°图7图8图912.以下命题中,真命题是()A .圆周角等于圆心角的一半B.等弧所对的圆周角相等C.垂直于半径的直线是圆的切线D.过弦的中点的直线必经过圆心13.(易错题)半径分别为 5 和 8 的两个圆的圆心距为d,若 3<d≤ 13, ?则这两个圆的地点关系必定是()A.订交B.相切C.内切或订交D.外切或订交14.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为()A . 3cmB .6cm C.41 cm D . 9cm15.半径相等的圆的内接正三角形,正方形边长之比为()A.1:2B .:2C .3:2 D .1:216.如图 8,已知⊙ O的直径AB与弦 AC的夹角为35°,过 C点的切线 PC与 AB?的延伸线交于点 P,则∠ P 等于()A.15° B .20° C .25° D .30°17.如图 9 所示,在直角坐标系中, A 点坐标为( -3 , -2 ),⊙ A 的半径为1,P 为 x?轴上一动点, PQ切⊙ A 于点 Q,则当 PQ最小时, P点的坐标为()A .(-4,0)B.( -2 ,0)C.(-4 ,0)或( -2 ,0) D.(-3,0)18.在半径为 3 的圆中, 150°的圆心角所对的弧长是()A .15B. 15C.5D.5 424219.如图 10 所示, AE切⊙ D 于点 E, AC=CD=DB=10,则线段 AE 的长为().B .15C.103D.20A10220.如图 11 所示,在齐心圆中,两圆半径分别是 2 和 1,∠ AOB=120°, ?则暗影部分的面积为()A . 4B.2C.3D .4三、解答题(共50 分)21.(8 分)以下图, CE是⊙ O的直径,弦 AB⊥ CE于 D,若 CD=2,AB=6,求⊙ O?半径的长.22.( 8 分)以下图,AB 是⊙ O的直径, BC切⊙ O于 B, AC交⊙ O于 P, E 是 BC?边上的中点,连结 PE, PE与⊙ O相切吗?若相切,请加以证明,若不相切,请说明原因.23.( 12 分)已知:以下图,直线PA交⊙ O于 A,E 两点, PA的垂线 DC切⊙ O于点 C,过A 点作⊙ O的直径 AB.( 1)求证: AC均分∠ DAB;( 2)若 AC=4, DA=2,求⊙ O的直径.24.( 12 分)“五一”节,小雯和同学一同到游玩场玩大型摩天轮,?摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m).( 1)经过 2min 后小雯抵达点Q以下图,此时他离地面的高度是多少.( 2)在摩天轮转动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m 的空中.25.( 10 分)以下图,⊙O 半径为 2,弦 BD=2 3, A 为弧 BD的中点, E 为弦 AC 的中点,且在 BD上,求四边形ABCD的面积.人教版数学九年级上册第二十四章《圆》培优单元测试卷(含分析)一.选择题1.如图,圆锥的底面半径为1,母线长为3,则侧面积为()A. 2πB. 3πC. 6πD.8π2.如图,为⊙O 的直径,P为弦上的点,∠= 30°,过点P作⊥交⊙O于点AB BC ABC PD OP D,过点 D作 DE∥ BC交 AB的延伸线于点E.若点 C恰巧是的中点, BE=6,则 PC的长是()A. 6﹣ 8B. 3﹣ 3C. 2D.12﹣ 63.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A. 2πB. 3πC. 4πD.π4.《九章算术》是我国古代第一部自成系统的数学专著,代表了东方数学的最高成就.它的算法系统到现在仍在推进着计算机的发展和应用.书中记录:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深 1 寸(ED= 1 寸),锯道长1 尺(AB= 1尺= 10 寸)”,问这块圆柱形木材的直径是多少?”以下图,请依据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26 寸D.28 寸5.如图,PA、PB是⊙O切线,A、B 为切点,点C在⊙ O上,且∠ACB=55°,则∠APB等于()A. 55°B.70°C. 110°D.125°6.如图,在 Rt △中,∠= 90°,⊙O 是△的内切圆,三个切点分别为、、,ABC ACB ABC D E F 若=2,= 3,则△的面积是()BF AF ABCA. 6B. 7C. 7D.127.如图,正方形ABCD内接于圆O, AB=4,则图中暗影部分的面积是()A. 4π﹣ 16B. 8π﹣ 16C. 16π﹣ 32D.32π﹣ 168.