海明校验的原理及其实现
- 格式:pdf
- 大小:251.44 KB
- 文档页数:2
海明校验码的原理详解2006年12月27日星期三 10:57海明码是一种多重(复式)奇偶检错系统。
它将信息用逻辑形式编码,以便能够检错和纠错。
用在海明码中的全部传输码字是由原来的信息和附加的奇偶校验位组成的。
每一个这种奇偶位被编在传输码字的特定位置上。
实现得合适时,这个系统对于错误的数位无论是原有信息位中的,还是附加校验位中的都能把它分离出来。
推导并使用长度为m位的码字的海明码,所需步骤如下:1、确定最小的校验位数k,将它们记成D1、D2、…、Dk,每个校验位符合不同的奇偶测试规定。
2、原有信息和k个校验位一起编成长为m+k位的新码字。
选择k校验位(0或1)以满足必要的奇偶条件。
3、对所接收的信息作所需的k个奇偶检查。
4、如果所有的奇偶检查结果均为正确的,则认为信息无错误。
如果发现有一个或多个错了,则错误的位由这些检查的结果来唯一地确定。
校验位数的位数推求海明码时的一项基本考虑是确定所需最少的校验位数k。
考虑长度为m位的信息,若附加了k个校验位,则所发送的总长度为m+k。
在接收器中要进行k个奇偶检查,每个检查结果或是真或是伪。
这个奇偶检查的结果可以表示成一个k位的二进字,它可以确定最多2k种不同状态。
这些状态中必有一个其所有奇偶测试试都是真的,它便是判定信息正确的条件。
于是剩下的(2k-1)种状态,可以用来判定误码的位置。
于是导出下一关系:2k-1≥m+k码字格式从理论上讲,校验位可放在任何位置,但习惯上校验位被安排在1、2、4、8、…的位置上。
图5列出了m=4,k=3时,信息位和校验位的分布情况。
图5 海明码中校验位和信息位的定位校验位的确定下面为我增加,意在提出编码方法以助理解(但编码是否主要标准不可知)每行的值等于数值为1的各位码相异或。
如m=4,k=3.数据位前三行,校验位为后三行。
即A=p1⊕D1⊕D3⊕D4=0 得P1=D1⊕D3⊕D4B=P2⊕D2⊕D3⊕D4=0 得P2=D2⊕D3⊕D4C=P3⊕D1⊕D2⊕D3⊕D4=0 得P3=D1⊕D2⊕D3⊕D4 以下计算访求同下k个校验位是通过对m+k位复合码字进行奇偶校验而确定的。
说明海明码校验的工作机制海明码校验的工作机制。
海明码校验是一种常用的错误检测和纠正技术,它可以帮助我们在数据传输过程中检测和纠正错误,确保数据的完整性和准确性。
海明码校验是由美国数学家理查德·W·海明提出的,它利用了一些数学原理和算法来实现对数据的检验和纠正。
在本文中,我们将详细介绍海明码校验的工作机制,包括海明码的生成和校验过程,以及它的应用场景和优缺点。
海明码的生成过程。
海明码是一种特殊的纠错码,它可以通过一些简单的数学运算来生成。
海明码的生成过程包括以下几个步骤:1. 数据分组,首先,需要将要传输的数据分成若干个数据块,每个数据块包含若干个比特(0或1)。
2. 添加校验位,对于每个数据块,需要添加一些校验位来实现错误检测和纠正。
校验位的数量取决于数据块的大小和需要实现的纠错能力。
3. 计算校验位,校验位的计算是通过一些数学运算来实现的,通常是利用异或操作和位移操作来计算。
校验位的值是通过对数据块中的比特进行运算得到的。
4. 合并数据块,将数据块和对应的校验位合并成一个完整的海明码。
海明码的校验过程。
一旦生成了海明码,就可以在数据传输过程中使用它来进行校验。
海明码的校验过程包括以下几个步骤:1. 数据传输,将生成的海明码发送给接收方进行数据传输。
2. 接收数据,接收方接收到海明码后,需要对其进行解码,得到原始的数据块和校验位。
3. 计算校验位,接收方利用接收到的海明码中的数据块和校验位,重新计算校验位的值。
4. 检测错误,接收方将重新计算得到的校验位和接收到的校验位进行比较,如果两者不一致,则说明数据传输过程中出现了错误。
5. 纠正错误,如果检测到错误,接收方可以利用海明码中的校验位来纠正错误,通常是通过一些数学运算来实现的。
海明码的应用场景。
海明码校验在计算机网络、通信系统、存储系统等领域都有广泛的应用。
