2020届陕西省富平县蓝光中学趣味数学-数学中的染色问题
- 格式:pptx
- 大小:2.13 MB
- 文档页数:26
染色问题
染色方法是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中所蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。
这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会几种典型的染色方法。
染色问题例题及分析一
染色问题例题及分析二
染色问题例题及分析三
染色问题例题及分析四
染色问题例题及分析五
染色问题例题及分析六
染色问题的例题讲解一(区域染色问题)
染色问题例题讲解2(点染色问题)
染色问题例题讲解3(线段染色问题)
染色问题例题讲解4(面染色问题)
染色问题练习题及答案。
高中数学染色的问题教案
主题:数学染色问题
目标:学生理解数学染色问题的基本概念和方法,能够独立解决染色问题。
教学方法:讲解、演示、实践。
教学步骤:
1. 引入问题:首先向学生提出一个简单的染色问题,例如一个有三个顶点的三角形,如何用两种颜色来染色使得相邻的顶点颜色不同。
让学生思考并讨论解决方法。
2. 解释基本概念:介绍染色问题中的基本概念,如图的染色、相邻顶点、最少需要的颜色等,让学生了解这些概念在染色问题中的重要性。
3. 讲解染色方法:通过讲解染色问题的基本解题方法,如贪心算法、回溯法等,让学生掌握解题技巧。
4. 实例演练:给学生提供一些实际的染色问题,让他们动手尝试解决,并通过实例演练来加深对染色问题的理解。
5. 练习题目:布置一些练习题目,让学生在课后练习巩固所学知识,并及时纠正错误。
6. 总结:总结本节课的学习内容,强调染色问题的重要性和应用范围,鼓励学生继续深入研究数学染色问题。
学习评价:通过学生对课堂学习和练习题目的表现来评价学生对数学染色问题的理解和掌握程度,及时了解学生的学习情况并给予帮助。
2020年初中数学竞赛讲义:染色问题一、染色问题 (1)第1 页共3 页第 1 页 共 3 页一、 染色问题1. (1991年全国初中数学联赛2试)将正方形ABCD 分割为2n 个相等的小方格(n是自然数),把相对的顶点A ,C 染成红色,把B ,D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色,证明:恰有三个顶点同色的小方格的数目必是偶数.【难度】 ★★★★【解析】 证法1:用数代表颜色,将红色记为0,蓝色记为1,再将小方格编号,记为1,2,3,…2n 。
又记第i 个小方格四个顶点数字之和为i A ,若恰有三顶点同色,则1i A =或3为奇数,否则i A 为偶数。
在212n A A A +++中,有如下事实:对正方形内部的交点,各加了4次;原正方形边上非端点的交点,各加了2次;对原正方形的四个顶点,各加了1次(含两个0,两个1)。
因此212n A A A +++4=⨯(内部交点相应的数之和)2+⨯(边上非端点的交点相应的数之和)2+,必为偶数,于是,在1A ,2A ,…,2n A 中必有偶数个奇数,这就是说,恰有三个顶点同色的小方格必有偶数个。
证法2:用数代表颜色,红色记为1,蓝色记为1-,将小方格编号,记为1,2,…,2n 。
记第i 个小方格四个顶点数字之和为i A ,若恰有三顶点同色,则1i A =-否则1i A =。
现在考虑乘积212n A A A ⨯⨯⨯。
对正方形内部交点,各点相应的数重复出现4次;边上的不是端点的交点相应的数各出现2次;A ,B ,C ,D 四点相应的数的乘积为11(1)(1)1⨯⨯-⨯-=,于是2121n A A A ⨯⨯⨯=,因此,1A ,2A ,…,2n A 中1-的个数必为偶数,即恰有三顶点同色的小方格必有偶数个。
证法3:考虑染了色之后,改变一个交点的染色方式,这时以此点为顶点的小方格,要么由三顶点同色变为非三顶点同色,要么由非三顶点同色变成三顶点同色。
注意:除A ,B ,C ,D 之外,每一次点必是偶数个小方格的顶点,因此,改变一个交点的染色并不改变三项点同色小方格数目的奇偶性。
染色问题知识定位染色是分类的直观表现,在数学竞赛中有大批以染色面目出现的问题,这类问题的特点是知识点少,逻辑性强,技巧性强,其内部蕴藏着深刻的数学思想。
同时,染色作为一种解题手段也在数学竞赛中广泛使用。
将问题中的对象适当进行染色,有利于我们观察、分析对象之间的关系,像国际象棋的棋盘那样,我们可以把被研究的对象染上不同的颜色,许多隐藏的关系会变得明了,再通过对染色图形的处理达到对原问题的解决,这种解题方法称为染色法。
知识梳理知识梳理1.染色问题解答染色问题,并不需要具备更多的数学知识,只需要具有缜密的思考能力和较强的分析能力。
纵观各种染色试题,它与我们经常使用的数学方法紧密联系。
大体上有如下几种方法:奇偶分析、归纳法、反证法、抽屉原理、构造法、组合计数等。
常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。
例题精讲【试题来源】【题目】用任意的方式将平面上的每一点染上黑色或白色(称为二染色).求证:一定存在长为1的线段,它的两个端点同色。
【答案】在平面上任作一个边长为1的正三角形,设三个顶点为A,B,C,由于平面上的每点只着黑、白两色之一,根据抽屉原理,A,B,C三点中必有两点同色,以这两同色点为端点的线段长度恰为1.【解析】在平面上任画一条长为1的线段,如图,若A,B两点同色,则结论已成立.若A,B 两点不同色,为确定起见不妨设A为黑色,B为白色,以AB为边作正三角形ABC,则AB=BC=CA=1.这时C点要么是黑点,要么是白点.若C为黑点,则AC为两个端点同色的长为1的线段.若C为白点,则BC为两个端点同色的长为1的线段.上述分析过程,其实已完成了证明过程,不过思路一旦找出,出现边长为1的正三角形的顶点A,B,C三点的构想是个关键,为此可得出如下简化的证明.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】对平面上的点黑白二染色后,一定存在三顶点同色的直角三角形.【答案】见解析【解析】对平面上的点黑白二染色,根据例1的结论,存在边长为a(a>0)的线段AB,它的两个端点同色(不妨设A,B同黑).