大学物理学习指导下解答详解(朱善华)
- 格式:docx
- 大小:383.64 KB
- 文档页数:13
2014大学物理学习指导上朱善华答案.doc参考答案练习一:1-2、DD 3、ict v v)31(30 ,400121ct t v xx4、 j8,ji 4 ,4412arctg arctg 或 5解:(1)jt t i t r)4321()53(2 ;(2))/(73;)3(34s m j i v j t i dtrd v s t ;(3))/(12s m j dtv d a6解: ∵xvv t x x v t v a d d d d d d d d分离变量:x x adx d )62(d 2两边积分得c x x v 322221由题知,0 x 时,10v,∴50 c∴ 13s m 252 x x v练习二:1-2、CB 3、32ct ,ct 2,Rt c 42,Rct2; 4、212tt ,212t5、解:(1)由23Rbt dtd R dt ds v得:Rbt dtdva6,4229t Rb Rv a nn n n e t Rb e Rbt e a e a a42966、当滑至斜面底时,h y ,则ghv A2 ,A 物运动过程中又受到B 的牵连运动影响,因此,A 对地的速度为jgh i gh u v u v AA )sin 2()cos 2('地练习三:1-3、BCB 4、3s;5、R j t i t R v R y x )cos sin (2226、解: 设人到船之间绳的长度为l ,此时绳与水面成 角,由图可知 222s h l将上式对时间t 求导,得tss t l l d d 2d d 2 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ tsv v t l v d d ,d d 0船绳即cos d d d d 00v v s l t l s l t s v船或sv s h s lv v 02/1220)(船将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d sv h s v s l s v s lv s v v s t s l t l s t v a 船船 7、解: kv dtdvt vv kdt dv v 001tk e v v 0t k e v dtdx0 dte v dx t k tx00)1(0t k e kv x练习四:1-2 AC 3、解: 2s m 83166m f ax x2s m 167m f a y y(1)20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745 ji v(2)m874134)167(21)4832122(21)21(22jijijtaitatvryx4、解:小球的受力分析如下图,有牛顿第二定律可知:dtdvmFkvmg分离变量及积分得:vtFkvmgFkvmgddtmk)(解得:))(1(1Fmgekv t mk5、解:取弹簧原长时m2所在处为坐标原点,竖直向下为x 轴,m 1,m 2的受力分析如上图所示。
静电学一章习题答案习题7—1 半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:[ ]习题7—2 半径为R 的均匀带电球面,总电量为Q ,设无穷远处电势为零,则该带电体所产生的电场的电势U 随离球心的距离r 变化的分布曲线为:[ ]习题7─3 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:[ ]解:可以设想再补上与图示立方体完全相同的七个立方体,使得点电荷位于一个边长扩大一倍的新的立方体的中心,这样,根据高斯定理,通过这个新立方体的六个面的总电通量为0q ,通过其中任何一个面的电通量为)6(0εq ,而因原abcd 面只是新立方体一个面的四分之一,故通过abcd 面的电场强度通量为)24(0εq 。
[选择答案(C)]习题7─4 如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电量Q 1,外球面半径为R 2、带电量为Q 2。
设无穷远处为电势零点,则在内球面里面,距球心为r 的P 点处的电势为:[ ] (A)r Q Q 0214πε+ 。
(B) 20210144R Q R Q πεπε+。
E r R E ∝1/r 2 (A ) O E r R O E ∝1/r 2 (B ) E O rR E ∝1/r 2 (C ) Er O R E ∝1/r 2 E ∝1/r(D ) 习题7―1图U r OU ∝1/r R (A) Ur O R U ∝1/r (B) U r O R U ∝1/r(C) U rO R U ∝1/r 2 (D) U r O R U ∝1/r 2(E) 习题7―2图习题7―3图习题7―4图(C) 0。
(D)1014R Q πε。
解:根据场强叠加原理,内球面单独在P 点产生的电势为10114R Q U P πε=外球面单独在P 点产生的电势为20224R Q U P πε=因此,P 点最终的电势为2021012144R Q R Q U U U P P P πεπε+=+=[所以选择答案(B)][注:对典型电荷分布的场,应用叠加原理可以非常方便地求得结果。