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别订交于点G、H.若 AE=3,则 EG的长为()A.B.C.D.9.假如一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为 5 的“等边扇形”围成一个圆锥,则圆锥的侧面积为()A.B.πC. 50D.50π10.如图,点C 为△外接圆上的一点(点C不在上,且不与点,重合),且ABD B D∠=∠=45°,若= 8,= 4,则的长为()ACB ABD BC CD ACA. 8.5B. 5C. 4D.11.在△ABC中,∠C= 90°,∠A= 30°,AB= 12,将△ABC绕点B按逆时针方向旋转60°,直角边AC扫过的面积等于()A. 24πB. 20πC. 18πD.6π12.如图,矩形ABCD中,BC=2,C D=1,以 AD为直径的半圆O与BC相切于点E,连结BD,则暗影部分的面积为()A.B.C.D.二.填空题13.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面睁开图的圆心角度数是.14.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连结DE,过点 D作 DF⊥ AC于点 F.若 AB=6,∠ CDF=15°,则暗影部分的面积是.15.如图,已知AB是⊙O的弦,C是的中点,联络OA,AC,假如∠ OAB=20°,那么∠ CAB 的度数是.16.如图,用均分圆的方法,在半径为OA的圆中,画出了以下图的四叶好运草,若OA=2,则四叶好运草的周长是.17.半径为 6 的扇形的面积为12π,则该扇形的圆心角为°.18.如图,在平面直角坐标系中,已知C(3,4),以点 C为圆心的圆与 y 轴相切.点A、 B在 x 轴上,且 OA= OB.点 P为⊙ C上的动点,∠APB=90°,则 AB长度的最大值为.三.解答题19.如图,⊙O与△ABC的AC边相切于点C,与 AB、 BC边分别交于点 D、E, DE∥ OA,CE是⊙ O的直径.(1)求证:AB是⊙O的切线;(2)若BD= 4,EC= 6,求AC的长.20.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD均分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的地点关系,并说明原因;(2)若⊙O的半径为 2,∠BAC= 60°,求线段EF的长.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥ BD,弦 AD,BC订交于点 E.(1)求证:=;(2)若CE= 1,EB= 3,求⊙O的半径;( 3)在( 2)的条件下,过点C作⊙ O的切线,交BA的延伸线于点P,过点 P 作 PQ∥ CB 交⊙ O于 F, Q两点(点 F 在线段 PQ上),求 PQ的长.22.如图,AB为⊙O的切线,切点为B,连结 AO,AO与⊙ O交于点 C,BD为⊙ O的直径,连接 CD.若∠ A=30°,⊙ O的半径为2,则图中暗影部分的面积是多少?23.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥ BC于 M.(1)求证:AH= 2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)24.如图,是半圆的直径,C 是半圆上一点,=,⊥ 于点,分别交、AB O DH AB H AC BD DH于 E、 F.(1)已知AB= 10,AD=6,求AH.(2)求证:DF=EF25.已知:如图,在△ABC中,∠ ACB=90°,以点.( 1)求证:∠ACD=∠DEC;BC为直径的⊙O交 AB于点 D, E为的中( 2)延伸DE、 CB交于点P,若PB= BO, DE=2,求PE的长.参照答案一.选择题1.解:圆锥的侧面积=×2π× 1×3=3π,应选: B.2.解:连结OD,交 CB于点 F,连结 BD,∵=,∴∠ DBC=∠ ABC=30°,∴∠ ABD=60°,∵OB=OD,∴△ OBD是等边三角形,∴OD⊥FB,∴OF=DF,∴BF∥DE,∴OB=BE=6∴ CF=FB= OB?cos30°=6×=3,在 Rt △POD中,OF=DF,∴ PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴ CP=CF﹣ PF=3﹣3.应选: B.3.解:∵ABCDEF为正六边形,∴∠ COB=360°×=60°,∴△ OBC是等边三角形,∴OB=OC= BC=6,弧 BC的长为=2π.应选: A.4.解:设⊙O的半径为r .