以AB为边作正方形ABCD,对角线AC,BD交于点O,如图,如果D,O,C中有一个黑点,则该点与A,B构成三顶点同黑色的直角三角形.如果D,O,C全白色,则△DOC就是三顶点全为白色的直角三角形.因此,二染色平面上一定存在顶点同色的直角三角形.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】用任意的方式,对平面上的每个点染黑色或白色,求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色.【答案】见解析【解析】若存在边长为1且顶点同色的正三角形,则问题得证.若不存在边长为1且顶点同色的正三角形,则一定存在长为1的线段AB ,两端点A ,B 异色.以AB =1为底作腰长为2的等腰三角形ABC ,则C 与A 或B 总有一对是异色的.不妨设长为2的线段AC 两端点异色(见图(a )).取AC 的中点O ,则O 必与A ,C 之一同色(见图(b )),不妨设O 与A 同色.由于不存在边长为1的同色顶点的正三角形,所以以AO 为一边的等边三角形的另外的顶点D 和E 必与A 异色.此时,△ECD 就是一个边长为3的顶点同色的正三角形.评注 事实上,当将平面分成宽度为23的水平带状区域,且每个区域含下沿直线,不含上沿直线,使相邻的带状区域染上不同颜色,对这样的平面二染色,任意边长为1的正三角形的三个顶点均不同色,但存在边长为3的三顶点同色的三角形.由例3可得更一般的结论:平面上点二染色后,要么存在边长为a (a >0)三顶点同色的正三角形,要么存在边长为3 a 三顶点同色的正三角形.【知识点】染色问题 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】连接圆周上9个不同点的36条线段染成红色或蓝色,假设9点中每3点所确定的三角形都至少含有一条红色边.证明有4点,其中每两点的连线都是红色.【答案】见解析【解析】设9个点依次为v1,v2,…,v9,首先证明必存在一点,设为v1,从v 1出发的红色线段不是5条.事实上,若不然,如果都是5条,则共有红色线段295不是整数,矛盾.若从v1出发的红色线段至少有6条,设v1v2,v1v3,v1v4,v1v5,v1v6,v 1v7均为红色,则由第26讲例8评注可知,连结v2,v3,v4,v5,v6,v7的线段中必有同色三角形.由题意知它只能为红色三角形,设为v2v3v4,则v1,v 2,v3,v4四点中两两皆连红线.若从v1出发的红色线段至多4条,则v1出发的蓝色线段至少有4条,设为v 1v2,v1v3,v1v4,v1v5,则v2,v3,v4,v54点必然两两连红线.否则,例如若v2v3是蓝色的,则△v1v2v3是蓝色三角形,与题设至少有一边为红色矛盾.以上各例中,染色都是作为问题条件给出的,有时,染色方法也作为一种分类手段,因此,用形象直观地染色进行分类,也就成了一种很有特色的解题方法.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】某桥牌俱乐部约定,四个人在一起打牌,同一方的两个人必须都曾合作过,或都不曾合作过.试证:只要有五个人,就一定能凑齐四个人,按照约定在一起打牌.【答案】见解析【解析】本题证明采用构造一个涂色模型,使它与原问题间有一一对应的关系.如果模型中的问题证明了,那么原问题也相应地证明了.证明五个人对应为空间五个点,如两个人合作过,那么对应两点连结红色线段,如两人不曾合作过,那么对应两点连结蓝色线段.因此原问题等价于证明涂色模型:空间五个点(无三点在一条直线上),两两连线,涂上红色或蓝色之一.证明必存在两条无公共端点的同色线段.设五个点为A1,A2,A3,A4,A5,不失一般性,不妨设A1A2为红色.观察△A3A4A5三条边的颜色.(1)如果△A3A4A5中有一条边为红色,设为A3A4,那么A1A2与A3A4是满足条件的两条线段;(2)如果△A3A4A5的三条边均为蓝色,此时如A1A3,A1A4,A1A5与A2A3,A2A4,A2A5中如果有一条蓝色线段,那么问题就获证.如以A1A3是蓝色线段为例,那么A1A3与A4A5是满足条件的两条线段.反之,如果此时六条线段均为红色,如取A1A3与A2A4就是满足条件的两条线段.由于无公共端点的同色线段存在,证得原命题成立.【知识点】染色问题【适用场合】阶段测验【难度系数】3【试题来源】【题目】把平面划分成形为全等正六边形的房间,并按如下办法开门:若三面墙汇聚于一点,那么在其中两面墙上各开一个门,而第三面墙不开门.证明:不论沿多么曲折的路线走回原来的房间,所穿过的门的个数一定是偶数.【答案】见解析【解析】为方便起见,我们把有公共门的两个房间叫做相邻的.用两种不同的颜色涂平面上的这些房间,使相邻的房间的颜色不同(如图).注意,从某种颜色的房间走到同种颜色的房间,必须经过另一种颜色的房间.显然,从任一房间走到同种颜色的房间,必定经过偶数个门.这样,利用图形和不同的颜色就可以解出这道题.【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】有一个2003⨯2003的棋盘和任意多个l⨯2及1⨯3的矩形纸片,规定l⨯2的纸片只能沿着棋盘的格线水平地放置,而1⨯3的纸片只能沿着棋盘的格线铅直地放置. 请问是否可依上述规定取用一些纸片不重叠地盖满整个棋盘?【答案】不可以【解析】先将棋盘的每一行黑白交错涂色,即第一行,第二行,第三行,…,依次为黑色,白色,黑色,….经过这样涂色后,开始时棋盘的黑白方格数之差为2003个.沿着棋盘的格线水平地放置1⨯2的纸片,每放上一个l⨯2的纸片,就能盖住黑白方格各一个,所以这个操作并不会改变黑白方格数之差;而每一个1⨯3的矩形纸片沿着棋盘的格线铅直地放置,所覆盖的三个方格都是同一颜色,所以每放置一片l⨯3的矩形纸片,棋盘的黑白方格数之差就增加3个或减少3个.因为2003不是3的倍数,所以,依题述规定取用一些1⨯2及l⨯3的矩形纸片是不可能不重叠地盖满整个棋盘的.【知识点】染色问题【适用场合】课后一个月练习【难度系数】3【试题来源】【题目】证明:如图,用15块4×1的矩形瓷砖与1块2×2的方形瓷砖,不能覆盖8×8的正方形地面(瓷砖不许断开!).【答案】见解析【解析】本例题有多种证法.一个共同点是:“不能覆盖”的证明,通常借助于反证法.