第七章 振动【例题精选】例7-1 弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了∆x .若将m 2移去,并令其振动,则振动周期为(A) g m x m T 122∆π= . (B) g m x m T 212∆π=. (C) g m x m T 2121∆π=. (D) g m m x m T )(2212+π=∆. [ B ] 例7-2 已知一简谐振动曲线如图所示,由图确定振子:在 s 时速度为零.在 s 时动能最大.0.5(2n +1) n = 0,1,2,… n n = 0,1,2,…例7-3 在竖直面内半径为R 的一段光滑圆弧形轨道上,放一小物体,使其静止于轨道的最低处.然后轻碰一下此物体,使其沿圆弧形轨道来回作小幅度运动.此物体的运动是否是简谐振动?为什么?答:物体是作简谐振动。
当小物体偏离圆弧形轨道最低点θ 角时,其受力如图所示. 切向分力 θs i n mg F t -= ∵θ 角很小, ∴ sin θ ≈θ牛顿第二定律给出 t t ma F = 即 22d /)(d t R m mg θθ=-θωθθ222//d d -=-=R g t 物体是作简谐振动.例7-4 在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2 cm 而平衡.再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数 0/l mg k =.选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得220d /d )(t x m x l k mg =+-将 0/l mg k = 代入整理后得 0//d d 022=+l gx t x ∴ 此振动为简谐振动,其角频率为.π===1.958.28/0l g ω设振动表达式为 )cos(φω+=t A x 由题意: t = 0时,x 0 = A=2102-⨯m ,v 0 = 0,解得 φ = 0∴ )1.9c o s (1022t x π⨯=-例7-5 用余弦函数描述一简谐振子的振动.若其速度~时间(v ~t )关系曲线如图所示,则振动的初相位为 (A) π/6. (B) π/3.(C) π/2. (D) 2π/3. [ A ]g1--例7-6 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: (A) )3232cos(2π+π=t x . (B) )3232cos(2π-π=t x . (C) )3234cos(2π+π=t x . (D) )3234cos(2π-π=t x .[ C ] 例7-7 一质点沿x 轴作简谐振动,振动方程为 )312cos(1042π+π⨯=-t x (SI).从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 21 [ D ] 例7-8 在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)两种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为(a) ;(b) . )212cos(π-=T t A x π )2cos(π+=Tt A x π 例7-9 一个轻弹簧在60N 的拉力下可伸长30cm ,现将以物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?解:(1) 设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正)ma N mg =- )(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 A = 10 cm ,N/m 2003.0/60k ==有 50/==m k ωrad ·s -1 系统最大加速度为 52max ==A a ω m ·s -2 此值小于g ,故小物体不会离开.(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-==6.19/2-=-=ωg x cm 即在平衡位置上方19.6 cm 处开始分离由g A a >=2max ω,可得 2/ωg A >=19.6 cm .例7-10 、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为 (A) π23. (B) π. (C) π21. (D) 0. [ B ] 例7-11 一质点同时参与两个在同方向的简谐振动,其表达式分别为)t 2cos(104x 21π/6+⨯=-, )5t 2cos(103x 22π/6-⨯=- (SI) 则其合成振动的振幅为 ,初相为 .1×10-2 m π/6A/ -【练习题】7-1 一质点作简谐振动,振动方程为)cos(φω+=t A x ,其中m 是质点的质量,k 是弹簧的劲度系数,T 是振动的周期.在求质点的振动动能时,下面哪个表达式是对的:(A) )(sin 21222φωω+t A m . (B) )(cos 21222φωω+t A m . (C))sin(212φω+t kA . (D) )(cos 2122φω+t kA . [ A ] 7-2 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A . (C) φωcos A -. (D) φωcos A .[ B ] 7-3 一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为 (A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ B ] 7-4 与例7-4相同 7-5 一质点作简谐振动.其振动曲线如图所示.