在 Rt △ADO中,AD= 5,OD=r﹣ 1,OA =r,则有 r 2=52+( r ﹣1)2,解得 r =13,∴⊙ O的直径为26寸,应选: C.5.解:连结OA, OB,∵PA,PB是⊙O的切线,∴ PA⊥OA, PB⊥OB,∵∠ ACB=55°,∴∠ AOB=110°,∴∠ APB=360°﹣90°﹣90°﹣110°=70°.应选: B.6.解:连结DO, EO,∵⊙ O是△ ABC的内切圆,切点分别为D, E, F,∴OE⊥AC, OD⊥BC, CD=CE, BD=BF=3, AF= AE=4又∵∠ C=90°,∴四边形 OECD是矩形,又∵ EO= DO,∴矩形 OECD是正方形,设 EO=x,则 EC=CD= x,在 Rt △ABC中222BC+AC= AB故( x+2)2+( x+3)2=52,解得: x=1,∴BC=3, AC=4,∴S△ABC=×3×4=6,应选: A.7.解:连结OA、 OB,∵四边形 ABCD是正方形,∴∠ AOB=90°,∠ OAB=45°,∴ OA=AB cos45°=4×=2,2) 2 ﹣4×4=8π﹣16.因此暗影部分的面积=S⊙﹣ S 正方形=π×(OABCD应选: B.8.解:如图,连结AC、 BD、OF,,设⊙ O的半径是 r ,则 OF=OA= r ,∵ AO是∠ EAF的均分线,∴∠ OAF=60°÷2=30°, AC⊥ EF,EG=EF=∵OA=OF,∴∠ OFA=∠ OAF=30°,∴∠ COF=30°+30°=60°,∴ FI =r ?sin60°=r ,∴ =r × 2=r==3,EF AE∴r =∴OI=,∴ CI=OC﹣ OI=,∵EF⊥AC,∠ BCA=45°∴∠ IGC=∠ BCI=45°∴ CI=GI=∴EG=EI﹣ GI=应选: B.9.解:圆锥的侧面积=?5?5=.应选: A.10.解:延伸CD到 E,使得DE= BC,连结AE,如右图所示,∵∠ ACB=∠ ABD=45°,∠ ACB=∠ ADB,∴∠ ADB=45°,∴∠ BAD=90°, AB= AD,∵四边形 ABCD是圆内接四边形,∠ADE+∠ ADC=180°,∴∠ ADC+∠ ABC=180°,∴∠ ABC=∠ ADE,在△ ABC和△ ADE中,,∴△ ABC≌△ ADE( SAS),∴∠ BAC=∠ DAE,∵∠ BAC+∠ CAD=∠ BAD=90°,∴∠ DAE+∠ CAD=90°,∴∠ CAE=90°,∵ACD=45°, BC= DE=8, CD=4,∴∠ ACE=45°, CE=12,∴ AC=AE=6,应选: D.11.解:∵在△ABC中,∠ C=90°,∠ A=30°, AB=12,∴BC= AB=6,∠ ABC=60°,∴ S 暗影=﹣=﹣=18π.应选: C.12.解:连结OE交 BD于 F,如图,∵以 AD为直径的半圆O与 BC相切于点 E,∴OE⊥BC,∵四边形 ABCD为矩形, OA= OD=1,而 CD=1,∴四边形 ODCE和四边形 ABEO都是正方形,∴ BE=1,∠ DOE=∠ BEO=90°∵∠ BFE=∠ DFO,OD=BE,∴△ ODF≌△ EBF( AAS),∴S△=S△,ODF EBF∴暗影部分的面积=S 扇形=EOD=.应选: C.二.填空题(共 6 小题)13.解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面睁开扇形的弧长为5πcm,∴=5π,解得: n=150故答案为150°.14.解:连结OE,∵∠ CDF=15°,∠ C=75°,∴∠ OAE=30°=∠ OEA,∴∠ AOE=120°,S△=AE× OE sin∠ OEA=× 2× OE× cos∠ OEA× OE sin∠OEA=,OAES 暗影部分=S扇形OAE﹣ S△OAE=×π× 32﹣= 3π﹣.故答案 3π﹣.15.解:连结OC交 AB于 E.∵C是的中点,∴ OC⊥AB,∴∠ AEO=90°,∵∠ BAO=20°,∴∠ AOE=70°,∵OA=OC,∴∠ OAC=∠ C=55°,∴∠ CAB=∠ OAC﹣∠ OAB=35°,故答案为35°.16.解:由题意得:四叶好运草的周长为 4 个半圆的弧长= 2 个圆的周长,连结AB、BC、CD、AD,则四边形ABCD是正方形,连结OB,以下图:则正方形 ABCD的对角线=2OA=4, O A⊥ OB, OA= OB=2,∴AB=2,过点O作ON⊥ AB于N,则NA=AB=,∴圆的半径为,∴四叶好运草的周长=2×2π×=4π;故答案为: 4π.17.解:设该扇形的圆心角为n2,则= 12π,解得: n=120,故答案为: 120.18.解:连结OC并延伸,交⊙ C上一点 P,以 O为圆心,以OP为半径作⊙ O,交 x 轴于 A、B,此时 AB的长度最大,∵ C(3,4),∴ OC==5,∵以点 C为圆心的圆与y 轴相切.