证法1将8×8的正方形地面的小方格,用黑、白色涂之,染色法如图.于是,每一块4×1瓷砖,不论怎样辅设,都恰好盖住两个白格两个黑格.15块4×1瓷砖共盖住30个白格和30个黑格.一块2×2瓷砖,无论怎么放,总是盖住“三白一黑”或“三黑一白”,即只能盖住奇数个白格和奇数个黑格.而盘中的黑白格总数相等(全为32个).所以用15块4×1砖与1块2×2砖不能完全覆盖8×8地面.证法2将8×8的正方形地面的小方格.用代号为1,2,3,4的四种颜色涂之,染色法如(a).这时,4×1砖每次总能盖住1,2,3,4四色;而2×2砖不论放何处,总是不能同时盖住1,2,3,4四色.故是不可能的.证法3同样用四色涂之,涂法如(b).用反证法,设4×1砖横着盖住i 色的有x i 块,竖着盖住的有y 块.2×2砖盖住阴影格处(不妨假定,余仿此).假定能够盖住.那么有:⎩⎨⎧=+=+,144,16421y x y x 相减得4(x 1-x 2)=2.因为x 1与x 2均为整数,这是不可能的.【知识点】染色问题 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】(1)用1×1,2×2,3×3三种型号的正方形地板砖铺设23×23的正方形地面,请你设计一种辅设方案,使得1×1的地板砖只用一块.(2)请你证明:只用2×2,3×3两种型号的地板砖,无论如何铺设都不能铺满23×23的正方形地面而不留空隙.【答案】见解析【解析】(1)首先用12块地板砖与6块地板砖能铺成的长方形地面, 再利用4个的板块,恰用1块地板砖,可以铺满的正方形地面. (2)我们将的大正方形分成23行23列共计529个的小方格,再将第1行,第4行,第7行,第10行,第13行,第16行,第19行,第22行这八行染红色,其余的15行都染白色,任意或的小正方块无论怎样放置(边线与大正方形格线重合),每块或的正方块都将盖住偶数块的白色小方格.假设用及的正方形地板砖可以铺满后正方形地面,则它们盖住的白色的小方格总数为偶数个.然而地面染色后共有(奇数)个的白色小方格,矛盾.所以,只用,两种型号地板砖无论如何铺设,都不能铺满的正方形地面而不留空隙.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,对A,B,C,D,E,F,G七个区域分别用红、黄、绿、蓝、白五种颜色中的某一种来着色,规定相邻的区域着不同的颜色.那么有种不同的着色方法.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有种不同的着色方式.因此,本题正确答案是:2880.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】一块2×2的方格由4个1×1的方格构成,每个小方格被涂上红、绿两种颜色之一.如果要求绿色小方格的上方和右方不能与红色方格邻接.且上述四个小方格可以全部不涂绿色,也可全部涂上绿色.则可能的涂色方法共有种.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有5×4×4×2×3×3×2=2880种不同的着色方式.故答案为:2880.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】在9×9的方格表中,有29个小格被染上了黑色,如果m表示至少包含5个黑色小方格的行的数目,n表示至少包含5个黑色小方格的列的数目,试确定m+n的最大值.【答案】10【解析】∵m表示至少包含5个黑色小方格的行的数目,∴5m小于29,∴m的最大值为5,当m=5时,则n的最大值为5.故m+n的最大值为5+5=10.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】将凸五边形ABCDE的5条边和5条对角线染色,且满足任意有公共顶点的两条线段不同色,求颜色数目的最小值.【答案】5【解析】由于顶点A是4条线段AB,AC,AD,AE的公共点,因此至少需要4种颜色.若只有4种颜色,不妨设为红、黄、蓝、绿,则每个顶点引出的4条线段的颜色包含红、黄、蓝、绿各一种,因此,红色的线段共有条,矛盾.所以,至少需要5种颜色.下面的例子说明5种颜色可以将这10条线段染为满足条件的颜色.将AB,CE 染为1号颜色;将BC,DA染为2号颜色;将CD,EB染为3号颜色;将DE,AC染为4号颜色;将EA,BD染为5号颜色,则任意有公共顶点的两条线段不同色.综上所述,颜色数目的最小值为5.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】有10个表面涂满红漆的正方体,其棱长分别为2,4,6,…,20.若把这些正方体全部锯成棱长为1的小正方体,求有多少个至少一面有漆的小正方体.【答案】8000【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将直线上的每一个点都染上红、黄两色中的一种,证明:必存在同颜色的三个点,使得其中一点是另两点为端点的线段的中点.【答案】见解析【解析】【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】某班有50个学生,男女各占一半,他们围成一圈,席地而坐开营火晚会,求证:必能找到一位两旁都是女生的学生.【答案】见解析【解析】【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】若由“L”形的4个小方格,无重迭地拼成一个4×n的矩形.试证:n必为偶数.【答案】见解析【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将一个棱长分别为36厘米、54厘米和72厘米的长方体切割成一些大小相同、棱长是整数厘米的正方体,然后给这些正方体的表面涂色。
高中染色问题基本题型及其解法总结染色问题是一个复杂而有趣的问题,高考中不时出现,包含着丰富的数学思想.解决涂色问题方法技巧性强且灵活多变,常用的方法是两个计数原理法和不相邻区域分类讨论法,常用的数学思想是转化与化归思想;常见的题型有区域涂色、点涂色、线段涂色和面涂色等.需要注意的是要审清题意,注意题目所给的条件颜色是否需要用完.