根据此图,它的周期T =;用余弦函数描述时初相φ = .3.43 s -2π/37-6 一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ D ] 7-7 一弹簧振子系统具有1.0 J 的振动能量,0.10 m 的振幅和1.0 m/s 的最大速率,则弹簧的劲度系数为 ,振子的振动频率为 .2×102 N/m 1.6 Hz 7-8 两个同方向的简谐振动曲线如图所示.合振动的振幅为;合振动的振动方程为 .|A 1 – A 2| )212cos(12π+π-=t T A A x 7-9 一单摆的悬线长l = 1.5 m ,在顶端固定点的竖直下方0.45 m 处有一小钉,如图.设摆动很小,则单摆的左右两方振幅之比A 1/A 2的近似值为 ;左右两方周期之比T 1/T 2的近似值为 .0.84 0.84·--7-10 在竖直面内半径为R 的一段光滑圆弧形轨道上,放一小物体,使其静止于轨道的最低处.然后轻碰一下此物体,使其沿圆弧形轨道来回作小幅度运动. 试证明:物体作简谐振动的周期为:g R T /2π=证明: 当小物体偏离圆弧形轨道最低点θ 角时,其受力如图所示. 切向分力 θsin mg F t -= ∵ θ 角很小, ∴ sin θ ≈θ 牛顿第二定律给出 t t ma F = 即 θωθθ222//d d -=-=R g t 将上式和简谐振动微分方程比较可知,物体作简谐振动. 由③知 R g /=ω 周期 g R T /2/2π=π=ω。
第五章 刚体【例题精选】例5-1 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ C ]例5-2 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度增大,角加速度减小. (B) 角速度增大,角加速度增大.(C) 角速度减小,角加速度减小.(D) 角速度减小,角加速度增大.[ A]例5-3 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. [ C 例5-4 光滑的水平面上,有一长为2L 、质量为m 的细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为mL 2/3,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A)L 32v . (B) L 54v . (C) L 76v . (D) L98v . [ C ] 例5-5 一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J = ,物体初态的转动动能为 .0.25 kg ·m 2 12.5 J 例5-6 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)02ωmR J J +. (B) ()02ωRm J J+. (C) 02ωmR J . (D) 0ω. [ A ] 例5-7 质量m 、长l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内转动(转动惯量J =m l 2/12).开始时棒静止,有一质量m 的子弹在水平面内以速度v 0垂直射入棒端并嵌在其中. 则子弹嵌入后棒的角速度为 ;子弹嵌入后系统的转动动能为 .3v 0 / (2l ) 3m v 02 / 32O v俯视图m0v俯视图例5-8 如图,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图. m 1g -T 1=m 1a T 2-m 2g =m 2a设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β由以上四式消去T 1,T 2得:()()Jr m m gr m m ++-=22121β开始时系统静止,故t 时刻滑轮的角速度()()Jr m m grt m m t ++-==22121βω例5-9 质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小.解:受力分析如图.mg -T 2 = ma 2 T 1-mg = ma 1T 2 (2r )-T 1r = 9mr 2β/ 22r β = a 2 r β =a 1解上述5个联立方程,得: rg192=β 例5-10 一轻绳跨过两个质量均为m 、半径均为r 端分别挂着质量为m 和2m 滑.两个定滑轮的转动惯量均为2/2mr 的重物组成的系统从静止释放,求两滑轮之间绳内的张力. 解:受受力分析如图所示.2mg -T 1=2ma T 2-mg =maT 1 -T r =β221mr T r -T 2 r =β221mra =r β解上述5个联立方程得: T =11mg / 8例5-11 一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块碰撞前后的速度分别为1v 和2v,如图.求碰撞后细棒从开始转动到停止所需的时间.(棒绕O 点的转动惯量3/21l m J =)解:对棒和滑块系统,由于碰撞时间极短,所以棒所受的摩擦力矩<<滑块的冲力矩.aa 1Am 1 ,l1v2俯视图m因而系统的角动量守恒: m 2v 1l =-m 2v 2l +ω2131l m ① 碰后棒在转动过程中所受的摩擦力矩为 gl m x x l m gM lf 10121d μμ-=⋅-=⎰② 由角动量定理ω210310l m dt Mtf-=⎰ ③由①、②和③解得 gm m t 12122μv v +=例5-12 一轻绳绕过一轴光滑的定滑轮,滑轮半径为R ,质量为M /4,均匀分布在其边缘上.绳子的A 端有一质量M 的人抓住了绳端,而在另一端B 系了一质量M /2的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2/4 ) 解:受力分析如图所示. 