声发射无损检测
- 格式:pptx
- 大小:4.54 MB
- 文档页数:35
无损检测之声发射检测无损检测之声发射检测7.声发射检测声发射检测技术是一种与X射线、超声波等常规检测方法不同的、特殊无损检测方法。
用仪器探测、记录、分析声发射信号和利用声发射信号推断声发射源的技术称为声发射技术。
7.1 声发射的概念声发射——材料中局域源快速释放能量产生瞬态弹性波的现象。
(AcousticEmission,简称AE),也称为应力波发射。
声发射事件—引起声发射的局部材料变化。
声发射源——材料中直接与变形和断裂机制有关的弹性波发射源声发射源的实质是指声发射的物理源点或发生声发射的机制源。
材料在应力作用下的变形与裂纹扩展,是结构失效的重要机制。
其它声发射源——流体泄漏、摩擦、撞击、燃烧等与变形和断裂机制无直接关系的另一类弹性波源。
也称为二次声发射源。
声发射技术是一种动态无损检测方法,它通过探测受力时材料内部发出的应力波判断承压设备内部损伤程度。
声发射检测技术主要用于在用承压设备装个系统安全性评价。
原理:从声发射源发射的弹性波最终传播到达材料的表面,引起可以用声发射传感器探测的表面位移,这些探测器将材料的机械振动转换为电信号,然后再被放大、处理和记录。
根据观察到的声发射信号进行分析与推断以了解材料产生声发射的机制。
声发射检测的的主要目的①确定声发射源的部位;②分析声发射源的性质;③确定声发射发生的时间或载荷;④评定声发射源的严重性。
一般而言,对超标声发射源,要用其它无损检测方法进行局部复检,以精确确定缺陷的性质与大小。
示例:球罐的声发射检测能力范围a)能检测出金属材料承压设备加压试验过程的裂纹等活性缺陷的部位、活性和强度;b)能够在一次加压试验过程中,整体检测和评价整个结构中缺陷的分布和状态;c)能够检测出活性缺陷随载荷等外变量而变化的实时和连续信息。
局限性a)难以检测出非活性缺陷;b)难以对检测到的活性缺陷进行定性和定量,仍需要其它无损检测方法复验;c)对材料敏感,易受到机电噪声的干扰,对数据的正确解释要有较为丰富的数据库和现场检测经验。
储罐声发射检测标准一、检测原理储罐声发射检测是一种无损检测技术,利用声发射源在储罐壁内部产生的弹性波传播的特性,通过对这些声波的检测和分析,可以对储罐的结构状态和完整性进行评估。
这种检测方法可以有效避免传统破坏性检测带来的成本和风险问题,实现对储罐结构的实时、在线、非破坏性监测。
二、检测设备进行储罐声发射检测需要使用专业的声发射检测设备,包括声发射传感器、信号处理系统、数据采集与分析系统等。
这些设备需要满足一定的技术要求,以保证检测结果的准确性和可靠性。
三、检测程序准备工作:在进行检测前,需要对储罐进行充分的准备工作,包括清洁储罐表面、检查传感器与信号处理系统的连接等。
安装传感器:在储罐的适当位置安装声发射传感器,确保传感器能够捕捉到声发射信号。
采集数据:启动声发射检测设备,对储罐进行声发射信号的采集。
在采集过程中,需要注意控制信号的强度和频率范围。
数据处理与分析:对采集到的声发射信号进行数据处理和分析,提取出有用的信息,如声发射源的位置、强度等。
检测结果判定:根据数据处理和分析的结果,对储罐的结构状态和完整性进行评估,给出相应的判定结果。
四、检测信号分析在进行储罐声发射检测时,需要对采集到的声发射信号进行深入的分析和处理。
通过信号处理技术,如滤波、去噪、时频分析等,可以提取出有用的信息,如声发射源的位置、强度等。
通过对这些信息的分析,可以判断出储罐的结构状态和完整性。
五、检测结果判定根据对声发射信号的分析和处理结果,可以对储罐的结构状态和完整性进行评估。
如果声发射信号强度较高,或者出现多个声发射源,可能意味着储罐结构存在损伤或者缺陷。
在这种情况下,需要进行进一步的检查或者维修。
如果声发射信号强度较低,且没有出现多个声发射源,可以认为储罐结构状态良好,不需要进行维修或者更换。