∴⊙ C的半径为3,∴OP=OA= OB=8,∵ AB是直径,∴∠ APB=90°,∴AB长度的最大值为16,故答案为 16.三.解答题(共7 小题)19.( 1)证明:连结OD、 CD,∵CE是⊙O的直径,∴∠ EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直均分 CD,∴OD=OC,∴OD=OE,∴∠ OED=∠ ODE,∵DE∥OA,∴∠ ODE=∠ AOD,∠ DEO=∠ AOC,∴∠ AOD=∠ AOC,∵ AC是切线,∴∠ ACB=90°,在△ AOD和△ AOC中∴△ AOD≌△ AOC( SAS),∴∠ ADO=∠ ACB=90°,∵ OD是半径,∴ AB是⊙ O的切线;(2)解:连结OD,CD,∵ BD是⊙ O切线,∴∠ ODB=90°,∴∠ BDE+∠ ODE=90°,∵ CE是⊙ O的直径,∴∠ CDE=90°,∴∠ ODC+∠ ODE=90°,∴∠ BDE=∠ ODC,∵OC=OD,∴∠ OCD=∠ ODC,∴∠ BDE=∠ OCD,∵∠ B=∠ B,∴△ BDE∽△ BCD,∴2∴ BD= BE?BC,设 BE=x,∵ BD=4, EC=6,∴ 42=x(x+6),解得 x=2或 x=﹣8(舍去),∴ BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,∴ AD=AC,设 AD=AC= y,222在 Rt △ABC中,AB=AC+BC,∴( 4+y)2=y2+82,解得 y=6,∴ AC=6,故 AC的长为6.20.解:( 1)直线DE与⊙O相切,连结 OD.∵AD均分∠BAC,∴∠ OAD=∠ CAD,∵OA=OD,∴∠ OAD=∠ ODA,∴∠ ODA=∠ CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ ODE=90°,即 DE⊥OD,∴ DE是⊙ O的切线;( 2)过O作OG⊥AF于G,∴AF=2AG,∵∠ BAC=60°, OA=2,∴AG= OA=1,∴AF=2,∴AF=OD,∴四边形 AODF是菱形,∴DF∥OA, DF=OA=2,∴∠ EFD=∠ BAC=60°,∴EF= DF=1.21.证明:( 1)∵OC=OB∴∠ OBC=∠ OCB∵OC∥BD∴∠ OCB=∠ CBD∴∠ OBC=∠ CBD∴( 2)连结AC,∵CE=1, EB=3,∴ BC=4∵∴∠ CAD=∠ ABC,且∠ ACB=∠ ACB∴△ ACE∽△ BCA∴2∴ AC= CB?CE=4×1∴ AC=2,∵AB是直径∴∠ ACB=90°∴AB==2∴⊙ O的半径为( 3)如图,过点O作 OH⊥ FQ于点 H,连结 OQ,∵ PC是⊙ O切线,∴∠ PCO=90°,且∠ ACB=90°∴∠ PCA=∠ BCO=∠ CBO,且∠ CPB=∠ CPA ∴△ APC∽△ CPB∴2∴ PC=2PA, PC= PA?PB∴ 42=×(+2 )PA PA PA∴PA=∴PO=∵PQ∥BC∴∠ CBA=∠ BPQ,且∠ PHO=∠ ACB=90°∴△ PHO∽ △ BCA。
人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是()A.40°B.50°C.65°D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为()A.3:2:1 B.1:2:3 C.2:3:1 D.3:1:25.下列说法中,正确的是()A.正n边形有n条对称轴B.相等的圆心角所所对的弦相等C.三角形的外心到三条边的距离相等D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8 B.10 C.D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2 B.3 C.4 D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()A.40°B.45°C.50°D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则BC的长为()A.5B.3C.2D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,D G相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为()A.πcm2B.πcm2C.πcm2D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC 于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为c m.