染色问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,但学生学习此部分内容时颇感吃力.究其原因,表面上是学生方法使用不当,实际上主要是其没有深刻体会到题目所隐含的数学思想,从而导致解题受阻,要么生搬硬套,要么分类错误,要么不知所云.本文在梳理基础知识和解决基本方法后总结后,尝试将染色问题的常见类型及求解方法做一个总结,力求让读者对染色问题有一个比较系统的认知,并通过解题和方法总结,提炼内化数学思想,从而达到举一反三、触类旁通的效果,不到之处,还请各位同行多多指正.
基本知识和基本方法
基本类型和方法总结
反馈练习
高考链接
相关链接
1.培养高中学生数学思想案例——染色问题教学札记
1.培养高中学生数学思想案例——染色问题教学札记
2.高中数学优秀教学设计合集
参考文献
[1]广东省教育研究院教育研究课题《培养学生数学思想的高中数学教学行动研究》,主持人:王常斌,相关研究成果.
[2]顺德区期末考试统考试题.
[3] 莘村中学导学案及练习题.。
什么是染色问题这里的染色问题不是要求如何染色,然后问有多少种染色方法的那类题目,它指的是一种解题方法。
染色方法是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中所蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。
这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会几种典型的染色方法。
染色问题基本解法:三面涂色和顶点有关 8个顶点。
两面染色和棱长有关。
即新棱长(棱长-2)×12一面染色和表面积有关。
同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*60面染色和体积有关。
用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。
染色问题的解题思路染色问题是数奥解题中的难点,这类问题初看起来好像无从着手,其实只要认真思考问题也很容易解决,下面就染色问题的解题思路说一下。
图一首先,拿到一道题先认真观察,看这个题的突破点。
什么是染色问题的突破点呢?那就是找染色区域中的一个最多,这个最多是指一个区域,其他区域与它连接的最多。
例如图一中A区域A与B、C、D、E、 F连接最广所以A为特殊区域。
找到这个区域问题就容易解决了。
这个区域可以任意添色就是染最多的颜色。
本题中有4种颜色那么A可以染4种颜色了。
完成这个事件需要A、B、C、D、E、F6步所以用乘法原理。
这道题找到了最特殊的A 区域第二特殊区域和第三区域的确定也就容易了,C区域是与A相连,连接区域的数量仅次于A区域图一中的C和E区域都可以做第二个特殊区域了,但只能选一个,我们把C当成第二特殊的区域,则C可以染3种颜色。
区域B跟A、C相连那么 B可以染2种。
D与A、C、E相连则只能选1种,对吗?我们仔细观察,按顺序说A----4,C------3,B-------2,D 则连接A、C当A 选色后C有3种可能,D在A、C选色后只有2种可能。
初中数学竞赛专题:染色问题25.1.1★★圆周上等间距地分布着27个点,它们被分别染为黑色或白色.今知其中任何2个黑点之间至少间隔2个点.证明:从中可以找到3个白点,它们形成等边三角形的3个顶点.解析 我们将27个点依次编号,易知它们一共可以形成9个正三角形(1,10,19),(2,11,20),…,(9,18,27).由染色规则知,其中至多有9个黑点.如果黑点不多于8个,则其中必有一个正三角形的所有顶点全为白色.如果黑点恰有9个,那么由染色规则知,它们只能是一黑两白相间排列,其中也一定有一个正三角形的所有顶点全为白色. 25.1.2★★某班有50位学生,男女各占一半,他们围成一圈席地而坐开营火晚会.求证:必能找到一位两旁都是女生的学生.解析 将50个座位相间地涂成黑白两色,假设不论如何围坐都找不到一位两旁都是女生的学生,那么25个涂有黑色记号的座位至多坐12个女生.否则一定存在两相邻的涂有黑色标记的座位,其上面都坐着女生,其间坐着的那一个学生与假设导致矛盾.同理,25个涂有白色标记的座位至多只能坐12个女生,因此全部入座的女生不超过24人,与题设相矛盾.故命题得证. 25.1.3★在线段AB 的两个端点,一个标以红色,一个标以蓝色,在线段中间插入n 个分点,在各个分点上随意地标上红色或蓝色,这样就把原线段分为1n +个不重叠的小线段,这些小线段的两端颜色不同者叫做标准线段.求证:标准线段的个数是奇数.设最后一个标准线段为1k k A A +.若0k A A =,则仅有一个标准线段,命题显然成立;若n k A A =,由 A 、B 不同色,则0A 必与k A 同色,不妨设0A 与k A 均为红色,那么在0A 和k A 之间若有一红蓝的标准线段,必有一蓝红的标准线段与之对应;否则k A 不能为红色,所以在0A 和k A 之间,红蓝和蓝红的标准线段就成对出现,即0A 和k A 之间的标准线段的个数是偶数,加上最后一个标准线段1k k A A +,所以,A 和B 之间的标准线段的个数是奇数.25.1.4★★能否用面积为14⨯的一些长方块将1010⨯的棋盘覆盖?解析 如图中标上1~4这些数,显然每个1×4的长方块各占1、2、3、4一个,于是如果可以覆盖,则1、2、3、4应一样多,但1有25个,2则有26个,矛盾!