需要注意的是,储罐声发射检测只是一种无损检测方法,其结果只能提供一定的参考信息。
对于一些复杂的结构或者材料问题,可能需要结合其他无损检测方法或者破坏性检测方法进行综合评估。
无损检测技术中的声发射检测方法声发射检测方法是无损检测技术中的一种重要方法,它通过监测材料或结构在受力或变形时产生的声波信号,识别出潜在的缺陷或病态信号,从而实现对材料或结构的监测和评估。
声发射检测方法具有灵敏度高、可靠性强、非破坏性的特点,被广泛应用于航空航天、能源、交通、制造等领域。
声发射检测方法的基本原理是利用物体在受力或变形时产生的应变能释放出声波信号。
当材料或结构中存在缺陷或病态时,这些缺陷会在受力或变形时产生能量释放,从而引起声波信号的发射。
通过分析和处理这些声波信号的特征参数,可以确定缺陷的位置、大小、性质以及材料或结构的损伤程度。
声发射检测方法在无损检测领域中有着广泛的应用。
首先,它可以用于评估材料或结构的完整性。
在航空航天领域,飞机的结构完整性是至关重要的,声发射检测方法可以用来监测飞机的机翼、机身等关键结构是否存在潜在的裂纹、疲劳或腐蚀等问题。
其次,声发射检测方法还可以用于监测材料或结构在受力或变形时的响应情况。
例如,在能源领域,声发射检测方法可以用来监测核电站压力容器的变形和疲劳破坏,以确保其安全运行。
此外,声发射检测方法还可以用于提前预警材料或结构的潜在问题,以便采取相应的维修和保养措施,避免事故的发生。
声发射检测方法具有许多独特的优点。
首先,它是一种非破坏性的检测方法,不需要对材料或结构进行破坏性的取样或试验,可以对大型、复杂的结构进行在线监测。
其次,声发射检测方法对缺陷的敏感性高,能够检测到微小的缺陷,如微小裂纹、微小气泡等。
第三,声发射检测方法具有较高的可靠性和准确性,可以对缺陷进行实时监测和评估,及时发现潜在问题并采取相应的措施。
此外,声发射检测方法还具有较强的定位能力,可以确定缺陷的具体位置和分布。
然而,声发射检测方法也存在一些局限性。
首先,对于复杂结构和材料的检测,声发射检测方法可能受到环境噪音的干扰,影响信号的采集和处理。
其次,在某些情况下,声发射检测方法可能存在误报和漏报的情况,需要进一步的分析和判断。
声发射检测原理声发射检测是一种无损检测方法,广泛应用于钢结构、物化设备等领域,用于评估材料或结构的完整性和稳定性。
在这篇文章中,我们将介绍声发射检测的原理以及如何应用该方法检测材料或结构的缺陷。
声发射检测原理声发射是指在材料或结构受到外部负荷的作用下,产生局部应力达到材料的应力临界值时,在材料内部或表面产生的声波信号。
这些声波可以通过传感器捕捉到,用于检测材料或结构的完整性和稳定性。
声发射检测最重要的原理是利用声波传播的特性来识别材料或结构中存在的缺陷。
当材料或结构受到外部作用时,缺陷处的应力集中会引起局部弹性形变。
如果这种形变足够大,它将达到材料的临界值并导致裂纹的扩展。
此时,声波会从缺陷处传播到材料的表面并通过传感器捕获到。
这些传感器可以将声波转换为电信号并将其传输到信号处理系统进行分析和识别。
声发射检测应用声发射检测在材料和结构领域的应用非常广泛。
它可以评估材料和结构中缺陷的数量、位置、大小和形态。
以下是一些常见的应用场景:管道监测声发射检测可以用于检测管道系统中的裂纹和漏洞。
在管道上设置传感器,当管道受到外部负荷时,如果存在裂纹或漏洞,声波将通过传感器传播到信号处理器中,由此可以确定管道中的缺陷位置、大小和形态。
钢结构监测声发射检测可以用于验证大型钢结构的完整性和稳定性。
在钢结构上设置传感器,当该结构受到外部负荷时,声波将通过传感器传播到信号处理器中,并可以识别出结构中的缺陷或损伤。
桥梁监测声发射检测可以用于检测桥梁的裂纹和损伤。
在桥梁上设置传感器,当桥梁受到外部负荷时,如果存在裂纹或损伤,声波将通过传感器传播到信号处理器中,从而可以检测出桥梁中的缺陷位置、大小和形态。