设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下.根据牛顿第二定律可得:对人:Mg -T 2=Ma ①对重物:T 1-21Mg =21Ma ②根据转动定律,对滑轮有 (T 2-T 1)R =J β=MR 2β / 4 ③因绳与滑轮无相对滑动, a =βR ④ ①、②、③、④四式联立解得 a =2g / 72【练习题】5-1 转动着的飞轮的转动惯量为J ,在t =0时角速度为ω 0.此后飞轮经历制动过程.阻力矩M 的大小与角速度ω 的平方成正比,比例系数为k (k >0常量).当ω=ω0/3时,飞轮的角加速度β = .从开始制动到ω=ω0/3所经过的时间t = .Jk 920ω- 02ωk J5-2 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ A ] 5-3 一长为l ,质量可以忽略的直杆,绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量m 的小球,如图.将杆由水平位置无初转速地释放.杆刚释放时的角加速度为 , 杆与水平方向夹角为60°时的角加速度为 .g / l g / (2l )*5-4 如图所示,一轻绳绕于半径为r 的飞轮边缘,并以质量为m 的物体挂在绳 端,飞轮对过轮心且与轮面垂直的水平固定轴的转动惯量为J 。
练习一1、D ,2、C ,3、C ,4、203Q a πε D, 5、()j y a qy2/322042+πε, (j 为y 方向单位矢量), 2/a ± , 6、()30220824Rqdd R R qd εεπ≈-ππ,从O 点指向缺口中心点. 练习二1、A2、A3、12q q ε+ ,123201(q q )49q R πε++ ,4. 22(r )L a ρπ- 5、 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L , 它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε总场强为⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 方向沿x 轴正向,即杆的延长线方向.6 解: 如图在圆上取ϕRd dl =ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.练习三1、C2、D3、0,0Rrσε 4、-3σ / (2ε0) ,-σ / (2ε0), 3σ / (2ε0) 5、解: 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即12SE S d ρε=得到 012E d ρε=(板外两侧)(2)过平板内一点作一正交柱形高斯面,底面为S .设该处场强为E ',如图所示. 按高斯定理有 022ερxSS E ='得到 x E 0ερ=' (-d/2≤x ≤d/2)6 解:(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场d π4π3430320OO r E ερ='d 3303OO r ερ=∴ O 点电场'd 33030OO r E ερ= ;(2) ρ+在O '产生电场'dπ4d 3430301E ερπ='03ερ=OO ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E OO'练习四1、C2、D3、C,4、-e q / (6πε0R )5、解:01=E 1R r20313*******)(4)(34r R r r R r E ερπεπρ-=-=21R r R20313220313233)(4)(34r R R r R R E ερπεπρ-=-= 2R r⎰⎰∞∙+∙=2R 32r E r E d d U R R 21⎰⎰∞-+-=2R dr r R R dr r R r R R 203132203133)(3)(21ερερ)(221220R R -=ερ6、解:设x 轴沿细线方向,原点在球心处,在x 处取线元d x ,其上电荷为x q d d λ=',该线元在带电球面的电场中所受电场力为: d F = q λd x / (4πε0 x 2) 整个细线所受电场力为: ()l r r l q x x q F l r r +π=π=⎰+000204d 400ελελ 方向沿x 正方向.电荷元在球面电荷电场中具有电势能: d W = (q λd x ) / (4πε0 x ) 整个线电荷在电场中具有电势能: ⎪⎪⎭⎫⎝⎛+π=π=⎰+0000ln 4d 400r l r q x x q W l r r ελελ 练习五1、D2、A3、C 4.rεεσσ0,5 解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2; 金属片与A 板间场强为 )/(01S q E ε=x金属板与B 板间场强为 )/(02S q E ε=金属片内部场强为 0'=E 则两极板间的电势差为d E d E U U B A 21+=-))](/([210d d S q +=ε))](/([0t d S q -=ε 由此得)/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容无影响.6 解:(l )根据有介质时的高斯定理:⎰∑=⋅iq s d D可得两圆柱间电位移的大小为)2/(r D πλ= 场强大小为 rDE r rεπελεε002==两圆柱间电势差⎰⎰=⋅=21210122R R rR R r dr r d E U επελ 1200ln 2221R R r dr r R R rεπελεπελ==⎰电容 12012ln 2R R LU Q C r επελλ==)/ln(2120R R Lr επε=.