因此不能覆盖.25.1.5★★12个红球和12个蓝球排成一行,证明:必有相邻的6个球三红三蓝.解析 将这些球标上数字,红球标1,而蓝球则标上1-,于是问题变为:必定有6个相邻的球其标数之和为0.记从第i 个球起的6个数字和为i S ,于是i 可取1,2, (19)易知1S 的全部取值为6-、4-、2-、0、2、4、6,且10i i S S +-=或2(可以认为以2或2-、0的步长“连续”变化).由1713190S S S S +++=,知若四数中有0,则结论成立,否则必有正有负.不妨设0i S >,0j S <,i ,j ∈{1,7,13,19},于是必存在一个k ,k 在i 与j 之间,0k S =.25.1.6★如图,把正方体形的房子分割成27个相等的小房间,每相邻(即有公共面)两个房间都有门相通,在中心的那个小正方体中有一只甲虫,甲虫能从每个小房问走到与它相邻的小房间中的任何一问去.如果要求甲虫只能走到每个小房间一次,那么甲虫能走遍所有的小房间吗?解析 甲虫不能走遍所有的小房间.我们如右图将正方体分割成27个小正方体(每个小正方体表示一问房间),涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上不同的颜色.显然,在27个小正方体中,14个是黑的,13个是白的.甲虫从中间的白色小正方体出发,每走一步,方格就改变一种颜色.故它走26步,应该经过14个白色的小正方体、13个黑色的小正方体.因此在26步中至少有一个小正方体,甲虫进去过两次.由此可见,如果要求甲虫到每一个小房间只去一次,那么甲虫不能走遍所有的小房间.25.1.7★★3行9列共27个小方格,将每个小方格涂上红色或蓝色.试证:无论如何涂法,其中至少有两列,它们的涂色方式完全一样.解析第一行的9个方格中必有5格同色(抽屉原理),不妨设这5个方格位于前五个位置,且都为红色.下面考虑前五列构成的3×5小矩形.第二行的五格中必有3格是同色的,不妨设这三格位于前三个位置.接着考虑前三列构成的3×3方阵,该方阵前两行的每列完全一样.对第三行,用两种颜色染色时,三列中必有两列同色,不妨设是前两列.此时前两列的涂色方式完全一样.a线进行剪裁,总剪不出七个由相邻两个小正方形组成的矩形来.(b)(a)解析如图(b)涂色.若有一种剪法能剪出七个相邻两个小正方形组成的矩形,则每个矩形一定由一个涂色小正方形和一个不涂色小正方形构成.因此,应该有七个涂色小正方形和七个不涂色的小正方形.但图中有八个涂色小正方形,六个不涂色小正方形,因此适合题意的剪法不存在.25.1.9★★★在8×8的国际象棋棋盘中的每个方格都填上一个整数,现任挑选3×3或4×4的正方形,将其中每个数加1,称为一次操作,问是否能经过有限次操作,一定可以让方格中的所有整数均被10整除?解析按图中选择小方格涂黑,易见每个3×3或4×4都包含偶数个小黑格,这些小黑格中原来数字之和是奇数的话,那么操作一次后,数字和仍是奇数,因此不能得到最后均被10整除.答案是不一定.25.1.10★★4×4的方格表中最多选择几个格子涂黑,使得不存在4个黑格的中心是一个矩形的顶点?解析如图,涂9格,无所求矩形,下证若涂10格,则会出现所求矩形.这是因为若有一行全部涂黑,则余下的行中必有一行至少涂黑2格,此时便有所求矩形出现.于是每行黑格数不到4个,必有两行各包含3个黑格,此时不难看出有所求矩形出现,因此最多选择9格.25.4.11★★★在8×8的国际象棋棋盘中剪去哪个小方格,使得剩下的小方格可以被1×3的矩形覆盖?解析剪去左上角的方格后,棋盘不能用21个3×1的矩形覆盖.为了证明这一点,我们将棋盘涂上三种颜色,涂法如图,其中数字1、2、3分别表示第一、二、三种颜色.如果能用21个3×1矩形将剪去左上角的棋盘覆盖,那么每个3×1的矩形盖住第一、二、三种颜色的方格各1个,从而21个3×1的矩形盖住第一、二、三种颜色的方格各21个,然而棋盘(剪去左上角后)却有第一种颜色的方格20个,第二种颜色的方格22个,第三种颜色的方格21个.因此,剪去左上角的棋盘无法用21个3×1的矩形覆盖.由此可见,如果剪去一个方格后,棋盘能用21个3×1的矩形覆盖,那么剪去的方格一定是图中涂第二种颜色的方格.但是,剪去图中涂第二种颜色的一个方格后,仍然不能保证一定能用21个3×1的矩形覆盖,比如说,剪去图中第一行第2个方格后不能用21个3×1的矩形覆盖,这是由于棋盘的对称性,剪去这个方格与剪去第一行第7个(涂第一种颜色的)方格(或剪去第八行第2个涂第三种颜色的方格)所剩下的棋盘完全相同.于是,只有剪去第三行第3个、第三行第6个、第六行第3个、第六行第6个这四个方格中的某一个,剩下的棋盘才有可能用21个3×1的矩形覆盖.不难验证这时确实能够覆盖. 25.1.12★★求证:只用2×2及3×3的两种瓷砖不能恰好铺盖23×23的正方形地面.解析 将23×23的正方形地面中第1、4、7、10、13、16、19、22列中的小方格全染成黑色,剩下的小方格全染成白色,于是白色的小方格的个数为15×23,这是奇数.因为每块2×2瓷砖总是盖住二黑格和二白格或者盖住四白格,每块3×3瓷砖总是盖住三黑格和六白格,故无论多少2×2及3×3的瓷砖盖住的白格数总是一个偶数,不可能盖住23×15个白格,所以,只用2×2及3×3的瓷砖不能盖住23×23的地面.25.1.13★★求证:用15块大小是1×4的矩形瓷砖和1块大小是2×2的正方形瓷砖,不能恰好铺盖8×8的正方形地面.解析 把8×8的正方形地面上64个小方格依次赋值1、2、3、4如图.