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB 的最短长度是.三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC交于点G,与圆O 交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为.21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG =∠BCH =30°时,PE +PF =4.故选:A .12.解:∵∠C =90°,BC =3cm ,AC =2cm ,∴AB =cm ,如图,由旋转知,∠BAB 1=∠CAC 1=90°,△ABC ≌△AB 1C 1,则线段BC 所扫过的面积S =+﹣S △ABC ﹣=﹣=﹣=π(cm 2),故选:A .二.填空题(共6小题)13.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.15.解:作直径AD ,连接CD ,如图所示:∵AD 是圆O 的直径,∴∠ACD =90°,∴∠OAC +∠D =90°,∵∠ABC +∠D =180°,∴∠ABC ﹣∠OAC =180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;②S==4π,扇形OACS=×4×4=8,△AOC∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.综上所述,满足条件的x的值为或﹣+5或.。
2016-2017学年度第一学期九年级数学
圆章节复习题
姓名:_______________班级:_______________得分:_______________
一选择题:
1.下列说法正确的是()
A.任意三点可以确定一个圆
B.平分弦的直径垂直于弦,并且平分该弦所对的弧
C.同一平面内,点P到⊙O上一点的最小距离为2,最大距离为8,则该圆的半径为5
D.同一平面内,点P到圆心O的距离为5,且圆的半径为10,则过点P且长度为整数的弦共有5条
2.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()
A.60°
B.50°
C.40°
D.30°
第2题图第3题图第4题图
3.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()
A.3
B.5
C.15
D.17
4.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()
A.135°
B.122.5°
C.115.5°
D.112.5°
5.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()
A.150
B.280
C.290D.340
第5题图第6题图第7题图
6.如图,点P为⊙O内一点,且OP=6,若⊙O的半径为10,则过点P的弦长不可能为()
A.17
B.30
3 C.16 D.15.5
7.如图,已知线段OA 交⊙O 于点B,OB=AB,点P 是⊙O 上一个动点,则∠OAP 的最大值是()
A.30°
B.45°
C.60°
D.90°
8.如图1,PA、PB 分别切圆O 于A、B 两点,C 为劣弧AB 上一点,∠APB=30°,则∠ACB=(
)
A.60°
B.75°
C.105°
D.120°
第8题图第9题图第10题图9.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于()A.21
B.20
C.19
D.18
10.如图,半圆O 与等腰直角三角形两腰CA,CB 分别切于D,E 两点,直径FG 在AB 上,若BG=2-1,则△ABC 的周长为(
)
A.4+22
B.6
C.2+22
D.4
11.如图,已知A、B 两点的坐标分别为(-2,0),(0,1),⊙C 的圆心坐标为(0,-1),半径为1,若D 是⊙C 上的一个动点,射线AD 与y 轴交于点E,则△ABE 面积的最大值是(
)
A.3
B.
3
11 C.
3
10 D.4
12.如图,扇形OAB 动点P 从点A 出发,沿弧AB 线段B0、0A 匀速运动到点A,则0P 的长度y 与运动时间t 之间的函数图象大致是(
)
13.在△ABC中,∠C=90°,∠B=60°,AC=3,以C为圆心,r为半径作⊙C,如果点B在圆内,而点A在圆外,那么r的取值范围是
14.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度
为.