它可以帮助我们在数据传输过程中检测和纠正错误,确保数据的完整性和准确性。
海明码的检错机制及程序实现浙江省慈溪实验中学 张利波 315300当数字信号在介质中传输时,由于信道热燥声或环境燥声干扰,导致传输错误,这就引出了两个问题:如何检测错误?如何纠正错误?这里将用程序的方法来模拟海明码实现纠错的编码方式。
【海明码介绍】海明码是由R.Hammingy1950年提出的,是一种纠正一比特错的编码,其基本思想是:在k 比特信息上附加r 比特冗余信息(也称校验比特),构成n=k+r 比特的码字,其中每个校验比特和某几个特定的信息比特构成偶校验的关系。
校验比特数r 和信息比特k 满足条件:2^r ≥n+1=k+r+1。
下面用具体例子说明海明码的构造方法。
以k=4为例说明,要满足2^r ≥k+r+1,则有r ≥3,取r=3,则n=k+r=7,这7个比特中的2^k 位置用来放置校验比特R i ,其余为信息比特I i ,如图1所示。
每个信息比特所在位置(下标)都可以表示成2的幂次之和的形式: 7=22+21+20,6=22+21,5=22+20,3=21+20,如图2所示,表格中“√”表示含该项,横向表示信息比特参与校验比特的生成,如信息比特I 4要参与校验比特R 2、R 1、R 0的生成;纵向表示校验比特和信息比特构成的偶校验关系,如 R 2和I 4、I 3、I 2构成的偶校验关系。
由此得到计算校验比特的公式:R 2=I 4+I 3+I 2,R 1=I 4+I 3+I 1,R 0=I 4+I 2+I 1。
接收端对这r 个奇偶关系进行校验,将每个校验比特和与它相关联的信息比特执行相加(异或),相加的结果称为校正因子,校正因子可以通过以下关系式对三个偶关系进行验证:S 2= R 2+I 4+I 3+I 2,S 1= R 1+I 4+I 3+I 1,S 0=R 0+I 4+I 2+I 1。
如果没有错误,则这些校正因子都为0;反之,S 2、S 1、S 0不全为0,而发生错误的比特位置就在S=(S 2S 1S 0)2处,将该比特取反,就得到正确数据。
海明校验码设计实验报告实验名称:海明校验码设计实验实验目的:通过实验设计和实现海明校验码的算法,了解海明校验的原理以及如何使用。
实验原理:海明校验码是一种能够检测并纠正传输错误的码,常用于计算机存储系统和数据通信系统中,可以通过添加冗余位来实现数据的纠错。
海明码的基本原理是将数据位和校验位进行组合,使得校验位的值能够表示数据位中出现的错误的位置和数量。
具体实验步骤:1. 设计一段数据,例如8位二进制数,作为输入数据。
2. 计算校验位的数量,并根据数据位和校验位的数量,计算海明码的总位数。
校验位的数量可以通过公式计算:2^r ≥ r + k + 1,其中r为校验位的数量,k为数据位的数量。
3. 将数据位插入到海明码的对应位置,即在海明码中留出位置用于存放数据位。
4. 计算各个校验位的值,并填充到海明码中。
5. 对于海明码的接收端,通过计算校验位的奇偶性,检测并纠正可能出现的错误。
实验结果与分析:实验中,我们设计了一个8位二进制数据,需要添加3个校验位。
根据公式2^r ≥ r + k + 1,计算出总位数为12位。
将数据位填入到对应的海明码位置,并计算校验位的值,得到最终的海明码。
例如,原始数据为:1011校验位的数量为3,海明码的总位数为12。
填充数据位得到海明码:1 0 1 1 * * 0 * 1 0 1 1计算校验位的值,并填充到海明码:1 0 1 1 0 1 0 0 1 0 1 1接收端接收到海明码后,计算校验位的奇偶性,并与接收到的海明码进行比较,即可检测并纠正错误。
如果校验位的奇偶性与接收到的海明码不一致,说明出现了错误。
通过校验位的位置,我们可以判断错误出现的位置,并根据校验位的奇偶性提示错误的数量。
实验结论:通过实验,我们成功设计并实现了海明校验码的算法。
海明校验码能够检测并纠正传输错误,可以应用于计算机存储系统和数据通信系统中,提高数据的可靠性和完整性。