航空航天元器件监测声发射检测可以用于检测航空航天元器件中的裂纹和损伤。
在元器件上设置传感器,当元器件受到外部负荷时,声波将通过传感器传播到信号处理器中,并可以识别出元器件中的缺陷或损伤。
小结声发射检测是一种无损检测方法,通过利用声波传播的特性来识别材料或结构中存在的裂纹和损伤等缺陷。
声发射检测技术原理
1 声发射检测技术
声发射检测技术是一种用于检测机械设备中微小振动、声发射的
非接触式的无损检测技术,是综合应用声学、声电子、数据处理等多
学科领域的技术,可以检测被检机械设备的噪声信息和机械振动信息,隐含着某种机械故障信息,经数据分析处理后,可以准确同时预测出
机械设备故障的发生及严重程度、故障类型及损伤部位。
2 声发射检测技术原理
当机械设备受力失衡或磨损时,会产生微小振动,这些振动信号
隐含有机械设备故障的信号,而声发射技术就是检测这些微小振动信号,从而获取机械设备故障的信息。
声发射检测技术一般分为三个步骤:首先,通过传感器将环境噪
声及机械设备的振动信号采集成电信号;其次,通过数据处理后,将
获得的信号分解成许多振动频率模式,即频谱图,然后在频谱图中分
析振动模式;最后,通过分析结果,可以判断机械设备的故障类型或
损伤部位。
3 声发射检测技术的优势
声发射检测技术最大的优势是非接触式,可以在机械设备正常工
作中进行无损检测、及早发现机械故障,并可以准确预测出机械设备
故障的发生及严重程度、故障类型及损伤部位,避免了台位检测时需
要拆开机械设备的必要性–造成的浪费。
此外,声发射检测技术可提供的数据量大、可以长期应用于监测,具有重用性、可复制性和灵活性,可大大提高维修和维护检测的效率与精度。
总之,声发射技术是一种新兴的检测技术,由于不仅针对机械设备具有强大的检测深度以及无损检测功能,在工业和航空领域已开始被广泛采用,其优势无疑将会在维护保养领域发挥出越来越重要的作用。
无损检测术语----声发射检测2.1声发射acoustic emissionAE材料中局域源能量快速释放而产生瞬态弹性波的现象。
a)应力波发射stress wave emission;b)微震动活动microseismic activity;2.2声—超声acousto-ultrsonics AU将声发射信号分析技术与超声材料特性技术相结合,用人工应力波探测和评价构件中弥散缺陷状态、损伤情况和力学性能变化的无损检测方法。
2.3声发射信号持续时间AE signal duration声发射信号开始和终止之间的时间间隔。
2.4声发射信号终止点AE signal end声发射信号的识别终止点,通常定义为该信号与门槛最后一个交叉点。
2.5声发射信号发生器AE signal generator能够重复产生输入到声发射仪器的特定瞬态信号的装置。
2.6声发射信号上升时间AE signal rise time声发射信号起始点与信号峰值之间的时间间隔。
2.7声发射信号起始点AE signal start由系统处理器识别的声发射信号开始点,通常由一个超过门槛的幅度来定义。
2.8阵列array为了探测和确定阵列内源的位置而放置在一个构件上两个或多个声发射传感器的组合。
2.9衰减attenuation声发射幅度每单位距离的下降,通常以分贝每单位长度来表示。
2.10平均信号电平average signal level整流后进行时间平均的声发射对数信号,用对数刻度对声发射幅度进行测量,以dB AE 单位来表示(在前置放大器输入端,0dB AE对应于1μV)。
2.11声发射通道channel,acoustic emission由一个传感器、前置放大器或阻抗匹配变压器、滤波器、二次放大器、连接电缆以及信号探测器或处理器等构成的系统。
注:检测玻璃纤维增强塑料(FRP)时,一个通道可能采用两个以上的传感器;对这些通道可能进行单独处理,也可能按相似的灵敏度和频率特性进行预先分组处理。