无论1×4的矩形瓷砖怎样盖在图中所示的地面上,每块l ×4的矩形瓷砖恰好盖住赋有1、2、3、4的小方块各1个,可见15块1×4的矩形瓷砖恰好盖住赋有1、2、3、4的小方格各15个,而一块2×2的正方形瓷砖无论盖在何处,只有如下四种情形之一:4121341423432321这就是说,2×2的正方形瓷砖所盖住的4个小方块中,必有两个小方块有相同数码.由此可见,如果15块1×4,1块2×2的瓷砖恰好能铺盖8×8的正方形地面,那么这64个小方块中,某一种赋值的小方块应有17块,但实际上,赋值1、2、3、4的小方块各16块,矛盾.25.1.14★★7×7的方格表中有19个方格涂成红色,称一行或一列是红色的如果该行或该列中至少有4个红格.问该方格表中最多有多少个红色的行和列?解析首先我们指出红色的行和列不多于8个.若不然,红色的行和列至少9个,则其中必有5个红行或红列,不妨设为前者.由于每个红行中至少有4个红格,故知表中至少有20个红格.此与已知条件矛盾.其次,当我们将表格中的某个4×4的正方形的16个方格全部涂红时,便得到4个红行和4个红列,共8个.这表明有19个红格时,确可使红行与红列的个数达到8.所以最大值为8.25.1.15★★如图是由4个l×1方格组成的L形纸片,如果一个m n⨯方格的棋盘能被若干个L形纸片无重复地覆盖,试证:mn是8的倍数.解析设m n⨯棋盘由k个L形纸片所覆盖,而L形是由4个1×1小方格所组成,则可令=.由此得出m、n中至少有一个偶数,不失一般性,可令n为偶数,即共有偶数n列.4mn k现在对“列”进行黑、白交替染色,可得黑、白格各共有2k个.易见每个L形纸片无论怎样配置,总是盖住奇数个黑格.今共有2k个黑格,因此必须有偶数个L 形,从而证得mn是8的倍数.25.1.16★★在8×8的方格棋盘上最多能放多少个马,它们互不相吃(假定有足够多的马)?解析我们将棋盘相间染成黑白二色,则黑格与白格各32个.按马的走法(如图)知,黑格上的马只能吃白格上的马,因此,将所有黑格都放马,它们是互不相吃的.这就是说,我们可以放32个马,它们互不相吃.现证任意放33个马必有被吃的情形.事实上,将棋盘划分为8个2×4的小棋盘,则至少有一个小棋盘要放5个马,其放法只有两种可能:要么一排放1个,另一排放4个;要么一排放2个,另一排放3个.显然这两种放法都不可避免地发生互相“残杀”的结局.因此,最多能放32个马,它们互不相吃.25.1.17★★★在12×12的棋盘上,一匹超级马每步跳至3×4矩形的另一角,如图(a).这匹马能否从某一点出发,跳遍每一格恰好一次,最后回到出发点?(a)解析我们用两种方法对此棋盘染色.首先,将棋盘黑白相间染色,由马的跳步规则知,马每跳一步,或者是从黑格跳到白格,或者是从白格跳到黑格.不妨设马是第奇数步跳到自格,即马在第奇数步跳入的格子全体就是全体白格.123456789101112(b)其次,将棋盘的第1、2、6、7、11、12行染成白色,其余的行染成黑色,如图(b).由马的跳步规则知.马从白格一定跳人黑格,因为白格的数目同黑格的数目相同,马要遍历棋盘的每一格恰一次再回到出发点,因此,马从黑格只能跳入白格,不妨设马第奇数步跳入白格.对于一种满足要求的跳法,在两种染色方式下第奇数步跳入的格子的全体却是不同的,矛盾.因此,题目要求的跳法,即“回路”是不存在的.25.1.18★★★在8×8方格表的小方格内放置黑色或白色的棋子,每个小方格内至多只能放一个棋子,使得每行且每列白色棋子的数量都是黑色棋子的数量之2倍.在满足上述条件的所有放置方法中,请问如何放置白色棋子和黑色棋子才能使得棋子的总数量最多?解析因每行都有8格,所以每行棋子最多只能有6个.此方格表共有8行,因此棋子的总数最多为48个.如右图所示,48个棋子是可以完成的.25.1.19★★★★将m n ⨯的方格表中每个小方格涂上黑色或白色,两种颜色的方格数相等.问能否有一种涂法,使每一行、每一列中都有一种颜色的方格数超过75%?解析 不可能.设每行、每列中都有一种颜色的方格超过34,由于行与行、列与列可对调而不影响结论.不妨设其中前p 行白色占优势,后q 行黑色占优势;前r 列白色占优势,后s 列黑色占优势.p q m +=,r s n +=(如下左图).r spq 全白黑白相间黑白相间全黑考虑p s ⨯放q r ⨯的矩形中的ps qr +个方格.其中的白格可看成s 列或q 行中的“少数派”,而黑格可看成p 行或r 列中的“少数派”.由于在每行、每列中“少数派”少于4n 或4m 个,所以前一个矩形中的白色与后一个矩形中的黑格的个数之和少于()44m mn s r +=.同样,前一个矩形中的黑格与后一个中白格之和少于()44n mn p q +=.所以这两个矩形中的方格数442mn mn mn ps qr +<+=,即少于方格总数的一半.因此ps qr pr qs +<+, ()()0p q s r --<,从而p q ≤,r s ≤或q p ≤,s r ≤不妨设为前者,这时2m p ≤,2n r ≤, 白色方格总数44n m pr q s <+⨯+⨯()()44n m pr m p n r =+-⨯+-⨯ 24242mn n r m p p r ⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭2mn ≤, 与两种颜色的方格相等矛盾.评注 每行、每列中都有一种颜色的方格恰好占34是可能的(这时m 、n 当然都被4整除),前右图(其中2m p q ==,2n r s ==)即满足要求. 