实验结果表明,海明校验码能够很好地检测和纠正错误,具有较高的纠错能力,因此在实际应用中具有广泛的应用价值。
1、奇偶校验码二进制数据经过传送、存取等环节,会发生误码(1变成0或0变成1),这就有如何发现及纠正误码的问题。
所有解决此类问题的方法就是在原始数据(数码位)基础上增加几位校验(冗余)位。
一、码距一个编码系统中任意两个合法编码(码字)之间不同的二进数位(bit)数叫这两个码字的码距,而整个编码系统中任意两个码字的的最小距离就是该编码系统的码距。
如图1所示的一个编码系统,用三个bit来表示八个不同信息中。
在这个系统中,两个码字之间不同的bit数从1到3不等,但最小值为1,故这个系统的码距为1。
如果任何码字中一位或多位被颠倒了,结果这个码字就不能与其它有效信息区分开。
例如,如果传送信息001,而被误收为011,因011仍是表中的合法码字,接收机仍将认为011是正确的信息。
然而,如果用四个二进数字来编8个码字,那么在码字间的最小距离可以增加到2,如图图 1图 2注意,图8-2的8个码字相互间最少有两bit因此,如果任何信息的一个数位被颠倒,码字,接收机能检查出来。
例如信息是1001,误收为1011接收机知道发生了一个差错,因为1011不是一个码字(表中没有)。
然而,差错不能被纠正。
的,正确码字可以是1001,1111,0011或1010能确定原来到底是这4个码字中的那一个。
也可看到,这个系统中,偶数个(2或4)差错也无法发现。
为了使一个系统能检查和纠正一个差错,必须至少是“3”。
最小距离为3时,或能纠正一个错,或能检二个错,但不能同时纠一个错和检二个错。
错和检错能力的进一步提高需要进一步增加码字间的最小距离。
图8-3的表概括了最小距离为1至7的码的纠错和检错能力。
图3 码距越大,纠错能力越强,但数据冗余也越大,即编码效率低了。
所以,选择码距要取决于特定系统的参数。
数字系统的设计者必须考虑信息发生差错的概率和该系统能容许的最小差错率等因素。
要有专门的研究来解决这些问题。
二、奇偶校验奇偶校验码是一种增加二进制传输系统最小距离的简单和广泛采用的方法。
海明码校验和纠错原理详细海明纠错码当计算机存储或移动数据时,可能会产⽣数据位错误,这时可以利⽤汉明码来检测并纠错,简单的说,汉明码是⼀个错误校验码码集,由Bell实验室的R.W.Hamming发明,因此定名为汉明码。
海明码(Hamming Code)是⼀个可以有多个校验位,具有检测并纠正⼀位错误的纠错码,所以它也仅⽤于通信特性较好的环境中,如以太局域⽹中,因为如果通道特性不好的情况下,出现的错通常也不是⼀位。
海明码的检错、纠错基本思想是将有效信息按某种规律分成若⼲组,每组安排⼀个校验位进⾏奇偶性测试,然后产⽣多位检测信息,并从中得出具体的出错位置,最后通过对错误位取反来将其纠正。
要采⽤海明码纠错,需要按以下⼏个步骤。
1计算校验位数2 确定校验码位置3 确定校验码4 实现校验和纠错1. 计算校验位数它是这样的规定的:假设⽤N表⽰添加了校验码位后整个信息的⼆进制位数,⽤K代表其中有效信息位数,r表⽰添加的校验码位,它们之间的关系应满⾜:N=K+r≤2r-1。
如K=5,则要求2r-r≥5+1=6,根据计算可以得知r的最⼩值为4,也就是要校验5位信息码,则要插⼊4位校验码。
如果信息码是8位,则要求2r-r≥8+1=9,根据计算可以得知r的最⼩值也为4。
根据经验总结,得出信息码和校验码位数之间的关系如表5-1所⽰。
2.确定校验码位置上⼀步我们确定了对应信息中要插⼊的校验码位数,但这还不够,因为这些校验码不是直接附加在信息码的前⾯、后⾯或中间的,⽽是分开插⼊到不同的位置。
但不⽤担⼼,校验码的位置很容易确定的,那就是校验码必须是在2n次⽅位置,如第1、2、4、8、16、32,……位(对应20、21、22、23、24、25,……,是从最左边的位数起的),这样⼀来就知道了信息码的分布位置,也就是⾮2n次⽅位置,如第3、5、6、7、9、10、11、12、13,……位(是从最左边的位数起的)。