(2)电场能量 rR R L C Q W επελ012224)/ln(2==练习六1.20d 4a lI πμ , 平行z 轴负向 2.πR 2c 3.0(1)26I R μππ- 4.)313(R 2I B 0-=πμ 5.134200==a ev B πμT .242102.92-⨯===evaa T e P m π 2m A ⋅ 6.)11(4120R R I -μ,垂直纸面向外 ,2/122210)11(4R R I +μ ,12arctg R R +π217、解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如图所示,取宽为l d 的一无限长直电流l RII d d π=,在轴上P 点产生B d 与R 垂直,大小为RI R R R IR I B 20002d 2d 2d d πθμ=πθπμ=πμ= RI B B x 202d cos cos d d πθθμ=θ= RI B B y 202d sin )2cos(d d πθθμ-=θ+π= ∴ 520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 0)2d sin (2220=πθθμ-=⎰ππ-RI B y 练习七1.)(120I I -μ,)(120I I +μ 2.320μI 3.2204RIh πμ 4.02Ir μπ 0 5、解:(1) 对r ~r +d r 段,电荷 d q = λ d r ,旋转形成圆电流.则 r dq I d 22d π=π=λωω 它在O 点的磁感强度 rrr IB d 42d d 000π==λωμμ⎰⎰+π==b a ar r B B d 4d 000λωμa ba +π=ln 40λωμ 方向垂直纸面向内.r r I r p m d 21d d 22λω=π= ⎰⎰+==ba am m r r p p d 21d 2λω 6/])[(33a b a -+=λω 方向垂直纸面向内. 6、解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小, 由安培环路定律可得: )(220R r r RIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RIRd 2020⎰π=μπ=40I μ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40Iμ2ln 20π+Iμ练习八1、A 2. )/(cos 2eB m θv π, )/(sin eB m θv 3. )2(R l BI +4. (1)40 2.510B nI T μ-==⨯ m A BH 2000==μ(2)m A I LNH 200==0 1.05r B H H T μμμ=== 5. 解:在直线电流2I 上任意取一个小电流元dl I 2,此电流元到长直线 的距离为x ,无限长直线电流1I 在小电流元处产生的磁感应强度 xI B πμ210=21021060cos 22dxx I I dl x I I dF ⋅==πμπμ ab I I dxx I I F ba ln 60cos 22100210πμπμ=⋅=⎰ 6. 解:(1) IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(2)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ∴ 221033.443-⨯==B l I A J练习九1、D ,2、C ,3、0.40 V 、 0.5 m 2/s ,4、5×10-4Wb5、解:在矩形回路中取一小面元ds ,面元处:2IB xμπ= 一个矩形回路的磁通量为: ln 22d a dIl Id a d BdS ldx x dμμππ++Φ=Φ==⋅=⎰⎰⎰由法拉第电磁感应定律,N 匝回路中的感应电动势为:0ln cos 2N I l d d a Nt dt dμωεωπΦ+=-=- 6、解:abcd 回路中的磁通量 ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ由法拉第电磁感应定律 klvt tm-=-=d d Φε 其沿abcd 方向顺时针方向.练习十1、A2、πBnR 2、0, 3、t B R /d d 212π-, 4、28/104.0s m ⨯ 顺时针5、解: 在长直导线中取一小线元,小线元中的感应电动势为:dl l vI dl l I v l d B v d πμπμε2180cos 90sin 200-==∙⨯=整个直导线中 dLd vI l dl vI L d d +-=-=⎰+ln 2200πμπμε 杆的右端电势低6、解: ∵ bc ab ac εεε+=tB R B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=--∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →ε的方向也可由楞次定律判定。