25.1.20★★★在2是×2是的方格表上,有3k 个格子涂黑,求证:可以选择k 行及k 列,包含了全部这3k 个黑格.解析 将包含黑格的所有行中找出黑格数最多的前k 行,则这k 行中包含的黑格总数必定不少于2k ,否则会有一行的黑格数至多一个,而剩下来的k 行至少有1k +个黑格,于是有一行包含了至少两个黑格,这与k 前是行”的定义矛盾.于是结论成立,接下来只要再找是列包含剩下的k 个黑格即可(有的列可不包含黑格).25.1.21★★★7×7方格表中的方格被分别染为两种不同颜色,证明:至少可以找出21个矩形,它们的顶点是同一种颜色方格的中心,它们的边平行于方格线.解析 考察其中任意一列,估计其中同色“方格对”的个数.设在该列中有一种颜色的方格走个,另一种颜色的方格7k -个,那么,在该列中就共有()()()217672122k k k k k k ---+=-+个同色“方格对”.该式的值在3k =和4k =时达到最小值9,所以,7个列中一共有不少于63个同色“方格对”.注意到每一个这样的同色“方格对”位于一个“行对”中,如果相应的“行对”中还有一个与之颜色相同的同色“方格对”,那么,它们即构成一个满足要求的矩形.我们知道,方格表中一共有76212⨯=个不同的“行对”,由于有两种不同颜色,所以,一共有42种不同情况的“行对”.因此,至少可以找到21(=63-42)个满足要求的矩形.25.1.22★★★把全体正整数染成黑白两色之一,已知任意两个不同颜色的数之和为黑色,而它们的积是白色,试找出所有的这种染色方法.解析 设正整数m 、n 为白色,现研究mn 的颜色.若mn 是黑色,设正整数k 黑色,则m k +为黑色,()m k n mn kn +==+为白色,但由前知mn 黑色,kn 白色,于是mn kn +黑色,矛盾,因此mn 为白色. 设正整数l 是染成白色的最小数,于是由条件及前面的讨论知,l 的所有正整数倍数sl 均为白色.至于其他正整数p ,p 不被l 整除,设p ql r =+,0r l <<,由l 之定义知,r 必定是黑色,于是知当0q =时,p r =为黑色;当0q >时由ql 为白色,知p 亦为黑色.于是本题的结论就是,所有l 的倍数染成白色,其余的数染成黑色,不难验证这种染法确实满足题设要求.25.1.23★★★★有一个矩形顶点坐标分别为()0,0、()0,m 、(),0n 与(),n m ,其中m 、n 均为正奇数,将这个矩形分拆(既无重叠,也不遗漏)为一些三角形,使得每个三角形的顶点均为格点且至少有一条边与坐标轴平行,并且这条边上的高为1,求证:一定存在至少两个三角形,它们各有两条边平行于坐标轴.解析 易知,可将矩形分成mn 个单位正方形,并涂上黑白两色,使相邻的正方形颜色不同.此时4个角上的小正方形颜色相同,设为黑色,于是黑色格总面积比白格多1.可以推出,上述分拆中,每一个有两条边与坐标轴平行的三角形中,两种颜色部分的面积之差为12;而每一个仅有一条边与坐标轴平行的三角形中,两种颜色部分的面积相等,如图.由于黑色面积与白色面积相差1,故至少存在两个三角形各有两条边与坐标轴平行.25.1.24★★★把正三角形划分为2n 个同样大小的小正三角形,把这些小正三角形的一部分标上号码1,2,…,m ,使得号码相邻的三角形有相邻边.求证:21m n n -+≤.解析 将2n 小正三角形如图黑、白染色,黑三角形共有1+2+3+…+()112n n n =+个,白三角形共有1+2+3+…+(1n -)()112n n =-个,由于要求“号码相邻的三角形有相邻边”,且有相邻号码的两个三角形染有不同的颜色,因此标上号码的黑三角形总比标上号码的白三角形的个数多1,所以编号的三角形数m 不超过()2121112n n n n ⨯-+=-+个,即21m n n -+≤.25.1.25★★★将正方形ABCD 分割为n n ⨯个相等的小方格,把相对的顶点A 、C 染成红色,把B 、D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.求证:恰有三个顶点同色的小方格的数目必是偶数.解析 用数代表颜色:红色记为1.蓝色记为1-.将小方格编号,记为1,2,…,2n .记第i 个小方格四个顶点处数字之乘积为i A .若该格恰有三个顶点同色,则1i A =-,否则1j A =.今考虑乘积212n A A A ⨯⨯⨯.对正方形内部的交点,各点相应的数重复出现4次;正方形各边上的不是端点的交点相应的数各出现2次;A 、B 、C 、D 四点相应的数的乘积为()()11111⨯⨯-⨯-=.于是,2121n A A A ⨯⨯⨯=.因此,1A ,2A ,…,2n A 中1-的个数必为偶数,即恰有三个顶点同色的小方格必有偶数个.25.1.26★★已知ABC △内有n 个点(无三点共线),连同点A 、B 、C 共3n +个点,以这些点为顶点把ABC △分割为若干个互不重叠的小三角形,现把A 、B 、C 分别染成红色、蓝色、黄色,而其余n 个点,每点任意染上红、蓝、黄三色之一.求证:三顶点都不同色的小三角形的总数必是奇数.解析 把这些小三角形的边赋值:边的端点同色的,赋值0,边的端点不同色,赋值1,于是每只小三角形的三边赋值的和,有如下三种情形:(i)三顶点都不同色的小三角形,赋值和为3;(ii)恰有两顶点同色的小三角形,赋值和为2;(iii)三顶点同色的小三角形,赋值和为0.