举⼀个例⼦,假设现有⼀个8位信息码,即b1、b2、b3、b4、b5、b6、b7、b8,由表5-1得知,它需要插⼊4位校验码,即p1、p2、p3、p4,也就是整个经过编码后的数据码(称之为“码字”)共有12位。
①海明校验的基本思想将有效信息按某种规律分成若干组,每组安排一个校验位,做奇偶测试,就能提供多位检错信息,以指出最大可能是哪位出错,从而将其纠正。
实质上,海明校验是一种多重校验。
②海明校验的特点它不仅具有检测错误的能力,同时还具有给出错误所在准确位置的能力。
一.校验位的位数校验位的位数与有效信息的长度有关设:N--为校验码的位数K--是有效信息位r--校验位(分成r组作奇偶校验,能产生r位检错信息)海明码应满足N=K+r≤2r-1 若r=3 则N=K+r≤7 所以K≤4二.分组原则`在海明码中,位号数(1、2、3、……、n)为2的权值的那些位,即:1(20)、2(21)、4(22)、8(23)、…2r-1位,作为奇偶校验位并记作: P1、P2、P3 、P4、…Pr,余下各位则为有效信息位。
例如:N=11 K=7 r=4 相应海明码可示意为位号 1 2 3 4 5 6 7 8 9 10 11P占位P1 P2 × P3 × × × P4 ×××其中×均为有效信息,海明码中的每一位分别被P1P2P3P4… Pr 中的一至若干位所校验,其规律是:第i位由校验位位号之和等于i的那些校验位所校验如:海明码的位号为3,它被P1P2(位号分别为1,2)所校验海明码的位号为5,它被P1P3(位号分别为1,4)所校验归并起来: 形成了4个小组,每个小组一个校验位,校验位的取值,仍采用奇偶校验方式确定。
如表2·6 、表2·7所示:三.编码、查错、纠错原理以4位有效信息(b1、b2、b3、b4)和3位校验位(P1、P2、P3)为例: K=4 r=3海明序号1 2 3 4 5 6 7海明码P1 P2 b1 P3 b2 b3 b4根据表2-8可以看到(1)每个小组只有一位校验位,第一组是P1、第二组是P2、第三组是P3。
(2)每个校验位校验着它本身和它后面的一些确定位。
海明校验码设计实验报告实验目的设计并实现海明校验码,实现对于数据传输中出错信息的检测与纠正功能。
实验原理海明校验码是对于二进制数据进行检错和纠错的一种编码方法。
其基本思想是对数据进行二进制化,并在数据后面加上校验码,以便检查发生的错误,并在发生一些错误的时候进行纠正。
其中,校验码的生成基于原始数据中出现的错误的反转。
为了避免出现错误情况,海明编码使得校验码中的每一位都与原始数据中的多个位置有关。
海明校验码的实现流程包括以下步骤:1. 将要传输的数据转换为二进制形式,并将其划分为多个位。
2. 根据海明编码的规则,计算得出控制位的位置,并将0和1分配给这些位置。
3. 将校验位插入到原始数据的中间,构成海明编码,并发送到接收端。
4. 在接收端,收到海明编码后,进行计算并检查出现的错误情况。
如有错误,则尝试更改应该更改的冗余位以进行自动校正。
实验器材与材料计算机,IDE软件,Python语言。
实验步骤1. 设计海明编码程序。
(1)将要传输的数据分割,初始状态下没有校验码。
(2)计算出每个校验位的数值。
(3)用计算得到的校验码替换掉原来没有校验码的位,以形成海明编码。
2. 制造模拟信道错误的程序。
将字符数据中某些位置的位进行反转模拟数据在传输过程中出现错误的情况。
3. 设计海明编码解码程序。
(1)接收传输过来的海明编码。
(2)计算收到的码字的海明校验码。
(3)如果发现了错误,则进行纠错操作,纠正错误的位数。
实验结果经过测试,我们成功设计并实现了海明编码解码的程序。
我们在编码原始数据后,成功地对编码的数据进行了传输,并通过测试程序检查对于在数据传输过程中出现的错误信息的检测与纠正功能。
同时,在发送者向接收者发送数据的过程中,我们还成功制造了信道错误,以模拟数据传输中出现错误的情况。
在测试程序的帮助下,我们成功地对海明编码的纠错机制进行了测试,并发现其有效性和高可用性。
结论与总结在本次实验中,我们通过使用Python语言和IDE软件成功地设计并实现了海明校验码的程序,实现了对于数据传输中出错信息的检测与纠正功能。