第一章 质点运动学【例题】例1-1 A t= 1.19 s 例1-2 D 例1-3 D 例1-4 B例1-5 3 3 例1-6 D 例1-7 C 例1-8 证明:2d d d d d d d d v xv v t x x v t v K -==⋅= ∴ d v /v =-K d x ⎰⎰-=x x K 0d d 10v v vv , Kx -=0ln v v ∴ v =v 0e -Kx例1-9 1 s 1.5 m 例1-10 B【练习题】1-1 x=(y-3)21-2 -0.5m/s -6m/s 2.25m 1-3 D1-4 不作匀变速率运动.因为质点若作匀变速率运动,其切向加速度大小t a 必为常数,即321t t t a a a ==,现在虽然321a a a ==, 但加速度与轨道各处的切线间夹角不同,这使得加速度在各处切线方向的投影并不相等,即321t t t a a a ≠≠,故该质点不作匀变速率运动。
1-5 D1-6 证明:设质点在x 处的速度为v , 62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213 x x +=v1-7 16 R t 2 4 rad /s 2 1-8 Hv/(H-v) 1-9 C第二章 质点运动定律【例题】例2-1 B 例2-2 B例2-3 解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律 tmK d d vv =- ∴ ⎰⎰=-=-vv 00v v d d ,vv d d t t m K t m K ∴ mKt /0e -=v v (2) 求最大深度 t x d d =v t x mKt d e d /0-=v t x m Kt txd e d /000-⎰⎰=v∴ )e1()/(/0mKt K m x --=vK m x /0max v =例2-4 D例2-5 答:(1) 不正确。
练习一1、D ,2、C ,3、C ,4、203Q a πε D, 5、()j y a qy2/322042+πε, (j 为y 方向单位矢量), 2/a ± , 6、()30220824Rqdd R R qd εεπ≈-ππ,从O 点指向缺口中心点. 练习二1、A2、A3、12q q ε+ ,123201(q q )49q Rπε++ ,4. 22(r )L a ρπ- 5、 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L , 它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε 总场强为⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q+π=04ε 方向沿x 轴正向,即杆的延长线方向.6 解: 如图在圆上取ϕRd dl =ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.练习三1、C2、D3、0,0Rrσε 4、-3σ / (2ε0) ,-σ / (2ε0), 3σ / (2ε0) 5、解: 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E . 作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即12SE S d ρε=得到 012E d ρε=(板外两侧)(2)过平板内一点作一正交柱形高斯面,底面为S .设该处场强为E ',如图所示. 按高斯定理有 022ερxSS E ='得到 x E 0ερ=' (-d/2≤x ≤d/2)6 解:(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ='d3303r ερ= ∴ O 点电场d33030r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ=' 03ερ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E''练习四1、C2、D3、C,4、-e q / (6πε0R )5、解:01=E 1R r20313*******)(4)(34r R r r R r E ερπεπρ-=-=21R r R20313220313233)(4)(34rR R r R R E ερπεπρ-=-= 2R r ⎰⎰∞∙+∙=2R 32r E r E d d U R R 21⎰⎰∞-+-=2R dr rR R dr r R r R R 203132203133)(3)(21ερερ )(221220R R -=ερ6、解:设x 轴沿细线方向,原点在球心处,在x 处取线元d x ,其上电荷为x q d d λ=', 该线元在带电球面的电场中所受电场力为: d F = q λd x / (4πε0 x 2) 整个细线所受电场力为: ()l r r lq x x q F l r r +π=π=⎰+00024d 400ελελ 方向沿x 正方向.电荷元在球面电荷电场中具有电势能: d W = (q λd x ) / (4πε0 x ) 整个线电荷在电场中具有电势能:⎪⎪⎭⎫⎝⎛+π=π=⎰+0000ln 4d 400r l r q x x q W l r r ελελ练习五1、D2、A3、C 4.rεεσσ0,5 解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2; 金属片与A 板间场强为 )/(01S q E ε=x金属板与B 板间场强为 )/(02S q E ε=金属片内部场强为 0'=E 则两极板间的电势差为d E d E U U B A 21+=-))](/([210d d S q +=ε))](/([0t d S q -=ε 由此得)/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容无影响.6 解:(l )根据有介质时的高斯定理:⎰∑=⋅iq s d D可得两圆柱间电位移的大小为)2/(r D πλ= 场强大小为 rDE r rεπελεε002==两圆柱间电势差⎰⎰=⋅=21210122R R rR R r dr r d E U επελ 1200ln 2221R R r dr r R R rεπελεπελ==⎰电容 12012ln 2R R LU Q C r επελλ==)/ln(2120R R Lr επε=.