设所有小三角形的边的赋值总和为S ,又设情形(i)、(ii)、(iii)中三类小三角形的个数分别为a 、b 、c ,于是32032S a b c a b =++=+. ①注意到所有小三角形的边的赋值总和中,除了边AB ,BC ,CA 外,其余各边都被计算了两次,故它们的赋值和是这些边的赋值和的两倍,再加上ABC △的三边的赋值和为3,故S 是奇数,因此,由①式得a 是奇数.25.1.27★★★由8个1×3和1个1×1的砖块按通常方式(即平行地贴着格子线)铺满一个5×5的棋盘,求证:1×1的砖块必定位于整个棋盘的中心位置.解析 将棋盘按图中方式染成A 、B 、C 三种颜色.易见A 、C 各有8格,而B 有9格.由于每个1×3砖块必定覆盖A 、B 、C 三色格各一格,因此1×1的砖块必定染成B 色.再将整个棋盘旋转90゜,再按完全相同的方法染色,于是1×1的砖块仍在染成B 色的方格上,但两次染色均染成B 色的小方格只有中间的那个,因此1×l 的砖块必定位于整个棋盘的中心位置.25.1.28★★★★6个点每两点之间连一条线,将这15条线进行任意的二染色(即每条边染成两种颜色之一),则必定存在至少两个同色的三角形.解析 设两色为红色与蓝色.若从同一点出发有3条线同色,比如AB 、AC 、AD 为红色,如果BC 红色,则ABC △为红色三角形,否则BC 为蓝色,同理CD 、DB 亦为蓝色,于是BCD △为蓝色三角形.因此,有一点出发3条线同色,一定有同色三角形存在.于是6个点之间的15条线中,一定有同色三角形存在.5个点的10条线若无同色三角形,则每一点连出的4条线必定两红两蓝.比如五点为A 、B 、C 、D 、E ,不妨设BA 、AE 红,由于BE 蓝,还有一点与B 的连线红色,不妨设BC 红,于是BD 蓝,ED 红,AC 、AD 蓝,CD 红,CE 蓝,故要想不出现同色三角形,只能是五点构成的五边形(不一定凸或自身不交)的边同色,而对角线则异色.现在回到原题,设六点为1A 、2A 、3A 、4A 、5A 、6A ,由于一定有同色三角形存在,不妨设为456A A A △一是红色三角形,若不存在第二个同色三角形,则可设五边形12345A A A A A 的边为红色(图中实线所示),对角线为蓝色(图中虚线所示).若16A A 为红色,则156A A A △为红色三角形,故16A A 蓝,同理36A A 为蓝色,于是136A A A △为蓝色三角形,因此同色三角形至少有两个.A 1A 2A 34A 5A 625.1.29★★★n n ⨯的方格表中有1n -个格子涂且黑色,如果一个未涂色的小方格有两个以上的黑色小方格与之相邻(“相邻”指有公共边),则将这个小方格也涂黑,求证:不可能将所有的小方格都涂黑.解析 假定小方格边长为1.考虑一开始这1n -格小方格组成的“岛”,每个“岛”都由连在一起的小方格组成,不同的“岛”之间没有公共边界(当然也可能本来只有一个“岛”).因此这些“岛”的边界(包括有“洞”时“洞”的“内部边界”)长度之和不大于()41n -(因为还有小方格边界在内部抵消的情形).现在按规则操作,每添加一个黑格,总边界不会增加,甚至还会减少(例如未涂色的小方格周边已有3或4个小黑格与之相邻).如果所有小方格都涂黑了,总边界为()441n n >-,矛盾.因此结论成立.25.1.30★★★无限大方格表上的每个结点(方格线的交点)都被染为三种颜色之一,并且每种颜色的点都有.证明:可以找到一个直角三角形(其直角边不一定在方格线上),它的三个顶点被分别染为三种不同颜色.解析用反证法.假设不存在三个顶点被分别染为三种不同颜色的直角三角形.不难看出,可以找出一条水平方向或竖直方向的直线l,它上面至少有两种颜色的结点,为确定起见,设其为水平方向.如果l上只有两种颜色的点,比方说蓝色与红色,那么在平面上任意取一个绿色结点A,并且把A 所在的竖直直线与l的交点记作B.于是,B或为蓝色或为红色,不妨设其为蓝色.由于l上还有红色结点,只要任取其中一个红点C,即可得到三个顶点颜色各异的Rt ABC△,此与假设矛盾.所以,l上面有三种颜色的结点.在直线l上任意取一个蓝点B、一个红点C和一个绿点D.那么,此时在经过点B的竖直直线上的结点都应当为蓝色,否则就可以找到三一个顶点颜色各异的直角三角形.同理,在经过点C的竖直直线上的结点都为红色,在经过点D的竖直直线上的结点都为绿色.这就表明,在以上的染色方法中,每条竖直直线上的结点都是单一颜色的,从而,任何直角边在方格线上的直角=三角形中都至少有两个顶点同色.下面考察任何一条经过结点且与竖直方向交成45゜的直线.由于它同每条竖直直线都相交于结点处,所以它上面有着三种不同颜色的结点.这样一来,根据刚才的讨论,在每一条与它垂直的直线上的结点都只能是单一颜色的.但是,事实上这些直线都与竖直方向交成135゜,从而与每条竖直直线都相交于结点处.故都有着三种不同颜色的结点,导致矛盾.25.1.31★★★将全平面以任意方式二染色,并在平面上任找不共线的三点A、B、C,求证:存在一个顶点同色的三角形,与ABC△相似.S M K N T解析首先证明,一定有两点及两点连线之中点同色,不妨设二色为红与蓝.至少有一种颜色被涂在无穷多个点上,不妨设是红色,今找两点M、N,均为红色.K为MN中点,又使M为SN中点,N为MT中点.若K红,则M、K、N为所求;同理,若S或T为红,则S、M、N或M、N、T为所求;若K、S、T皆为蓝,则S、K、T为所求.如图,现作A△,P、Q、R为三边中点,且由前,可设B′、P、C′.若A′△′B′C′∽ABC红,则A△′P或QPC△′B′C′即为所求;若R或Q红,则RB△′为所求;若A′、R、Q皆蓝,此时A△′RQ即为所求.于是结论成立.。