数据在传输或存储过程中常常会出现错误,为了保证数据的完整性和准确性,通常会采用校验码来进行数据校验和纠错。
海明码是一种常用的校验码之一,它能够在一定程度上实现数据的纠错和校验。
本文将详细介绍4位数据海明校验码的生成与纠错原理及方法。
一、海明码的基本原理海明码是由美国数学家理查德·海明提出的一种能够检测和纠正数据中出现的错误的编码方式。
它通过向数据中添加校验位来实现对数据进行校验和纠错。
海明码的基本原理可以概括为以下几点:1. 通过向数据中添加冗余位来实现纠错功能。
2. 通过对数据进行位的异或运算来计算校验位。
3. 通过校验位的比较来检测错误位并进行纠错。
二、4位数据海明校验码的生成方法在生成4位数据海明校验码时,需要依据原始数据的位数来确定校验位的数量。
对于4位数据,通常采用2位校验位。
而具体的生成方法如下:1. 将4位原始数据表示成二维矩阵形式。
2. 根据原始数据矩阵的每一列,计算出校验位的值。
3. 将校验位添加到原始数据矩阵中。
4. 根据生成的数据矩阵,计算出校验位的值并添加到数据中。
三、4位数据海明校验码的纠错方法当使用4位数据海明校验码进行数据传输或存储时,若出现错误,需要通过校验位来检测错误位并进行纠错。
纠错方法如下:1. 对接收到的数据进行校验,计算出校验位的值。
2. 将计算得到的校验位的值与接收到的校验位的值进行比较。
3. 根据比较结果确定错误位的位置,并将其进行纠正。
四、4位数据海明校验码的应用场景4位数据海明校验码主要应用于对数据进行短距离传输和存储过程中。
其应用场景包括但不限于以下几种情况:1. 在计算机内存中对数据进行校验和纠错。
2. 在通信传输过程中对数据进行校验和纠错。
3. 在存储介质中对数据进行校验和纠错。
4. 在传感器数据采集过程中对数据进行校验和纠错。
五、4位数据海明校验码的优缺点4位数据海明校验码作为一种常见的纠错码,具有一定的优点和缺点。
主要表现在以下几个方面:优点:1. 能够有效检测和纠正数据中出现的错误。
海明码编码与校验(1)海明码的工作原理在传输的数据中加入几个校验位,并把数据的每个二进制位分配在几个奇偶校验组中。
当某一位出错后,就会有关的几个校验组的值的变化,这不但可以发现出错,还能指出那一位出错,为自动纠正提供了依据。
假设校验位的个数为r,则它能表示2r个信息,用其中的一个信息指出“没有错误”,其余的2r-1个信息指出错误发生在哪一位。
然而错误也可能发生在校验位,因此只有k=2r-1-r个信息能用于纠正被传送数据的位数。
满足以下关系:2r≥k+r+1(3.1.1)(2)模拟海明码工作的例子例1:要发送0101编码,求其海明码解:已知要发送的编码为0101,则k=4,根据(3.1.1)公式求出rmin=3。
r=3校验位插入的位置:P1=21-1=1………第一位P2=22-1=2………第二位P3=23-1=4………第三位则模拟编码位:7 6 5 4 3 2 10 1 0 * 1 * *D4 D3 D2 P3 D1 P2 P1D1=P1+P2,D1位置为 3=(0011)2D2=P1+P3,D2位置为 5=(0101)2D3=P2+P3,D3位置为 6=(0110)2D4=P1+P2+P3 ,D4位置为7=(0111)2求校验位PP1=D1⊕D2⊕D4=1 (对应上面二进制数右起第一位为1的参与异或操作)P2=D1⊕D3⊕D4=0P3=D2⊕D3⊕D4=1注:⊕为异或操作(相同为0,不同为1)得到最终的海明码:7 6 5 4 3 2 10 1 0 1 1 0 1D4 D3 D2 P3 D1 P2 P1↑↑ ↑例2:传输后得到错误码0001101,找出错误位并改正。
解:则模拟编码位:7 6 5 4 3 2 10 0 0 1 1 0 1D4 D3 D2 P3 D1 P2 P1S1=P1⊕D1⊕D2⊕D4=0S2=P2⊕D1⊕D3⊕D4=1S3=P3⊕D2⊕D3⊕D4=1排列S3,S2,S1=110(110)2=(6)10说明右起第六位出错!正确的码为:0101101。