第14题图第15题图第16题图
15.如图,点A、B、C在⊙O上,且∠AOB=120°,则∠A+∠B=°.
16.如图,两同心圆的圆心为O,大圆的弦AB切小圆于P,两圆的半径分别为6和3,则图中阴影部分的面积是.
17.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧MN的长度为.
第17题图第18题图第19题图
18.如图所示,在⊙O中,直径MN=10,正方形AB CD的四个顶点分别在PM以及⊙O的半径OM,OP上,并且∠POM=45°,则AB的长为.
19.如图,在△ABC中,AC=BC,∠C=90°,AB=6,⊙O的半径为,圆心O从点A出发,沿着线段AB滑动,⊙O随着点O的运动而移动,当⊙O与BC相切时,⊙O沿AB平移的距离.
20.如图,△ABC是等腰直角三角形,AC=BC=2a,以斜边AB上的点O为圆心的圆分别与AC,BC相切与点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为.
21.如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;
(2)若弦BC=6cm,求图中阴影部分的面积.
22.△ABC内接于⊙O中,A D平分∠BAC交⊙O于D.
(1)如图1,连接BD,CD,求证:BD=CD
(2)如图2,若BC是⊙O直径,AB=8,AC=6,求BD长
(3)如图,若∠ABC的平分线与AD交于点E,求证:BD=DE
23.如图1,AB是圆O的直径,点C在AB的延长线上,AB=4,BC=2,P是圆O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;
(2)求∠OCP的最大度数;设∠OCP=α,当线段CP与圆O只有一个公共点(即P点)时,求α的范围(直接写出答案);
(3)如图2,延长PO交圆O于点D,连接DB,当CP=DB,求证:CP是圆O的切线.
24.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.
(1)如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
参考答案1、D 2、B 3、B 4、D 5、B 6、D
7、A 8、C
9、C
10、A 11、B 12、D
13、3<r<314、0.2m 15、6016、93-3π,17、
5
2
π18、5
19、4
20、a
)21(+21、(1)∵弦BC 垂直于半径OA,∴BE=CE,AB=AC.又∵∠ADB=30°,∴∠AOC60°(2)∵BC=6,∴
.在Rt△OCE 中,设OE=x
∵∠C=∠ADB=30°∴OC=2x∵∴
∴x=3∴OE=3,OC=23连接OB.
∵AB=AC
∴∠BOC=2∠AOC=120°
∴S 阴影=S 扇形OBC -S △OBC =
=
22、(1)略(2)BD=25(3)略
23、(1)解:∵AB=4,∴OB=2,OC=OB+BC=4.在△OPC 中,设OC 边上的高为h,∵S △OPC =
2
1
OC•h=2h,∴当h 最大时,S △OPC 取得最大值.观察图形,当OP⊥OC 时,h 最大,如答图1所示:此时h=半径=2,S △OPC =2×2=4.∴△OPC 的最大面积为4.(2)解:当PC 与⊙O 相切时,∠OCP 最大.如答图2所示:∵sin∠OCP=
2
1
,∴∠OCP=30°∴∠OCP 的最大度数为30°.∴设∠OCP=α,当线段CP 与圆O 只有一个公共点(即P 点)时,0<α≤30°;(3)证明:图3,连接AP,BP.∴∠A=∠D=∠APD=∠ABD,
∵弧AD=弧PB∴弧AP=弧BD,∴AP=BD,∵CP=DB,∴AP=CP,∴∠A=∠C∴∠A=∠D=∠APD=∠ABD=∠C,在△ODB 与△BPC 中,,∴△ODB≌△BPC(SAS),∴∠D=∠BPC,
∵PD 是直径,∴∠DBP=90°,∴∠D+∠BPD=90°,∴∠BPC+∠BPD=90°,∴DP⊥PC,∵DP 经过圆心,∴PC 是⊙O 的切线.
24、(1)∵PQ∥AB 且OP⊥PQ ∴OP⊥AB∵∠ABC=30°且OB=3∴OP=
连OQ,在RT△OPQ 中:∵OQ=3且OP=∴PQ=∴PQ 最大=。