(2)电场能量 rR R L C Q W επελ012224)/ln(2==练习六1.20d 4a l I πμ , 平行z 轴负向 2.πR 2c 3.0(1)26I R μππ 4.)313(R 2I B 0-=πμ 5.134200==aev B πμT .242102.92-⨯===evaa T e P m π 2m A ⋅ 6.)11(4120R R I -μ,垂直纸面向外 ,2/122210)11(4R R I +μ ,12arctg R R +π217、解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如图所示,取宽为l d 的一无限长直电流l RII d d π=,在轴上P 点产生B d 与R 垂直,大小为RI R R R IR I B 20002d 2d 2d d πθμ=πθπμ=πμ=RI B B x 202d cos cos d d πθθμ=θ=RI B B y 202d sin )2cos(d d πθθμ-=θ+π=∴ 520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 0)2d sin (2220=πθθμ-=⎰ππ-RI B y 练习七1.)(120I I -μ,)(120I I +μ 2.320μI 3.2204RIh πμ 4.02Ir μπ 05、解:(1) 对r ~r +d r 段,电荷 d q = λ d r ,旋转形成圆电流.则 r dq I d 22d π=π=λωω 它在O 点的磁感强度 rrr IB d 42d d 000π==λωμμ⎰⎰+π==b a a r r B B d 4d 000λωμa ba +π=ln 40λωμ 方向垂直纸面向内. r r I r p m d 21d d 22λω=π=⎰⎰+==ba am m r r p p d 21d 2λω 6/])[(33a b a -+=λω 方向垂直纸面向内.6、解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小, 由安培环路定律可得:)(220R r r RI B ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RIRd 2020⎰π=μπ=40I μ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rI B >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+Iμ 练习八1、A 2. )/(cos 2eB m θv π, )/(sin eB m θv 3. )2(R l BI + 4. (1)40 2.510B nI T μ-==⨯ m A BH 2000==μ(2)m A I LNH 200==0 1.05r B H H T μμμ=== 5. 解:在直线电流2I 上任意取一个小电流元dl I 2,此电流元到长直线 的距离为x ,无限长直线电流1I 在小电流元处产生的磁感应强度 xI B πμ210=21021060cos 22dxx I I dl x I I dF ⋅==πμπμ ab I I dxx I I F ba ln 60cos 22100210πμπμ=⋅=⎰ 6. 解:(1) IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(2)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ∴ 221033.443-⨯==B l I A J练习九1、D ,2、C ,3、0.40 V 、 0.5 m 2/s ,4、5×10-4 Wb5、解:在矩形回路中取一小面元ds ,面元处:2IB xμπ= 一个矩形回路的磁通量为: ln 22d a dIl Id a d BdS ldx x dμμππ++Φ=Φ==⋅=⎰⎰⎰由法拉第电磁感应定律,N 匝回路中的感应电动势为:0ln cos 2N I l d d a Nt dt dμωεωπΦ+=-=- 6、解:abcd 回路中的磁通量 ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ由法拉第电磁感应定律 klvt tm-=-=d d Φε 其沿abcd 方向顺时针方向.练习十1、A2、πBnR 2 、0,3、t B R /d d 212π- ,4、28/104.0s m ⨯ 顺时针5、解: 在长直导线中取一小线元,小线元中的感应电动势为:dl l vI dl l I v l d B v d πμπμε2180cos 90sin 200-==∙⨯=整个直导线中 dL d vI l dl vI L d d +-=-=⎰+ln 2200πμπμε 杆的右端电势低6、解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=t abd d 2ΦεtB R B R t d d 12π]12π[d d 22=--∴ t BR R acd d ]12π43[22+=ε ∵0d d >tB∴ 0>ac ε即ε从c a →ε的方向也可由楞次定律判定。